TO:

FROM: JOEL I. CEHN

SUBJECT: 2017 TESTING RESULTS

DATE: MARCH 27, 2017
CC:

BACKGROUND \& APPROACH

Environmental testing of the Brandeis Bardin Campus (BBC) occurs periodically, as part of an ongoing program to confirm the safety of the property. This year's testing included sediments and surface water near the property line with Boeing. There are a limited number of ravines that carry surface water runoff towards BBC. If contaminants are migrating from SSFL Area IV, they would be found in these ravines. Thus, the testing occurs there.

I collected fine sediments from the bottom of the ravines, since most contaminants would attach to these sediments. This campaign I visited four ravines: drainages from the old "sodium burn pit" (FSDF), from the old reactor area, from an old waste facility (RMDF), and from the sodium reactor area (SRE). Locations are listed in Tables 1 and 2, and shown in Figure 1. In December 2015, I placed sediment traps in two ravines that would catch any runoff occurring the rainy season. The trap in the reactor area drainage survived, but the one in the burn pit drainage did not. That trap (labeled BB-17) yielded fine sediments and rainwater runoff.

Groundwater springs near the property line were also tested, as was spring OS-10. Testing occurred the week of January $16^{\text {th }}$.

SUMMARY OF TESTING RESULTS

Radioactivity in Sediments

Sediments closest to the property line were tested for strontium-90, and gammaemitting nuclides. Strontium-90 (a beta-emitting nuclide) is a reactor byproduct and a known Area IV contaminant. All results were negative for $\mathrm{Sr}-90$. Results for gammaemitting nuclides showed the presence of natural radioactivity (e.g., thorium and radium). Eleven nuclides were included in the analysis. Cesium-137 was detected at very low levels (up to $0.08 \mathrm{pCi} / \mathrm{g}$). However, one sample result (BB-16L) was flagged as "All peaks have bad shape," which suggests a false positive result. This nuclide is present in the Northern Hemisphere, due to past nuclear weapons testing in the Pacific and elsewhere. Levels in
these samples are well within this background, given in DTSC's Lookup Table as 0.225 pCi/g.

PCBs in Sediments

Polychlorinated biphenyls (PCBs) were not detected in any sediment samples. In 2015, PCBs were detected at 14 and 18 parts per billion (ppb), which is in line with DTSC's Lookup Table value of 17 ppb .

Dioxins in Sediments

Samples from three drainages were tested for dioxins and furans. SSFL's sodium burn pit had the potential for creating these compounds. Results are given in parts per trillion (ppt), toxicity equivalent (TEQ), the measure used by California DTSC.*

Burn Pit Drainage - 0.505 ppt.
Reactor Area Drainage - 0.564 ppt .
SRE Drainage - 1.14 ppt.
The levels in the burn pit and reactor area drainages are at or below natural background levels. The level in the SRE drainage is in line with those found by DOE's contractor in this drainage in 2013. ${ }^{\dagger}$ This level is slightly above the Lookup Table's background value of 0.912 ppt , but may still be due to natural sources (i.e., forest fires). The level is below action levels found in the literature (7 ppt up to $1,000 \mathrm{ppt})^{\ddagger}$.

Hydrocarbons in Sediments

In 2013, DOE's contractor detected very low levels of SVOCs at BBC. In the current campaign, six sediment samples were taken; four from drainage ravines and two from background areas. These were analyzed for semi-volatile organic compounds (SVOCs) using EPA method 8270. No hydrocarbons were detected. .

TCE in Groundwater

Trichloroethene (TCE) is a known SSFL contaminant. Water from springs OS-3 and OS-10 was collected before exposing the water to air, which would result in the loss of this volatile chemical. Other springs could not be sampled in this way. Tests of both springs were negative for TCE.

[^0]
Tritium in Water

Water was collected from three flowing springs, and three ravines. Two ravines had standing water, most likely spring-fed. The third ravine sample came from the sediment and rain runoff trap (see Table 2). Springs OS-3, OS-10, and spring water from the SRE drainage were negative for tritium. Tritium was detected in the three other samples.

Water from the reactor area sediment trap showed tritium at $29.0 \pm 9.7 \mathrm{pCi} / \mathrm{L}$. This is consistent with natural tritium in rainwater ${ }^{\S}$, which was the source of the sample. Spring OS-7 contained tritium at $16.1 \pm 6.4 \mathrm{pCi} / \mathrm{L}$. A spring northeast of OS-7 (BB-16A) contained tritium at $41.9 \pm 6.4 \mathrm{pCi} / \mathrm{L}$. Both of these are slightly elevated, due to past releases from SSFL. Tritium levels continue to fall-OS-7 tested at $25 \mathrm{pCi} / \mathrm{L}$ in 2015-and will eventually become not detectable.

Other Radioactivity in Water

In 2012, EPA's contractor detected gross alpha radioactivity in spring OS-10.** That result was attributed to sediment in the water sample (see discussion below). That test was repeated here and OS-10 was negative for gross alpha radiation. The spring was also tested for radioactive strontium- 90 , and none was detected.

Water collected in the sediment trap in the reactor area drainage was also tested for radioactivity. The test was negative for strontium-90, while the gross alpha test showed $16.2 \pm 6.9 \mathrm{pCi} / \mathrm{L}$. This sample sat in the sediment trap, in contact with soil, for up to a year. This would account for a positive finding, with the most likely source of radioactivity being natural radioactive minerals dissolved out of the soil (e.g., thorium, radium). Reactor products can be largely ruled out since very few of these emit alpha radiation, and since Sr 90 was not detected. On the other hand, thorium, radium, and nearly all naturally radioactive minerals emit alpha radiation. There was insufficient volume to test for gammaemitting nuclides.

CONCLUSIONS AND RECOMMENDATIONS

Results are unremarkable. Analytes are at or near background levels, or not present at all. Results continue to show that the BBC property is free of contamination. Drainage ravine sediments that could potentially carry contaminants toward BBC are free of contamination. Groundwater near the property line contains trace levels of tritium, but these are diminishing. I wouldn't recommend further testing for at least another year.

Copies of the lab reports are attached. Please contact me if you have any questions.

[^1]Table 1. Ravine Sediments Tested

Locations	Sample Code	Analyzed for:*	Comments
Boeing Runoff from old sodium burn pit area	BB-18	Rad, PCBs, dioxins, SVOCs	Just below the property line
Boeing Runoff from old reactor areas	BB-17	Rad, PCBs, dioxins	Very near the SW property line
Boeing Runoff from old RMDF areas	BB-16L	Rad, SVOCs	Below the property line
Downstream from the above runoffs.	OS-2	PCBs, SVOCs	Well below the property line, near the Red Tank
Boeing Runoff from old sodium reactor area (SRE)	BB-19M	Rad, PCBs, dioxins, SVOCs	Below the property line
Southwest corner of BBC, but not in drainages from Boeing	BB-16A and 16B	SVOCs	Background locations

Note: Locations shown on Figure 1.

* $\mathrm{Rad}=$ radioactivity; SVOC $=$ semi-volatile organic compounds

Table 2. Water Tested

Location	Analyzed for:	Comments
Spring OS-3	TCE, Tritium	Southwest corner of property
Spring OS-7	Tritium	Southwest corner of property
Spring OS-10	TCE, Tritium, Stronium-90, Gross alpha rad.	Near Old Well campsite
BB-16A*	Tritium	Southwest corner of property
BB-17*	Tritium, Stronium-90, Gross alpha rad.	Rainwater runoff collected in sediment trap, reactor area drainage
BB-19M *	Tritium	SRE drainage ravine

Note: Locations shown on Figure 1.

* Surface water from ravines.

LABORATORY REPORTS

ARS and Eurofin Labs

[10

Note: Contents are shown and linked with pdf bookmarks.

ARS International, LLC

Laboratory Analysis Report

ARS1-17-00216

Revision 1

Prepared for:

Applied Sciences Company

Joel I. Cehn
4714 Windsor Blvd
Cambria, CA 93428
cehn@aol.com
Phone: (510) 863-1570

[^2] Reproduction of this report in less than full requires the written consent of the client

Contact Person: Questions regarding this analytical report should be addressed to:

Case Narrative

SDG\# ARS1-17-00216
COC SOLID SAMPLES

CASE NARRATIVE

Client:
Applied Sciences Company
Project:
SDG Number:
Received Date:
Report Date:
BBI
ARS1-17-00216
1/24/2017
2/24/2017

SAMPLE RECEIPT

The samples were received in good condition and the samples were screened for radioactive contamination as per procedure ARS-062 "Sample Receiving". The temperature of the samples upon receipt was 15 degrees C. After a discussion with the client, the decision was made to proceed with analysis. Sample OS-10 (VOA) collected $1 / 16 / 2017---$ not preserved---received $1 / 24 / 2017$ with hold time exceeded. Decision made by client to proceed with all analysis.

ANALYTICAL DATA

This data package contains sample and QC results for eight (8) soil samples requested for the above referenced project on $1 / 23 / 2017$.

The analysis for gamma spectroscopy were performed using SOP ARS-007/EPA 901.1M.
The analysis for Strontium was performed using SOP ARS-032/Eichrom SRW-01.
The analytical method utilized for the PCB analysis was ARS-159/SW846 8082.
The analytical method utilized for the PAH analysis was ARS-159/SW846 8270D.
The following analytical batches are associated with these samples: ARS1-B17-000169, batch ARS1-B1700157 for Strontium, batch ARS1-17-00184 for PCB's and batch number ARS1-17-00170 for the PAH's.

The result data that are flagged with " U " indicate that the activity is below the MDC.

Sample results are being reported on "dry weight" basis.
The dioxin analyses were subcontracted to Eurofins Lancaster Laboratories Environmental, the report is attached as the Addendum Subcontract Work. Eurofins received the sample shipment on $1 / 26 / 17$ and notified ARS that the samples were received above the 6 degree C maximum. Based on the previous discussion about the samples being received at ARS above the maximum temperature, the decision was made to authorize proceeding with the analysis.

Sample ARS1-17-00170 (BB-16L) and its MS/MSD had low surrogate recoveries and low MS/MSD recoveries due to sample matrix interference. The PCB analysis also had surrogate recoveries that exceeded the limits due to matrix interference as well as high MS and MSD recoveries and failing RSD results for Aroclor-1016.

ARS International, LLC.
2609 North River Road \mid Port Allen, Louisiana $70767 \mid$ PH $|225.381 .2991|$ FX $\mid 225.381 .2996$
www.amrad.com

Lastly, the CS-134 results for all samples were reported based on the most abundant peak which was at 604.7 meV.

American Radiation Services Project Manager/Laboratory Director's Comments:

"I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this sample data package and the computer-readable EDD, as applicable, submitted on diskette or by modem, has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. I certify that this electronic image and all hardcopies produced from this image accurately represent the data and is in compliance with the company specific requirements, both technically and for completeness, other than the conditions detailed above or in the sample data package narrative. Release, by submission through email, the data contained in this electronic image and the computer-readable EDD (as applicable), has been authorized by the laboratory Manager/Technical Director or the Manager's designee."

Laboratory Manager, ARS International

Title

ARS International, LLC.

Notes (Case Narrative):

Comments:

1.0) All MDA/MDC values are calculated on a sample specific basis.
2.0) Soil and Sludge analysis are reported on a wet basis or an as received basis unless otherwise indicated.
3.0) Data in this report are within the limits of uncertainty specified in the reference method unless otherwise specified.
4.0) Modified analysis procedures are procedures that are modified to meet the certain specifications. An example may be the use of a water method to analyze a solid matrix due to the lack of an officially recognized procedure for the analysis of the solid matrix. Modified analyses are indicated by the subsequent addition of " m " to the procedure number (i.e. 900.0 M).
5.0) Total activity is actually total gamma activity and is determined utilizing the prominent gamma emitters from the naturally occurring radioactive decay chains and other prominent radioactive nuclides. Total activity may be lower than the actual total activity due to the extent of secular equilibrium achieved in the various decay chains at the time of analysis. The total activity is not representative of nuclides that emit solely alpha or beta particles.
6.0) Ra-228 is determined via secular equilibrium with its daughter, Actinium 228 (Gamma Spectroscopy only).
7.0) U-238 is determined via secular equilibrium with its daughter, Thorium 234 (Gamma Spectroscopy only).
8.0) All gamma spectroscopy was performed utilizing high purity germanium detectors (HPGe).
9.0) ARS makes every attempt to match sample density to calibrated density; however, in some cases, it is not practical or possible to do so and data results may be affected (Gamma Spectroscopy only).
10.0) Gamma spectroscopy results are calculated values based on the ORTEC ${ }^{(8)}$ GammaVision ENV32 Analysis Engine.
11.0) ACLASS DOD and ISO 17025 certification applies only to the following analytes and methods: Gross Alpha and Gross Beta (EPA 900, SM7110B\&C, SW846 9310); Radium 226 (EPA 903, EPA 903.1, SM 7500 Ra-B, SW846 9315); Radium 228 (EPA 904, SM 7500 Ra-B SW846 9320); lodine-131(EPA 901.1); Uranium by ICPMS (EPA 200.8); Sirontium 89/90 (EPA 905, Eichrom SRW01, HASL 300 Sr-03-RC); Tritium (EPA 906, EPA 906M); Gamma Emitters (EPA 901.1, SM7120B, HASL 300 Ga-01-R); Americium-241, Curium 242/244, Plutonium 239/240 and 241, Thorium 228/230/232, Uranium 234/233 and 238 (Eichrom ACW03 VBS); Lead 210 (HASL 300 Pb-01-RC, Eichrom OTW01); Polonium 210 (HASL 300 Po-01-RC, HASL 300 Po-02-RC); Technetium-99 (Eichrom TCW02, Eichrom TCS01M).

Method References:

1.0) EPA 600/4-80-032; Prescribed Procedures for the Measurements of Radioactivity in Drinking Water, August 1980.
2.0) Standard Methods for the Examination of Water and Wastewater (On-Line Edition)
3.0) EPA SW-846; Test Methods for Evaluating Solid Waste, (On-Line edition)
4.0) EPA 600/4/79-020; Methods for Chemical Analysis of Water and Waste, March 1983.
5.0) HASL 300; The Procedures Manual of the Environmental Measurements Laboratory, Volume I, 28th Edition February, 1997.

Definitions:

CRDL Contract Required Detection Limit
CSU Combined Standard Uncertainty
DLC Decision Level Concentration (ANSI N42.23) or critical level
DO Duplicate Original
DUP Method Duplicate
LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate
MDA Minimum Detectable Activity
MDC (Minimum Detectable Concentration) minimum concentration of the analyte that ARS can detect utilizing the specific analysis
MBL Method Blank
MS/MSD Matrix Spike/Matrix Spike Duplicate
N/A Not Applicable
NP Not Provided
NR Not Referenced

Data Qualifiers:

B	The analyte is found in both the associated method blank and the sample. This flag indicates probable blank contamination.
D	Sample analysis accomplished through dilution.
J	The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration
Q	Outside the quantitation range).
One or more quality control critenia failed (e.g., LCS recovery, surrogate spike recovery, or CCV recovery).	
S	Spike
UC	Subcontracted out to another qualified laboratory
U	Activity is below the MDC or MDL

Revision: 9
Revision Date: 05-02-16

2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

Sample Identification Cross Reference

SDG\# ARS1-17-00216
COC SOLID SAMPLES

SAMPLE IDENTIFICATION CROSS-REFERENCE

Applied Sciences Company SAMPLE ID's	ARS SAMPLE ID NUMBER(s)
BB-16L	ARS1-17-00216-001
BB-18	ARS1-17-00216-002
OS-2	ARS1-17-00216-003
BB-19M	ARS1-17-00216-004
BB16-B	ARS1-17-00216-005
BB-16A	ARS1-17-00216-006
BB17	ARS1-17-00216-007
BB-17 Mud/Sludge	ARS1-17-00216-008

ARS International, LLC.

2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

Chain of Custody

 and Supporting DocumentationSDG\# ARS1-17-00216
COC SOLID SAMPLES

Chain of Custody Record

| Page $1 \quad$ of \quad LAB ADDRESS： |
| :--- | :--- |
| ARS International |
| 2609 North River Rd． |
| Port Allen，LA 70767－3469 |

Sample TAT Req＇d：＿21d	Sample Disposal：		Archive for	Months．	x	Disposal by Lab		Return to origin	QC Requirements：
Notes／Comments：									

$\begin{array}{ll}\text { CUSTODY TRACKING } \\ \text { Time：} \\ \text { Time：00 } & = \\ \text { Received By：} \\ \text { Time：} & \text { Received By：} \\ \text { Received By：}\end{array}$
N
ミ Time：
Time：
Time：
N
N
器

茲

Chain of Custody Record

$$
\text { company name: Applet Sink } C_{\text {in }}
$$

External and Internal Surveys

Prep Code	Procedure	Count Time		
N/A	ARS-007			
RoL	Lesliful	nstial.	Redr ilimi	Eravilu/us
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
0	75/125	60/140	30/110	40/110
3550C	ARS-160			
R0\%	Les Li/uL	nsu/ur	Radriliul	Gnwu/ul
$3 \mathrm{ug} / \mathrm{kg}$	40/123	40/123	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	32/132	32/132	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	47/123	47/123	30/110	40/110
$3 \mathrm{mg} / \mathrm{kg}$	49/126	49/126	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	45/129	45/129	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	45/132	45/132	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	43/134	43/134	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	47/132	47/132	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	50/124	50/124	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	45/134	45/134	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	50/127	50/127	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	43/125	43/125	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	45/133	45/133	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	40/119	40/119	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	38/122	38/122	30/110	40/110
$3 \mathrm{ug} / \mathrm{kg}$	35/123	35/123	30/110	40/110

Kuedmoう səכuə!

 nutat

の
User: RVARNELL Last Modified: 2/16/2017 3:22:17 PM
DQO Report for SDG
ARS1-17-00216

User: RVARNELL Last Modified: 2/16/2017 3:22:17 PM

DQO Report for SDG
ARS1-17-00216

Printed: 1/24/2017 1:50 PM

SDG Report - Samples and Containers

Analyses Assigned Per Fraction		
Fraction	Analysis Code	$x=$ Assligned
001	GAM-A-020	\mathbf{x}
001	GCMS-8270D-SO	\mathbf{x}
001	GPC-A-012	\mathbf{x}
002	GAM-A-020	\mathbf{x}
002	GCMS-8270D-SO	\mathbf{x}
002	GCSV-8082A-SO	\mathbf{x}
002	GPC-A-012	\mathbf{x}
002	SUB-A-002	\mathbf{x}
003	GCMS-8270D-SO	\mathbf{x}
003	GCSV-8082A-SO	\mathbf{x}
004	GAM-A-020	\mathbf{x}
004	GCMS-8270D-SO	\mathbf{x}
004	GCSV-8082A-SO	\mathbf{x}
004	GPC-A-012	\mathbf{x}
004	SUB-A-002	\mathbf{x}
005	GCMS-8270D-SO	\mathbf{x}
006	GCMS-8270D-SO	\mathbf{x}
007	GCSV-8082A-SO	\mathbf{x}
007	SUB-A-002	\mathbf{x}
008	GPC-A-012	\mathbf{x}

ARS International
Baton Rouge Laboratory

SDG Report - Analysis Assignments

Sample Count	Sum
Analysis count	$\mathbf{5 - 2 0}$

ε	(p!os '!los) u! әdmes !ios pepjenfuozqns	
\downarrow		てT0- $\begin{gathered}\text {-JdS }\end{gathered}$
†		$\begin{gathered} O S \\ -\forall Z 808-\wedge S כ= \end{gathered}$
9		$\begin{gathered} \text { OS } \\ - \text { פ0LZ8-SWכ } \end{gathered}$
ε		OZO-*-WVS
zunoo seldues	uopipmosea siskteuy	apoz sishieuv
s!sijeuv lod slezol zunos ajdures		

From:

Sent:
To:
Cc:
Subject:

Joel C. cehn@aol.com
Tuesday, January 31, 2017 1:17 PM
Susan Leese; Steve LaZar
Rodney Varnell
Re: Isotope list for Gamma analysis

Susan; Do the best you can. I was limited on some liquid samples.
--- Joel
-----Original Message-----
From: Susan Leese sleese@amrad.com
To: Steve LaZar slazar@amrad.com; cehn cehn@aol.com
Cc: Rodney Varnell rvarnell@amrad.com
Sent: Tue, Jan 31, 2017 10:07 am
Subject: RE: Isotope list for Gamma analysis
Steve and Joel,
For these ultra-low detection limits, we just don't have enough sample to achieve some of them.
Especially for the liquids. But we will do our best and next time, we need to review required sample volumes ahead of time.
Thanks,

Susan

From: Steve LaZar
Sent: Tuesday, January 24, 2017 5:03 PM
To: Susan Leese
Subject: RE: Isotope list for Gamma analysis
Susan,
Do we have all the information we need now?
Kind Regards,
Steve
Steve LaZar
Vice President of Sales
slazar@amrad.com

ARS International, LLC
2609 North River Road
Port Allen, LA 70767-3469
720.692.6188 Mobile

Please be advised that the information contained in this email message, including all attached documents or files, is privileged and confidential and is intended only for the use of the individual or individuals addressed. Any other use, dissemination, distribution or copying of this communication is strictly prohibited. If you are not the intended recipient, please delete this message and notify me of incorrect delivery by immediate reply.

Let us know how we're doing! Please visit our website and complete our customer survey http://www.amrad.com/CustomerSurvey.html

From: Susan Leese
Sent: Tuesday, January 24, 2017 2:29 PM
To: Joel C.; Steve LaZar
Cc: Rodney Varnell
Subject: RE: Isotope list for Gamma analysis
Hi Joel,
It may involve 2-3 hour count times, but our chemists think that $0.05 \mathrm{pCi} / \mathrm{g}$ is achievable.
From: Joel C. [mailto:cehn@aol.com]
Sent: Tuesday, January 24, 2017 2:13 PM
To: Susan Leese; Steve LaZar
Cc: Rodney Varnell
Subject: Re: Isotope list for Gamma analysis
Susan; Can you get $0.05 \mathrm{pCi} / \mathrm{L}$ for Cs-137?
--- Joel
-----Original Message----
From: Susan Leese sleese@amrad.com
To: Steve LaZar slazar@amrad.com
Cc: Rodney Varnell rvarnell@amrad.com; cehn cehn@aol.com
Sent: Tue, Jan 24, 2017 12:00 pm
Subject: FW: Isotope list for Gamma analysis
Steve,
We received a list of isotopes requested by Joel (below). On your original quote, you stated that the detection limit for gamma spec would be $0.01 \mathrm{pCi} / \mathrm{g}$, but didn't list any specific isotopes. What analyte(s) does this CRDL refer to? It is incredibly low, even for ARS.
Susan

From: Joel C. [mailto:cehn@aol.com]
Sent: Monday, January 23, 2017 3:13 PM
To: Rodney Varnell
Cc: Project Managers
Subject: Re: Isotope list for Gamma analysis
Rodney;
I'm shipping the samples today; for delivery Tuesday. Copy of CofC attached.

Regarding Gamma Suite, here's the nuclide list:
Ac-228
BH212. 214
Cs-134, - 137
Pb-212,-214
K-40
Th-234
T-208
-... Joel
P.S. Please don't use my pikainc.com address. Use this one.
------Original Message-----
From: Rodney Varnell rvarnell@amrad.com
To: 'jcehn@pikainc.com' jcehn@pikainc.com; 'cehn@aol.com' cehn@aol.com
Cc: Project Managers projectmanagers@amrad.com
Sent: Thu, Jan 19, 2017 2:36 pm
Subject: Isotope list for Gamma analysis

Good afternoon,
I need to see if you can send me a list of the isotopes/analytes for the Gamma Suite (Method 901.1) on ARS Quote : ARS_Applied Sciences 161115SL dated 11/15/16. I will be the project manager on the project and I am setting up the information in our LIMS system.

There is no need to reply back today, Monday or Tuesday will be fine. My last question is: Do you have a projection as to when we will receive the samples?

Thank you,

Rodney J. Varnell
Project Manager
rvarnell@amrad.com

ARS International, LLC
2609 North River Road
Port Allen, LA 70767-3469

225.381.2991 Office 225.381.2996 FAX www.amrad.com

Please be advised that the information contained in this email message, including all attached documents or files, is privileged and confidential and is intended only for the use of the individual or individuals addressed. Any other use, dissemination, distribution or copying of this communication is strictly prohibited. If you are not the intended recipient, please delete this message and notify me of incorrect delivery by immediate reply.

From:

Sent:
To:
Cc:
Subject:

Joel C. cehn@aol.com
Monday, February 06, 2017 11:41 AM
Rodney Varnell
Project Managers
Re: Sample update

A-OK.
--- Joel
-----Original Message----
From: Rodney Varnell rvarnell@amrad.com
To: 'Joel C.' cehn@aol.com
Cc: Project Managers projectmanagers@amrad.com
Sent: Mon, Feb 6, 2017 8:16 am
Subject: Sample update
Joel,
I just want to send you a quick update on the samples, specifically the samples for the Dioxins analysis. The samples were shipped to Eurofins Lancaster Laboratories on 1/25/17 for overnight delivery by UPS. I received a call on 1/27/17 from Eurofins (Stacy Hess) saying that they had received the samples on $1 / 26 / 17$ but that they were above the 6 degrees C maximum temperature and wanted to know if we were going to re-submit the samples. Taking the previous discussion with you about ARS receiving the samples above the 6 degrees C maximum temperature into consideration, I authorized her to proceed with the analysis. I thought I had sent you an update earlier but could not find it in my emails, I apologize for the oversight on my part.

Thank you,

Rodney J. Varnell

Project Manager
rvarnell@amrad.com

[^3]Please be advised that the information contained in this email message, including all attached documents or fles, is privileged and confidential and is intended only for the use of the individual or individuals addressed. Any other use, dissemination, distribution or copying of this communication is strictly prohibited. If you are not the intended recipient, please delete this message and notify me of incorrect delivery by immediate reply.

Let us know how we're doing! Please visit our website and complete our customer survey http://www.amrad.com/CustomerSurvey.html

Rodney Varnell

From:
Sent:
To:
Subject:

Joel C. cehn@aol.com
Thursday, February 16, 2017 10:03 AM
Rodney Varnell
RE: E-mail address

Yes. Use the AOL address.
Joel
--- Joel

On Thursday, February 16, 2017 Rodney Vamell rvarnell@amrad.com>wrote:

Good morning Joel,

I am starting to work up the report for the aqueous samples and notice that I had put in both the aol and pikainc addresses on the cover letter. Do you want me to remove the pikainc address?

Thank you,

Rodney J. Varnell

Project Manager
rvarnell@amrad.com

ARS International, LLC

2609 North River Road

Port Allen, LA 70767-3469

225.381.2991 Office

225.381.2996 FAX

www.amrad.com

Please be advised that the information contained in this email message, including all attached documents or files, is privileged and confidential and is intended only for the use of the individual or individuals addressed. Any other use, dissemination, distribution or copying of this communication is strictly prohibited. If you are not the intended recipient, please delete this message and notify me of incorrect delivery by immediate reply.

Rodney Varnell

From: Joel C. cehn@aol.com
Sent:
To:
Subject:

Thursday, February 16, 2017 10:05 AM

Rodney Varnell
RE: PO\#

Rodney
No need for a PO number on my end.
Joel
--- Joel

On Thursaay, February 16, 2017 Rodney Varnell rvarnell@amrad.com> wrote:

Joel,

I need to know if we need a PO\# for billing/payment since our reports have a line in them for the PO\#.

Thank you,

Rodney J. Varnell

Project Manager
rvarnell@amrad.com

ARS International, LLC

2609 North River Road

Port Allen, LA 70767-3469

225.381.2991 Office

225.381.2996 FAX

www.amrad.com

Please be advised that the information contained in this emall message, including all attached documents or fles, is privileged and confidential and is intended only for the use of the individual or individuals addressed. Any other use, dissemination, distribution or copying of this communication is strictly prohibited. If you are not the intended recipient, please delete this message and notify me of incorrect delivery by immediate reply.

2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

Analytical Results Sample Data Summary

SDG\# ARS1-17-00216
COC SOLID SAMPLES

ARS Sample Delivery Group: ARS1-17-00216
Cilent Sample ID: BB-16L
Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00216-001
Sample Collection Date: 01/18/17
Date Received: 01/24/17
Sample Matrix: Soil/Solid/Sludge
Percent Solids: 80.6\%

Radiochemistry

Analysis Description	Analysis Results	$\mathbf{C s U}+/-2 \mathrm{~s}$	MDC	DLC	CRDL	Qual	Analysis Units	Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
Ac-228	2.270	0.212	0.179	0.090	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Bi-212	0.823	0.120	0.145	0.073	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Bi-214	0.895	0.080	0.047	0.024	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Cs-134	0.000	0.016	0.024	0.012	NP	U	$\mathrm{pCl} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Cs-137	0.078	0.023	0.022	0.011	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
K-40	22.158	1.533	0.307	0.154	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Pb-214	1.008	0.102	0.048	0.024	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Th-228	1.353	0.099	0.032	0.016	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Th-234	1.018	0.243	0.384	0.192	NP		$\mathrm{pCl} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
T-208	0.373	0.044	0.027	0.013	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:40	BSCHREITER	N/A
Sr-90	0.043	0.060	0.099	0.047	0.1	u	$\mathrm{pCi} / \mathrm{g}$	ARS-032/Eichrom SRW-01	02/01/17 16:39	SC	98\%

Sample Weight (g):
Injection Volume (uL):
Final Volume (mL):

GC Column: DB-5MS
Preparation Method: ARS-156/3550C
Analysis Method: ARS-160/EPA 8270D

Semi-Volatile Organics

CAS\#	Analyte	Analysis Result	LOD	LOQ	CRDL	Dllution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
90-12-0	1-MethyInaphthalene	<NA	NA	81.2	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
91-57-6	2-MethyInaphthalene	$<N A$	NA	79.3	3.00	1	\cup	ug/kg	02/08/17 18:51	CSTRINGER
83-32-9	Acenaphthene	$<N A$	NA	67.5	3.00	1	\cup	ug/kg	02/08/17 18:51	CSTRINGER
208-96-8	Acenaphthylene	<NA	NA	68.8	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
120-12-7	Anthracene	$<N A$	NA	105	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
56-55-3	Benzo(a)anthracene	$<N A$	NA	115	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
50-32-8	Benzo(a)pyrene	$<N A$	NA	183	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
205-99-2	Benzo(b)fluoranthene	$<N A$	NA	179	3.00	1	\cup	ug/kg	02/08/17 18:51	CSTRINGER
191-24-2	Benzo(g,h,i)perylene	$<N A$	NA	169	3.00	1	U	$u \mathrm{~g} / \mathrm{kg}$	02/08/17 18:51	CSTRINGER
207-08-9	Benzo(k)fluoranthene	<NA	NA	182	3.00	1	U	ug/kg	02/08/1718:51	CSTRINGER
218-01-9	Chrysene	$<\mathrm{NA}$	NA	118	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
53-70-3	Dibenz(a,h)anthracene	$<\mathrm{NA}$	NA	170	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
206-44-0	Fluoranthene	$<\mathrm{NA}$	NA	111	3.00	1	\cup	ug/kg	02/08/17 18:51	CSTRINGER
86-73-7	Fluorene	$<\mathrm{NA}$	NA	62.5	3.00	1	U	$\mathrm{ug} / \mathrm{kg}$	02/08/17 18:51	CSTRINGER
193-39-5	Indeno(1,2,3-cd)pyrene	$<N A$	NA	173	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
91-20-3	Naphthalene	$<\mathrm{NA}$	NA	141	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
85-01-8	Phenanthrene	$<$ NA	NA	92.7	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER
129-00-0	Pyrene	$<$ NA	NA	114	3.00	1	U	ug/kg	02/08/17 18:51	CSTRINGER

CAS\#	Surrogate	Splked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
118-79-6	2,4,6-Tribromophenol	$1.65 E+3$	$1.23 E+3$	ug/kg	74.4\%	80/120
321-60-8	2-Fluorobiphenyl	$1.65 E+3$	777	ug/kg	47.0\%	80/120
367-12-4	2-Fluorophenol	$1.65 \mathrm{E}+3$	300	ug/kg	18.1\%	$80 / 120$
4165-60-0	Nitrobenzene-d5	$1.65 \mathrm{E}+3$	404	ug/kg	24.4\%	$80 / 120$
4165-62-2	Phenol-d5	$1.65 E+3$	545	ug/kg	33.0\%	80/120
1718-51-0	Terphenyl-d14	$1.65 E+3$	$1.24 E+3$	ug/kg	74.8\%	80/120

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.
interniational

ARS Sample Deilivery Group: ARS1-17-00216
Client Sample ID: BB-18
Sample Collection Date: 01/17/17
Sample Matrix: Soil/Solid/Sludge
Percent Solids: 86.4\%

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00216-002
Date Received: 01/24/17
Report Date: 03/08/17

Radiochemistry

Analysis Description	Analysis Results	Csu +/-2 s	MDC	DLC	CRDL	Qual	Analysis Units	Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
Ac-228	2.279	0.198	0.110	0.055	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
Bi-212	0.756	0.123	0.126	0.063	NP		$\mathrm{pCi} / 9$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
Bi-214	0.752	0.059	0.036	0.018	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
Cs-134	$3.880 \mathrm{E}-4$	0.014	0.021	0.011	NP	U	$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
Cs-137	0.078	0.014	0.016	0.008	NP		$\mathrm{pCl} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
K-40	23.017	1.568	0.195	0.098	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
$\mathrm{Pb}-214$	0.823	0.077	0.041	0.021	NP		$\mathrm{pCl} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
Th-228	1.256	0.090	0.033	0.017	NP		$\mathrm{pCl} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
Th-234	0.708	0.264	0.338	0.169	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
TI-208	0.412	0.033	0.017	0.009	NP		$\mathrm{pCl} / 9$	ARS-007/EPA 901.1M	01/30/17 14:41	BSCHREITER	N/A
Sr-90	0.038	0.053	0.088	0.042	0.1	u	$\mathrm{pCi} / \mathrm{g}$	ARS-032/Eichrom SRW-01	02/01/17 16:39	SC	99\%

Sample Weight (g):
Injection Volume (uL):
Final Volume (mL):

GC Column: DB-5MS
Preparation Method: ARS-156/3550C
Analysis Method: ARS-160/EPA 8270D

Semi-Volatile Organics

CAS\#	Analyte	Analysls Result	LOD	LOQ	CRDL	Dllution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
90-12-0	1-Methy\|naphthalene	<NA	NA	81.2	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
91-57-6	2-Methylnaphthalene	<NA	NA	79.3	3.00	1	u	$\omega \mathrm{g} / \mathrm{kg}$	02/08/17 20:19	CSTRINGER
83-32-9	Acenaphthene	<NA	NA	67.5	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
208-96-8	Acenaphthylene	$<N A$	NA	68.8	3.00	1	\cup	ug/kg	02/08/17 20:19	CSTRINGER
120-12-7	Anthracene	<NA	NA	105	3.00	1	u	$u \mathrm{~g} / \mathrm{kg}$	02/08/17 20:19	CSTRINGER
56-55-3	Benzo(a)anthracene	$<N A$	NA	115	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
50-32-8	Benzo(a)pyrene	$<N A$	NA	183	3.00	1	U	u9/kg	02/08/17 20:19	CSTRINGER
205-99-2	Benzo(b)fluoranthene	<NA	NA	179	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
191-24-2	Benzo(g,h,i)perylene	<NA	NA	169	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
207-08-9	Benzo(k)fluoranthene	$<\mathrm{NA}$	NA	182	3.00	1	U	ug/kg	02/08/17 20:19	CSTRINGER
218-01-9	Chrysene	<NA	NA	118	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
53-70-3	Dibenz(a,h)anthracene	$<N A$	NA	170	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
206-44-0	Fluoranthene	$<N A$	NA	111	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
86-73-7	Fluorene	$<N A$	NA	62.5	3.00	1	U	ug/kg	02/08/17 20:19	CSTRINGER
193-39-5	Indeno(1,2,3-cd)pyrene	$<N A$	NA	173	3.00	1	U	ug/kg	02/08/17 20:19	CSTRINGER
91-20-3	Naphthalene	<NA	NA	141	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER
85-01-8	Phemanthrene	<NA	NA	92.7	3.00	1	U	ug/kg	02/08/17 20:19	CSTRINGER
129-00-0	Pyrene	<NA	NA	114	3.00	1	u	ug/kg	02/08/17 20:19	CSTRINGER

SDG \# ARS1-17-00216

CAS\#	Surrogate	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
118-79-6	2,4,6-Tribromophenol	$1.54 \mathrm{E}+3$	$1.31 E+3$	ug/kg	84.9\%	80/120
321-60-8	2-Fluorobiphenyl	$1.54 \mathrm{E}+3$	$1.16 \mathrm{E}+3$	ug/kg	75.4\%	80/120
367-12-4	2-Fluoraphenol	$1.54 \mathrm{E}+3$	845	ug/kg	54.7\%	80/120
4165-60-0	Nitrobenzene-dS	$1.54 \mathrm{E}+3$	$1.16 \mathrm{E}+3$	ug/kg	75.0\%	80/120
4165-62-2	Phenol-d5	$1.54 \mathrm{E}+3$	971	ug/kg	62.9\%	80/120
1718-51-0	Terphenyl-d14	$1.54 \mathrm{E}+3$	$1.24 \mathrm{E}+3$	ug/kg	80.3\%	80/120

Sample Weight (g):	30	pH: N/A	
Extraction Type:	Sonification	Date Extracted: $01 / 31 / 17$	
Conc Extract Volume (mL):	1	Injection Volume (uL): 1	
Cleanup Type:	None	Preparation Method: ARS-156/3550C	
Cleanup Factor:	N/A	Analysis Method:	ARS-157/SW846 8082A

PCBs

CAS\#	Analyte	$\begin{gathered} \text { GC } \\ \text { Column } \end{gathered}$	Analysis Result	LOD	LOQ	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysls Techniclan
12674-11-2	Aroclor-1016	ECD1 A	$<\mathrm{NA}$	NA	3.33	1.00	1	U*	ug/kg	02/07/17 17:51	DCODY
11104-28-2	Aroclor-1221	ECD1 A	<NA	NA	3.33	1.00	1	u	ug/kg	02/07/17 17:51	DCODY
11141-16-5	Aroclor-1232	ECD1 A	<NA	NA	3.33	1.00	1	U	ug/kg	02/07/17 17:51	DCODY
53469-21-9	Aroclor-1242	ECD1 A	<NA	NA	3.33	1.00	1	U	ug/kg	02/07/17 17:51	DCODY
12672-29-6	Aroclor-1248	ECD1 A	$<\mathrm{NA}$	NA	3.33	1.00	1	U	ug/kg	02/07/17 17:51	DCODY
11097-69-1	Aroclor-1254	ECD1 A	<NA	NA	3.33	1.00	1	U	ug/kg	02/07/17 17:51	DCODY
11096-82-5	Aroclor-1260	ECD1 A	<NA	NA	3.33	1.00	1	U	ug/kg	02/07/17 17:51	DCODY

CAS\#	Surrogate	GC Column	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
2051-24-3	DCBP	ECD1 A	0.772	0.717	Ug/kg	92.9\%	80/120
877-09-8	TCMX	ECD1 A	0.772	0.735	$u \mathrm{~g} / \mathrm{kg}$	95.2\%	80/120

 report in less than full requires the written consent of the client.

ARS Sample Delivery Group: ARS1-17-00216
Client Sample ID: OS-2 Sample Collection Date: 01/17/17

Sample Matrix: Soil/Solid/Sludge
Percent Solids: 77.7%

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00216-003
Date Received: 01/24/17
Report Date: 03/07/17

GC Column: DB-5MS
Preparation Method: ARS-156/3550C Analysis Method: ARS-160/EPA 8270D

Semi-Volatile Organics

CAS\#	Analyte	Analysis Result	MDL	PQL	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
90-12-0	1-MethyInaphthalene	<25.5	25.5	81.2	3.00	1	u	ug/kg	02/09/17 12:56	CSTRINGER
91-57-6	2-Methylnaphthalene	<24.9	24.9	79.3	3.00	1	u	ug/kg	02/09/17 12:56	CSTRINGER
83-32-9	Acenaphthene	<21.2	21.2	67.5	3.00	1	U	ug/kg	02/09/17 12:56	CSTRINGER
208-96-8	Acenaphthylene	<21.6	21.6	68.8	3.00	1	\checkmark	ug/kg	02/09/17 12:56	CSTRINGER
120-12-7	Anthracene	<33.1	33.1	105	3.00	1	4	ug/kg	02/09/17 12:56	CSTRINGER
56-55-3	Benzo(a)anthracene	<36.2	36.2	115	3.00	1	u	ug/kg	02/09/17 12:56	CSTRINGER
50-32-8	Benzo(a)pyrene	<57.4	57.4	183	3.00	1	u	u9/kg	02/09/17 12:56	CSTRINGER
205-99-2	Benzo(b)fluoranthene	<56.4	56.4	179	3.00	1	u	ug/kg	02/09/17 12:56	CSTRINGER
191-24-2	Benzo(g, h, i)perylene	<53.0	53.0	169	3.00	1	\cup	ug/kg	02/09/17 12:56	CSTRINGER
207-08-9	Benzo(k)fluoranthene	<57.1	57.1	182	3.00	1	U	ug/kg	02/09/17 12:56	CSTRINGER
218-01-9	Chrysene	<37.0	37.0	118	3.00	1	\checkmark	ug/kg	02/09/17 12:56	CSTRINGER
53-70-3	Dibenz(a,h)anthracene	<53.5	53.5	170	3.00	1	u	ug/kg	02/09/17 12:56	CSTRINGER
206-44-0	Fluoranthene	<34.8	34.8	111	3.00	1	\cup	ug/kg	02/09/17 12:56	CSTRINGER
86-73-7	Fluorene	<19.6	19.6	62.5	3.00	1	\cup	u9/kg	02/09/17 12:56	CSTRINGER
193-39-5	Indeno(1,2,3-cd)pyrene	<54.4	54.4	173	3.00	1	U	ug/kg	02/09/17 12:56	CSTRINGER
91-20-3	Naphthalene	<44.3	44.3	141	3.00	1	\cup	ug/kg	02/09/17 12:56	CSTRINGER
85-01-8	Phenanthrene	<29.1	29.1	92.7	3.00	1	\cup	ug/kg	02/09/17 12:56	CSTRINGER
129-00-0	Pyrene	<35.8	35.8	114	3.00	1	\cup	ug/kg	02/09/17 12:56	CSTRINGER

CAS\#	Surrogate	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
118-79-6	2,4,6-Tribromophenol	$1.72 \mathrm{E}+3$	$1.35 \mathrm{E}+3$	ug/kg	78.6\%	80/120
321-60-8	2-Fluorobiphenyl	$1.72 \mathrm{E}+3$	798	u9/kg	46.5\%	80/120
367-12-4	2-Fluorophenol	$1.72 \mathrm{E}+3$	870	ug/kg	50.7\%	80/120
4165-60-0	Nitrobenzene-d5	$1.72 \mathrm{E}+3$	$1.00 \mathrm{E}+3$	ug/kg	58.4\%	80/120
4165-62-2	Phenol-d5	$1.72 \mathrm{E}+3$	897	ug/kg	52.3\%	80/120
1718-51-0	Terphenyl-d14	$1.72 \mathrm{E}+3$	$1.06 \mathrm{E}+3$	ug/kg	61.7\%	80/120

Sample Weight (g): 30
Extraction Type: Sonification
Conc Extract Volume (mL): 1
Cleanup Type: None
Cleanup Factor: N/A

PH: N/A
Date Extracted: 01/31/17
Injection Volume (uL): 1
Preparation Method: ARS-156/3550C
Analysis Method: ARS-157/SW846 8082A

PCBs

CAS\#	Analyte	GC Column	Analysis Result	MDL	PQL	CRDL	Dllution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
12674-11-2	Arocior-1016	ECD1 A	<3.33	3.33	3.33	1.00	1	U*	ug/kg	02/07/17 18:19	DCODY
11104-28-2	Aroclor-1221	ECD1 A	<3.33	3.33	3.33	1.00	1	u	ug/kg	02/07/17 18:19	DCODY
11141-16-5	Aroclor-1232	ECD1 A	<3.33	3.33	3.33	1.00	1	u	ug/kg	02/07/17 18:19	DCODY
53469-21-9	Aroclor-1242	ECD1 A	<3.33	3.33	3.33	1.00	1	u	ug/kg	02/07/17 18:19	DCODY
12672-29-6	Arocior-1248	ECD1 A	<3.33	3.33	3.33	1.00	1	U	ug/kg	02/07/17 18:19	DCODY
11097-69-1	Arocior-1254	ECD1 A	<3.33	3.33	3.33	1.00	1	U	ug/kg	02/07/17 18:19	DCODY
11096-82-5	Aroclor-1260	ECD1 A	<3.33	3.33	3.33	1.00	1	u	ug/kg	02/07/17 18:19	DCODY

CAS\#	Surrogate	GC Column	Splked Amount	Analysls Result	Analysis Units	\% Recovery	Recovery Limits
2051-24-3	DCBP	ECD1 A	0.858	0.731	ug/kg	85.2\%	80/120
877-09-8	TCMX	ECD1 A	0.858	0.778	ug/kg	90.7\%	80/120

 report in less than full requires the written consent of the client.
interniational
ARS Sample Delivery Group: ARS1-17-00216
Client Sample ID: BB-19M
Request or PO Number: Quote \# 161115 SL
ARS Sample ID: ARS1-17-00216-004
Sample Collection Date: 01/18/17
Date Received: 01/24/17
Sample Matrix: Soil/Solid/Sludge
Report Date: 03/08/17

Radiochemistry

Analysis Description	Analysis Results	$\mathbf{C S U}+/-2 \mathrm{~s}$	MDC	DLC	CRDL	Qual	Analysis Units	Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
Ac-228	7.816	0.526	0.135	0.068	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
Bi-212	1.819	0.238	0.198	0.099	NP		$\mathrm{pCl} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
$\mathrm{Bi}-214$	2.136	0.157	0.048	0.024	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
C5-134	0.001	0.024	0.027	0.014	NP	U	$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREMER	N/A
Cs-137	0.043	0.018	0.024	0.012	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
K-40	20.681	1.416	0.279	0.140	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
$\mathrm{Pb}-214$	2.440	0.216	0.049	0.025	NP		$\mathrm{pCl} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
Th-228	2.492	0.182	0.049	0.025	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
Th-234	0.851	0.297	0.433	0.217	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
T1-208	0.749	0.066	0.030	0.015	NP		$\mathrm{pCi} / \mathrm{g}$	ARS-007/EPA 901.1M	01/30/17 14:56	BSCHREITER	N/A
Sr-90	0.039	0.056	0.093	0.044	0.1	U	$\mathrm{pCi} / \mathrm{g}$	ARS-032/Eichrom SRW-01	02/01/17 16:39	SC	98\%

Sample Weight (g):
Injection Volume (uL):
1
Final Volume (mL):

GC Column: DB-5MS
Preparation Method: ARS-156/3550C
Analysis Method: ARS-160/EPA 8270D

Semi-Volatile Organics

CAS\#	Analyte	Analysis Result	LOD	LOQ	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
90-12-0	1-Methylnaphthalene	<NA	NA	81.2	3.00	1	u	ug/kg	02/08/17 21:18	CSTRINGER
91-57-6	2-Methyinaphthalene	<NA	NA	79.3	3.00	1	u	$\mathrm{ug} / \mathrm{kg}$	02/08/17 21:18	CSTRINGER
83-32-9	Acenaphthene	<NA	NA	67.5	3.00	1	U	$\mathrm{ug} / \mathrm{kg}$	02/08/17 21:18	CSTRINGER
208-96-8	Acenaphthylene	<NA	NA	68.8	3.00	1	U	$\mathrm{ug} / \mathrm{kg}$	02/08/17 21:18	CSTRINGER
120-12-7	Anthracene	<NA	NA	105	3.00	1	u	ug/kg	02/08/17 21:18	CSTRINGER
56-55-3	Benzo(a)anthracene	<NA	NA	115	3.00	1	u	ug/kg	02/08/17 21:18	CSTRINGER
50-32-8	Benzo(a)pyrene	$<\mathrm{NA}$	NA	183	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
205-99-2	Benzo(b)fluoranthene	<NA	NA	179	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
191-24-2	Benzo(g, h,i)perylene	<NA	NA	169	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
207-08-9	Benzo(k)fluoranthene	<NA	NA	182	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
218-01-9	Chrysene	<NA	NA	118	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
53-70-3	Dibenz(a, h)anthracene	$<\mathrm{NA}$	NA	170	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
206-44-0	Fluoranthene	<NA	NA	111	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
86-73-7	Fluorene	<NA	NA	62.5	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
193-39-5	Indeno(1,2,3-cd)pyrene	$<N A$	NA	173	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
91-20-3	Naphthalene	<NA	NA	141	3.00	1	U	$u \mathrm{~g} / \mathrm{kg}$	02/08/17 21:18	CSTRINGER
85-01-8	Phenanthrene	$<N A$	NA	92.7	3.00	1	U	ug/kg	02/08/17 21:18	CSTRINGER
129-00-0	Pyrene	<NA	NA	114	3.00	1	U	$u g / \mathrm{kg}$	02/08/17 21:18	CSTRINGER

CAS\#	Surrogate	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
118-79-6	2,4,6-Tribromophenol	$2.24 \mathrm{E}+3$	$1.79 \mathrm{E}+3$	ug/kg	80.0\%	80/120
321-60-8	2-Fluorobiphenyl	$2.24 \mathrm{E}+3$	$1.19 E+3$	ug/kg	53.2\%	80/120
367-12-4	2-Fluorophenol	$2.24 \mathrm{E}+3$	$1.29 \mathrm{E}+3$	ug/kg	57.8\%	80/120
4165-60-0	Nitrobenzene-d5	$2.24 \mathrm{E}+3$	$1.23 \mathrm{E}+3$	ug/kg	55.1\%	80/120
4165-62-2	Phenol-d5	$2.24 \mathrm{E}+3$	$1.42 \mathrm{E}+3$	ug/kg	63.3\%	80/120
1718-51-0	Terphenyl-d14	$2.24 \mathrm{E}+3$	$1.34 \mathrm{E}+3$	ug/kg	60.0\%	80/120

Sample Weight (g):	30
Extraction Type:	Sonification
Conc Extract Volume (mL):	1
Cleanup Type:	None
Cleanup Factor:	N / A

> | pH: | N/A |
| ---: | :--- |
| Date Extracted: | $01 / 31 / 17$ |
| Injection Volume (uL): | 1 |
| Preparation Method: | ARS-156/3550C |
| Analysis Method: | ARS-157/SW846 8082A |

PCBs

CAS\#	Analyte	GC Column	Analysis Result	LOD	LOQ	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
12674-11-2	Aroclor-1016	ECD1 A	<NA	NA	3.33	1.00	1	U*	ug/kg	02/07/17 18:48	DCODY
11104-28-2	Aroclor-1221	ECD1 A	$<\mathrm{NA}$	NA	3.33	1.00	1	U	ug/kg	02/07/17 18:48	DCODY
11141-16-5	Aroclor-1232	ECD1 A	<NA	NA	3.33	1.00	1	U	ug/kg	02/07/1718:48	DCODY
53469-21-9	Aroclor-1242	ECD1 A	$<N A$	NA	3.33	1.00	1	U	ug/kg	02/07/17 18:48	DCODY
12672-29-6	Aroclor-1248	ECD1 A	$<N A$	NA	3.33	1.00	1	U	ug/kg	02/07/17 18:48	DCODY
11097-69-1	Aroclor-1254	ECD1 A	<nA	NA	3.33	1.00	1	U	ug/kg	02/07/1718:48	DCODY
11096-82-5	Aroclor-1260	ECD1 A	<NA	NA	3.33	1.00	1	U	ug/kg	02/07/17 18:48	DCODY
CAS\#	Surrogate	GC Column			Spike	mount	Analy	Result	Analysis Units	\% Recovery	Recovery Limits
2051-24-3	DCBP	ECD1 A				1.12		3.57	ug/kg	319\%	80/120
877-09-8	TCMX	ECD1 A				1.12		9.30	ug/kg	830\%	80/120

Project Manage peviow

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

```
ARS Sample Delivery Group: ARS1-17-00216
Client Sample ID: BB-16B
Sample Collection Date: 01/17/17
Sample Matrix: Soil/Solid/Sludge
Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00216-005
Date Received: 01/24/17
Percent Solids: 88.9\%
Report Date: 03/07/17
```

Sample Weight (g): Injection Volume (uL):

Final Volume (mL):

GC Column: DB-5MS
Preparation Method: ARS-156/3550C Analysis Method: ARS-160/EPA 8270D

Semi-Volatile Organics

CAS\#	Analyte	Analysis Result	MDL	PQL	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
90-12-0	1-Methyinaphthalene	<25.5	25.5	81.2	3.00	1	u	ug/kg	02/08/17 21:48	CSTRINGER
91-57-6	2-Methyinaphthalene	<24.9	24.9	79.3	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
83-32-9	Acenaphthene	<21.2	21.2	67.5	3.00	1	u	ug/kg	02/08/17 21:48	CSTRINGER
208-96-8	Acenaphthylene	<21.6	21.6	68.8	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
120-12-7	Anthracene	<33.1	. 33.1	105	3.00	1	u	ug/kg	02/08/17 21:48	CSTRINGER
56-55-3	Benzo(a)anthracene	<36.2	36.2	115	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
50-32-8	Benzo(a)pyrene	<57.4	57.4	183	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
205-99-2	Benzo(b)fluoranthene	<56.4	56.4	179	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
191-24-2	Benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	< 53.0	53.0	169	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
207-08-9	Benzo(k)fluoranthene	<57.1	57.1	182	3.00	1	\cup	ug/kg	02/08/17 21:48	CSTRINGER
218-01-9	Chrysene	<37.0	37.0	118	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
53-70-3	Dibenz(a,h)anthracene	<53.5	53.5	170	3.00	1	u	ug/kg	02/08/17 21:48	CSTRINGER
206-44-0	Fluoranthene	<34.8	34.8	111	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
86-73-7	Fluorene	<19.6	19.6	62.5	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
193-39-5	Indeno(1,2,3-cd)pyrene	<54.4	54.4	173	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
91-20-3	Naphthalene	<44.3	44.3	141	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
85-01-8	Phenanthrene	<29.1	29.1	92.7	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
129-00-0	Pyrene	<35.8	35.8	114	3.00	1	U	ug/kg	02/08/17 21:48	CSTRINGER
CAS\#	Surrogate			Spiked	Amount	Analys	Result	Analysis Units	\% Recovery	Recovery Limits
118-79-6	2,4,6-Tribromophenol				$1.50 \mathrm{E}+3$		$1.21 \mathrm{E}+3$	ug/kg	80.6\%	80/120
321-60-8	2-Fluorobiphenyl				$1.50 \mathrm{E}+3$		$1.08 \mathrm{E}+3$	ug/kg	72.3\%	80/120
367-12-4	2-Fluorophenol				$1.50 \mathrm{E}+3$		685	ug/kg	45.7\%	80/120
4165-60-0	Nitrobenzene-d5				$1.50 \mathrm{E}+3$		863	ug/kg	57.5\%	80/120
4165-62-2	Phenol-d5				$1.50 \mathrm{E}+3$		852	ug/kg	56.8\%	80/120
1718-51-0	Terphenyl-d14				$1.50 \mathrm{E}+3$		$1.31 \mathrm{E}+3$	ug/kg	87.3\%	80/120

 report in less than full requires the written consent of the client.

ARS Sample Delivery Group: ARS1-17-00216
Client Sample ID: BB-16A
Sample Collection Date: 01/17/17
Sample Matrix: Soil/Solid/Sludge
Percent Solids: 86.7\%

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00216-006
Date Received: 01/24/17
Report Date: 03/07/17

GC Column: DB-5MS
Preparation Method: ARS-156/3550C Analysis Method: ARS-160/EPA 8270 D

Semi-Volatile Organics

CAS\#	Analyte	Analysis Result	MDL	PQL	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
90-12-0	1-MethyInaphthalene	<25.5	25.5	81.2	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
91-57-6	2-Methylnaphthalene	<24.9	24.9	79.3	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
83-32-9	Acenaphthene	<21.2	21.2	67.5	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
208-96-8	Acenaphthylene	<21.6	21.6	68.8	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
120-12-7	Anthracene	<33.1	33.1	105	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
56-55-3	Benzo(a)anthracene	<36.2	36.2	115	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
50-32-8	Benzo(a)pyrene	<57.4	57.4	183	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
205-99-2	Benzo(b)fluoranthene	<56.4	56.4	179	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
191-24-2	Benzo(g,h,i)perylene	<53.0	53.0	169	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
207-08-9	Benzo(k)fluoranthene	<57.1	57.1	182	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
218-01-9	Chrysene	<37.0	37.0	118	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
53-70-3	Dibenz(a,h)anthracene	<53.5	53.5	170	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
206-44-0	Fluoranthene	<34.8	34.8	111	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
86-73-7	Fluorene	<19.6	19.6	62.5	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
193-39-5	Indeno(1,2,3-cd)pyrene	< 54.4	54.4	173	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
91-20-3	Naphthalene	<44.3	44.3	141	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
85-01-8	Phenanthrene	<29.1	29.1	92.7	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER
129-00-0	Pyrene	<35.8	35.8	114	3.00	1	U	ug/kg	02/08/17 22:17	CSTRINGER

CAS\#	Surrogate	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
118-79-6	2,4,6-Tribromophenol	$1.54 \mathrm{E}+3$	$1.45 \mathrm{E}+3$	ug/kg	94.4\%	80/120
321-60-8	2-Fluorobiphenyl	$1.54 \mathrm{E}+3$	$1.17 \mathrm{E}+3$	ug/kg	75.9\%	80/120
367-12-4	2-Fluorophenol	$1.54 \mathrm{E}+3$	$1.25 \mathrm{E}+3$	ug/kg	81.1\%	80/120
4165-60-0	Nitrobenzene-d5	$1.54 \mathrm{E}+3$	$1.25 \mathrm{E}+3$	ug/kg	81.5\%	80/120
4165-62-2	Phenol-d5	$1.54 \mathrm{E}+3$	$1.26 \mathrm{E}+3$	ug/kg	82.0\%	80/120
1718-51-0	Terphenyl-d14	$1.54 \mathrm{E}+3$	$1.27 \mathrm{E}+3$	ug/kg	82.4\%	80/120

Project Mane $/ \boldsymbol{\theta}$ Review
 report in less than full requires the written consent of the client.

ARS Sample Delivery Group: ARS1-17-00216
Client Sample ID: BB-17
Sample Collection Date: 01/17/17
Sample MatrIx: Soil/Solid/Sludge
Percent Solids: 82.5\%

Request or PO Number: Quote\# 161115 SL

ARS Sample ID: ARS1-17-00216-007
Date Received: 01/24/17
Report Date: 03/07/17

Sample Weight (g): 30

Extraction Type: Sonification
Conc Extract Volume (mL): 1
Cleanup Type: None
Cleanup Factor: N/A

pH: N/A
 Date Extracted: 01/31/17
 Injection Volume (uL): 1
 Preparation Method: ARS-156/3550C

Analysis Method: ARS-157/SWB46 8082A

PCBs

CAS\#	Analyte	GC Column	Analysis Result	MDL	PQL	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
12674-11-2	Aroclor-1016	ECD1 A	<3.33	3.33	3.33	1.00	1	U*	ug/kg	02/07/17 19:16	DCODY
11104-28-2	Aroclor-1221	ECD1 A	<3.33	3.33	3.33	1.00	1	U	ug/kg	02/07/17 19:16	DCODY
11141-16-5	Aroclor-1232	ECD1 A	<3.33	3.33	3.33	1.00	1	u	ug/kg	02/07/17 19:16	DCODY
53469-21-9	Aroclor-1242	ECD1 A	<3.33	3.33	3.33	1.00	1	U	ug/kg	02/07/17 19:16	DCODY
12672-29-6	Aroclor-1248	ECD1 A	<3.33	3.33	3.33	1.00	1	U	ug/kg	02/07/17 19:16	DCODY
11097-69-1	Aroclor-1254	ECD1 A	<3.33	3.33	3.33	1.00	1	U	ug/kg	02/07/17 19:16	DCODY
11096-82-5	Aroclor-1260	ECD1 A	<3.33	3.33	3.33	1.00	1	U	ug/kg	02/07/17 19:16	DCODY

CAS\#	Surrogate	GC Column	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
2051-24-3	DCBP	ECD1 A	0.808	0.166	ug/kg	20.6\%	80/120
877-09-8	TCMX	ECD1 A	0.808	0.322	ug/kg	39.9\%	80/120

Project Marge Review
Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

ARS Sample Delivery Group: ARS1-17-00216

Client Sample ID: BB-17 Mud/Sludge
Sample Collection Date: 01/17/17
Sample Matrix: Soil/Solid/Sludge
Percent Solids: 20.6\%

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00216-008
Date Received: 01/24/17
Report Date: 03/07/17

Radiochemistry

Analysis Description	Analysis Results	CSU +/-2 s	MDC	DLC	CRDL	Qual	Analysis Units	Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
Sr-90	-0.018	0.048	0.085	0.040	0.1	U	$\mathrm{pCi} / \mathrm{g}$	ARS-032/Eichrom SRW-01	02/01/17 16:39	SC	101\%

Projed mhager Review
 report in less than full requires the written consent of the client.

Radiological Analysis Quality Control Results

SDG\# ARS1-17-00216
COC SOLID SAMPLES

QC Results per Analytical Batch

Analytical Batch	ARS1-B17-00157
SDG	ARS1-17-00216
Analysis	Strontium-90 (Soil, Sludge, Biota,
Analysis Test Method	ARS-032/Gas Proportional Counter
Analysis Code	GPC-A-012
Report Units	PCi/g

Acceptable QC Performance Ranges

QC Sample Type	Performance Items and Ranges		
Laboratory Control Sample	Recovery (\%):	>75	<125
Matrix Spike	Recovery (\%):	>60	<140
Duplicate	Replicate Error Ratio (RER):		<1
	Duplicate Error Ratio (DER):		<3
	Relative Percent Difference (RPD \%):		≤ 25

aboratory Control Sample			Analysis Date	02/01/17 16:38	Analysis Technician	SC	
Analysis Batch Sample ID	QC Type	Analyte	Results	csu (2s)	Expected Value	LCS Rec (\%)	MDC
ARS1-B17-00157-01	LCS	SR-90	19.527	2.961	19.319	101.1	0.266

Duplicate R			Analysis Date	02/01/17 16:39	Analysis Technician	SC	
Analyte	Resuits LCS	CSU LCS (2s)	Results LCSD	CSU LCSD (2s)	RER	DER	RPD
SR-90	19.527	2.961	22.166	3.357	0.418	1.156	12.7

Method Blank		Analysis Date	02/01/17 16:39	Analysis Technician	SC	
Analysis Batch Sample ID	QC Type	Analyte	Results	csu (2s)	MDC	Qual
ARS1-B17-00157-03	MBL	SR-90	0.051	0.140	0.237	U

 report in less than full requires the written consent of the client.

LELAP Certificate\# 01949

QC Results per Analytical Batch

Analytical Batch	ARS1-B17-00169
SDG	ARS1-17-00216
Analysis	Gamma Spec (Solid)
Analysis Test Method	ARS-007/EPA 901,1M
Analysis Code	GAM-A-020
Report Units	PCi/g

Acceptable QC Performance Ranges

QC Sample Type	Performance Items and Ranges		
Laboratory Control Sample	Recovery (\%):	>75	< 125
Matrix Spike	Recovery (\%):	>60	<140
Duplicate	Replicate Error Ratio (RER):		<1
	Duplicate Error Ratio (DER):		<3
	Relative Percent Difference (RPD \%):		≤ 25

Laboratory Control Sample			Analysis	01/30/17 09:19	Analysis Technician	wis	
Analysis Batch Sample ID	QC Type	Analyte	Results	csu (2s)	Expected Value	LCS Rec (\%)	MDC
ARS1-B17-00169-01	LCS	AM-241	3.921E+4	$2.872 \mathrm{E}+3$	4.000E+4	98.0	714.700
ARS1-B17-00169-01	LCS	CO-60	6.525E+4	3.026E+3	6.719E+4	97.1	$1.100 \mathrm{E}+3$
ARS1-B17-00169-01	LCS	CS-137	5.605E+4	$2.897 \mathrm{E}+3$	5.727E+4	97.9	454.100

Duplicate R			Analysis Date	01/30/17 09:30	Analysis Technician	WIS	
Analyte	Results LCS	CSU LCS (2s)	Results LCSD	CSU LCSD (2s)	RER	DER	RPD
AM-241	$3.921 \mathrm{E}+4^{\text { }}$	$2.872 \mathrm{E}+3$	4.085E+4	3.148E+3	0.272	0.753	4.1
CO-60	$6.525 E+4$	$3.026 \mathrm{E}+3$	$6.806 \mathrm{E}+4$	$2.901 \mathrm{E}+3$	0.474	1.315	4.2
CS-137	5.605E+4	$2.897 \mathrm{E}+3$	$5.812 \mathrm{E}+4$	$2.777 \mathrm{E}+3$	0.364	1.010	3.6

Method Blank		Analysis Date	01/30/17 14:40	Analysis Technician	WJS	
Analysis Batch Sample ID	QC Type	Analyte	Results	csu (2s)	MDC	Qual
ARS1-B17-00169-03	MBL	AM-241	-0.868	4.100	6.840	U
ARS1-B17-00169-03	MBL	C0-60	1.337	2.506	4.200	U
ARS1-B17-00169-03	MBL	CS-137	-0.905	88.167	4.700	U

Project Mangher Review

[^4]LELAP Certificate\# 01949

INTERNATIONAL

Stable Chemistry Analysis Quality Control Results

SDG\# ARS1-17-00216
COC SOLID SAMPLES

Analytical Batch	ARS1-B17-00170
SDG	ARS1-17-00216
Analysis	GCMS-8270D-SO
Method	ARS-156/160/EPA 8270D
Analysis Code	GCMS-8270D-SO
Report Units	ug/kg

QC Results per Analytical Batch
Report Units
$\mathbf{u g} / \mathbf{k g}$

Laboratory Control Sample		Analysis Date		02/08/17 17:52	Analysis Technician		CSTRINGER	
CAS \#	Analyte	$\begin{aligned} & \text { LCS } \\ & \text { Results } \end{aligned}$	LCSD Results	Known Value	\% Rec	Limits	RPD	Limits
90-12-0	1-MethyInaphthalene	559	465	667	83.8	40-119	18.4	25
91-57-6	2-MethyInaphthalene	564	457	667	84.6	38-122	20.8	25
83-32-9	Acenaphthene	597	507	667	89.6	40-123	16.3	25
208-96-8	Acenaphthylene	606	518	667	90.9	32-132	15.6	25
120-12-7	Anthracene	638	614	667	95.8	47-123	3.94	25
56-55-3	Benzo(a)anthracene	667	654	667	100	49-126	1.92	25
50-32-8	Benzo(a)pyrene	654	635	667	98.1	45-129	2.95	25
205-99-2	Benzo(b)fluoranthene	666	647	667	99.9	45-132	2.79	25
191-24-2	Benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	650	649	667	97.5	43-134	0.154	25
207-08-9	Benzo(k)fluoranthene	665	659	667	99.7	47-132	0.856	25
218-01-9	Chrysene	665	656	667	99.7	50-124	1.31	25
53-70-3	Dibenz(a,h)anthracene	654	660	667	99.0	45-134	0.914	25
206-44-0	Fluoranthene	671	642	667	101	50-127	4.47	25
86-73-7	Fluorene	621	576	667	93.2	43-125	7.57	25
193-39-5	Indeno(1,2,3-cd)pyrene	658	656	667	98.8	45-133	0.406	25
91-20-3	Naphthalene	570	444	667	85.6	35-123	24.8	25
85-01-8	Phenanthrene	644	623	667	96.7	50-121	3.37	25
129-00-0	Pyrene	666	656	667	99.9	47-127	1.51	25

Method Blank		Analysis Date	02/08/17 17:22	Analysis Technician	CSTRINGER
CAS \#	Analyte	Blank Results	Qualifier	MDL	PQL
90-12-0	1-MethyInaphthalene	<25.5	U	25.5	81.2
91-57-6	2-MethyInaphthalene	<24.9	U	24.9	79.3
83-32-9	Acenaphthene	<21.2	U	21.2	67.5
208-96-8	Acenaphthylene	<21.6	U	21.6	68.8
120-12-7	Anthracene	<33.1	U	33.1	105
56-55-3	Benzo(a)anthracene	<36.2	U	36.2	115
50-32-8	Benzo(a)pyrene	<57.4	U	57.4	183
205-99-2	Benzo(b)fluoranthene	<56.4	u	56.4	179
191-24-2	Benzo(g,h,i)perylene	<53.0	U	53.0	169
207-08-9	Benzo(k)fluoranthene	<57.1	U	57.1	182
218-01-9	Chrysene	<37.0	U	37.0	118
53-70-3	Dibenz(a,h)anthracene	<53.5	u	53.5	170
206-44-0	Fluoranthene	<34.8	U	34.8	111
86-73-7	Fluorene	<19.6	U	19.6	62.5
193-39-5	Indeno(1,2,3-cd)pyrene	<54.4	U	54.4	173
91-20-3	Naphthalene	<44.3	U	44.3	141
85-01-8	Phenanthrene	<29.1	U	29.1	92.7
129-00-0	Pyrene	<35.8	U	35.8	114

QC Results per Analytical Batch

Analytical Batch	ARS1-B17-00170
SDG	ARS1-17-00216
Analysis	GCMS-8270D-SO
Method	ARS-156/160/EPA 8270D
Analysis Code	GCMS-8270D-SO
Report Units	ug/kg

Matrix Spike		Analysis Date		02/08/17 19:20		Analysis Technician		CSTRINGER	
QC Type	Analyte	MS Results	MSO Sample	MSO Results	Expected Value	$\begin{gathered} \text { MS } \\ \text { \% Rec } \end{gathered}$	Limits	RPD	Limits
MS	1-MethyInaphthalene	325	04	<25.5	827	39.3	40-119	N/A	25
MSD	1-MethyInaphthalene	284	04	<25.5	827	34.4	40-119	13.4	25
MS	2-MethyInaphthalene	268	04	<24.9	827	32.5	38-122	N/A	25
MSD	2-MethyInaphthalene	237	04	<24.9	827	28.6	38-122	12.6	25
MS	Acenaphthene	433	04	<21.2	827	52.4	40-123	N/A	25
MSD	Acenaphthene	384	04	<21.2	827	46.4	40-123	12.1	25
MS	Acenaphthylene	463	04	<21.6	827	56.0	32-132	N/A	25
MSD	Acenaphthylene	400	04	<21.6	827	48.3	32-132	14.8	25
MS	Anthracene	592	04	<33.1	827	71.6	47-123	N/A	25
MSD	Anthracene	503	04	<33.1	827	60.8	47-123	16.4	25
MS	Benzo(a)anthracene	625	04	<36.2	827	75.6	49-126	N/A	25
MSD	Benzo(a)anthracene	516	04	<36.2	827	62.4	49-126	19.1	25
MS	Benzo(a)pyrene	583	04	<57.4	827	70.5	45-129	N/A	25
MSD	Benzo(a)pyrene	469	04	<57.4	827	56.7	45-129	21.7	25
MS	Benzo(b)fluoranthene	577	04	<56.4	827	69.7	45-132	N/A	25
MSD	Benzo(b)fluoranthene	470	04	<56.4	827	56.8	45-132	20.4	25
MS	Benzo(g,h,i)perylene	560	04	<53.0	827	67.7	43-134	N/A	25
MSD	Benzo(g,h,i)perylene	461	04	<53.0	827	55.8	43-134	19.4	25
MS	Benzo(k)fluoranthene	580	04	<57.1	827	70.1	47-132	N/A	25
MSD	Benzo(k)fluoranthene	471	04	<57.1	827	57.0	47-132	20.7	25
MS	Chrysene	631	04	<37.0	827	76.3	50-124	N/A	25
MSD	Chrysene	515	04	<37.0	827	62.3	50-124	20.2	25
MS	Dibenz(a,h)anthracene	590	04	<53.5	827	71.3	45-134	N/A	25
MSD	Dibenz(a,h)anthracene	481	04	<53.5	827	58.2	45-134	20.3	25
MS	Fluoranthene	648	04	<34.8	827	78.3	50-127	N/A	25
MSD	Fluoranthene	535	04	<34.8	827	64.7	50-127	19.1	25
MS	Fluorene	502	04	<19.6	827	60.7	43-125	N/A	25
MSD	Fluorene	440	04	<19.6	827	53.2	43-125	13.1	25
MS	Indeno(1,2,3-cd)pyrene	579	04	<54.4	827	70.0	45-133	N/A	25
MSD	Indeno(1,2,3-cd)pyrene	472	04	<54.4	827	57.1	45-133	20.4	25
MS	Naphthalene	210	04	<44.3	827	25.4	35-123	N/A	25
MSD	Naphthalene	179	04	<44.3	827	21.6	35-123	16.0	25
MS	Phenanthrene	586	04	<29.1	827	70.8	50-121	N/A	25
MSD	Phenanthrene	514	04	<29.1	827	62.1	50-121	13.1	25
MS	Pyrene	651	04	<35.8	827	78.8	47-127	N/A	25
MSD	Pyrene	537	04	<35.8	827	64.9	47-127	19.3	25

QC Results per Analytical Batch

Analytical Batch	ARS1-B17-00170
SDG	ARS1-17-00216
Analysis	GCMS-8270D-SO
Method	ARS-156/160/EPA 8270D
Analysis Code	GCMS-8270D-SO
Report Units	ug/kg

[^5]Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

QC Results per Analytical Batch

Analytical Batch	ARS1-B17-00184
SDG	ARS1-17-00216
Analysis	GCSV-8082A-SO
Method	ARS-156/157/SW846 8082A
Analysis Code	GCSV-8082A-SO
Report Units	ug/kg

Laboratory Control Sample		Analysis Date		02/13/17 16:31	Analysis Technician		DCODY	
CAS \#	Analyte	$\begin{aligned} & \text { LCS } \\ & \text { Results } \end{aligned}$	LCSD Results	Known Value	\% Rec	Limits	RPD	Limits
12674-11-2	Aroclor-1016	26.3	26.4	33.3	79.2	47-134	0.513	25
11096-82-5	Aroclor-1260	30.9	30.5	33.3	92.7	53-130	1.42	25

Method Blank		Analysis Date	02/07/17 15:00	Analysis Technician	DCODY
CAS \#	Analyte	Blank Results	Qualifier	MDL	PQL
12674-11-2	Aroclor-1016	<3.33	U	3.33	3.33
11104-28-2	Aroclor-1221	<3.33	U	3.33	3.33
11141-16-5	Aroclor-1232	<3.33	U	3.33	3.33
53469-21-9	Aroclor-1242	<3.33	u	3.33	3.33
12672-29-6	Aroclor-1248	<3.33	U	3.33	3.33
11097-69-1	Aroclor-1254	<3.33	U	3.33	3.33
11096-82-5	Aroclor-1260	<3.33	U	3.33	3.33

Matrix Spike		Analysis Date		02/07/17 19:44		Analysis Technician		DCODY	
QC Type	Analyte	MS Results	MSO Sample	MSO Results	Expected Value	$\begin{gathered} \text { MS } \\ \% \text { Rec } \end{gathered}$	Limits	RPD	Limits
MS	Aroclor-1016	60.6	04	<3.33	38.6	157	60-140	N/A	25
MSD	Aroclor-1016	127	04	<3.33	38.6	330	60-140	71.1	25
MS	Aroclor-1260	24.8	04	<3.33	38.6	64.4	60-140	N/A	25
MSD	Aroclor-1260	27.0	04	<3.33	38.6	70.0	60-140	8.40	25

 report in less than full requires the written consent of the client.

LELAP Certificate\# 01949

Radiological Analysis EPA 901.1M

SDG\# ARS1-17-00216
COC SOLID SAMPLES

Ortec Gamma

$0.000 E+\infty$

ORTEC g v - i (3263) Env32 G53W4.24 1/31/2017 04:41:04 American Radiation Services Spectrum name: ARS05182.An1

Sample description
Batch ID: 17-00169-04
SDG: ARSI-17-00216-001 Tech: WJS
Spectrum Filename: C:\User \backslash ARS05182.An1
Acquisition information
Start time: $\quad 1 / 30 / 2017$ 14:40:25
Live time: 50400
Real time: 50438
Dead time:
0.08%
Detector ID:
2
Detector system
GAMASPEC ARS05 MCB 340

Calibration
Filename: $\quad 250 \mathrm{~mL}$ Jar 1748-94-41 calib.Clb
250mL Jar 1748-94-41 WJS 2-25-16

Energy Calibration
Created:
Zero offset:
Gain:
Quadratic:
Efficiency Calibration
Created:
Knee Energy:
Above the Knee:
Log (Eff):
Below the Knee:
$\log (E f f):$

Library Files
Main analysis library:
Library Match Width:
Peak stripping:
Analysis parameters

Analysis engine:	Env32	G53W4.24
Start channel:	$0(0.15 \mathrm{keV})$	
Stop channel:	$8000(1999.16 \mathrm{keV})$	
Peak rejection level:	40.000%	
Peak search sensitivity:	3	
Sample Size:	$2.9275 \mathrm{E}+02$	
Activity scaling factor:	$1.0000 \mathrm{E}+06 /(1.0000 \mathrm{E}+00 * \quad 2.9275 \mathrm{E}+02)=$	
	$3.4159 \mathrm{E}+03$	
Detection limit method:	Reg. Guide 4.16 Method	

ORTEC g v - i (3263) Env32 G53W4.24 1/31/2017 04:41:04 American Radiation Services Spectrum name: ARS05182.An1

Random error:	$1.0000000 \mathrm{E}+00$
Systematic error:	$1.000000 \mathrm{E}+00$
Fraction Limit:	60.000%
Background width:	best method (based on spectrum).
Half lives decay limit:	12.000
Activity range factor:	2.000
Min, step backg. energy	0.000
Multiplet shift channel	2.000

Corrections	Status	Comments
Decay correct to date:	NO	
Decay during acquisition:	YES	
Decay during collection:	NO	
True coincidence correction:	NO	pbc APPLIEDSCIENCES. Pbc
Peaked background correction:	YES	$1 / 30 / 2017$ 09:08:58
Absorption (Internal):	NO	
Geometry correction:	NO	
Random summing:	NO	

20.83	2681	4.34	1.17	1.610E-02				
46.47	1156.	6.31	0.78	3.186E-02				
48.55	215.	29.33	0.78	3.261E-02				
53.29	164.	38.96	0.68	3.409E-02				
63.31	1169.	9.80	0.75	3.639E-02	63.29	3.900	$1.068 \mathrm{E}+00$	TH234
74.78	3811.	2.71	0.82	3.794E-02				
77.09	5984.	1.87	0.82	3.815E-02				
79.40	237.	28.67	0.82	3.832E-02				
81.21	192.	34.65	0.82	3.844E-02				
84.08	600.	12.86	0.83	3.859E-02				
87.15	1891.	4.49	0.83	3.871E-02				
89.85	1208.	6.37	0.84	3.878E-02				
92.87	1907.	4.57	0.84	3.883E-02	92.38	2.570	$3.034 \mathrm{E}+00$	TH234
					92.80	3.000	$2.663 \mathrm{E}+00$	TH2 34
99.26	297.	29.40	1.69	3.883E-02				
105.25	409.	19.56	1.04	3.872E-02				
112.79	196.	28.30	0.86	3.847E-02				
115.29	272.	22.15	0.87	3.836E-02				
129.06	576.	16.81	0.67	3.758E-02				
143.83	251.	27.87	0.74	3.652E-02				
153.85	245.	26.09	1.00	3.538E-02				
169.01	140.	38.58	0.49	3.334E-02				
185.97	1540 .	7.18	1.10	3.137E-02				
209.24	797.	9.90	0.96	2.907E-02				
238.63	8696.	1.25	1.02	2.667E-02	238.63	43.100	$1.350 \mathrm{E}+00$	PB212
240.82	785.	12.49	1.02	2.651E-02				
242.07	1097.	6.53	1.02	2.642E-02	241.98	7.500	$1.007 \mathrm{E}+00$	PB214
270.14	719.	10.40	1.19	$2.456 \mathrm{E}-02$				
277.34	350.	19.52	0.90	2.413E-02	277.36	6.500	4.093E-01	TL208
295.13	2485.	3.82	1.04	2.315E-02	295.21	18.500	$1.019 \mathrm{E}+00$	PB214
299.90	592.	13.11	1.36	2.290E-02	300.09	3.270	$1.394 \mathrm{E}+00$	PB212
327.88	445.	18.15	1.11	2.155E-02				
338.24	1694.	4.30	1.22	2.110E-02	338.40	12.010	$2.384 \mathrm{E}+00$	Ac228
351.89	4188.	2.51	1.07	2.053E-02	351.92	35.800	9.955E-01.	PB214
409.36	286.	18.87	1.27	1.849E-02				60

462.73	468.	13.61	1.57	1.696E-02				
510.65	2381.	4.16	1.90	1.581E-02	510.72	22.500	5.123E-01	TL208
583.10	2582.	4.49	1.44	$1.437 \mathrm{E}-02$	583.14	86.000	$3.708 \mathrm{E}-01$	TL208
609.25	3276.	2.89	1.46	1.392E-02	609.31	44.791	9.039E-01	BI214
661.54	442.	9.08	1.53	1.311E-02	661.66	85.100	6.578E-02	CS137
727.10	673.	6.14	1.61	$1.223 \mathrm{E}-02$	727.17	11.800	8.223E-01	BI212
767.52	432.	15.82	1.25	1.175E-02				
768.18	251.	17.55	1.66	1.174E-02	768.36	4.799	8.152E-01	BI214
785.74	168.	24.01	0.72	1.155E-02	785.42	2.000	$1.335 \mathrm{E}+00$	BI212
795.00	296.	13.36	1.70	1.143E-02	795.86	85.460	5.552E-02	CS134
					795.86	85.460	5.552E-02	CS134
835.48	207.	19.58	0.69	1.103E-02				
860.19	380.	15.14	1.50	1.079E-02	860.47	12.000	5.126E-01	TL208
911.15	1888.	4.92	1.69	$1.033 \mathrm{E}-02$	911.07	29.000	$2.210 \mathrm{E}+00$	Ac228
964.70	348.	10.90	1.90	9.891E-03	964.60	5.452	$2.357 \mathrm{E}+00$	Ac2 28

ORTEC g v - i (3263) Env32 G53W4.24 1/31/2017 04:41:04 American Radiation Services Spectrum name: ARS05182.An1

pk energy	area	uncert	fwhm	corr	nuclide brnch.	act. nuc		
968.37	1401.	6.50	1.72	$9.862 \mathrm{E}-03$	968.90	17.460	$2.875 \mathrm{E}+00$	Ac228
1119.98	987.	9.35	1.76	$8.821 \mathrm{E}-03$	1120.29	14.797	$1.325 \mathrm{E}+00$	BI 214
1238.54	372.	15.20	1.28	$8.159 \mathrm{E}-03$	1238.11	5.859	$1.371 \mathrm{E}+00$	BI 214
1460.58	9522.	1.18	2.43	$7.169 \mathrm{E}-03$	1460.75	10.700	$2.216 \mathrm{E}+01$	K 40
1620.87	177.	18.12	0.43	$6.600 \mathrm{E}-03$	1620.56	2.750	$1.790 \mathrm{E}+00$	BI 212
1764.37	604.	5.75	2.49	$6.165 \mathrm{E}-03$	1764.49	15.357	$1.168 \mathrm{E}+00$	BI 214

************ U N I D E N T I F I E D Peak Centroid Background Net Area Channel Energy Counts Counts

82.74	20.83	3610.	2681.	0.053	8.67	1.173	RH-106	s
185.50	46.51	2367.	1057.	0.021	16.67	0.703	NP-237	
193.80	48.58	1496	168.	0.003	69.37	0.488	EU-154	s
212.64	53.29	1687	164.	0.003	77.93	0.682	RU-103	S
298.64	74.78	3683	3491.	0.069	6.76	0.769	TH-234	
307.87	77.09	3152.	5896.	0.117	4.13	0.799	PB-212	
317.15	79.38	2196.	237.	0.005	57.34	0.822	BI-212	D
324.37	81.19	2111.	192.	0.004	69.31	0.825	AU-196	D
335.84	84.08	3089.	851.	0.017	24.82	1.236	HG-203	s
348.18	87.16	2953.	2049.	0.041	10.42	1.048	TH-234	s
358.98	89.86	2394.	1113.	0.022	15.97	0.861	AC-228	M
396.60	99.26	2314.	297.	0.006	58.80	1.688	PA-234M	s
420.58	105.25	1998.	409.	0.008	39.13	1.043	EU-155	s
450.41	112.70	1466.	164.	0.003	75.68	0.779	TH-234	
460.42	115.20	1731.	202.	0.004	70.63	0.683	PB-212	
515.86	129.06	2515.	576.	0.011	33.63	0.670	AC-228	
574.96	143.83	1643.	251.	0.005	55.73	0.744	U-235	
615.09	153.85	1440.	245.	0.005	52.17	1.001	XE-138	
675.72	169.01	1102.	140.	0.003	77.15	0.495	NP-237	S
743.60	185.97	2568	1540.	0.031	14.37	1.098	RA-226	s
836.75	209.24	1626	797.	0.016	19.80	0.962	AC-228	s
963.03	240.79	4477.	728.	0.014	27.02	1.020	RU-103	D
1080.44	270.14	1331.	719.	0.014	20.80	1.194	AC-228	S
1311.54	327.88	1351.	445.	0.009	36.30	1.107	AC-228	s
1637.62	409.36	748.	286.	0.006	37.74	1.274	AC-228	
1851.19	462.73	863.	468.	0.009	27.22	1.568	CS-138	S
3070.95	767.52	583.	432.	0.009	31.63	1.252	RB-89	1
3342.91	835.48	410.	207.	0.004	39.15	0.693	AC-228	s
s - Pea	fails shape tests.							
D - Peak	area deconvoluted.							
L - Peak	written from unknown list.							
C - Are	< Critical level.							
M - Pea	is clos	a lib	peak.					

This section based on library: APPLIEDSCIENCES.Lib

ORTEC G v - i (3263) Env32 G53W4.24 1/31/2017 04:41:04
American Radiation Services Spectrum name: ARS05182.An1

s - Peak fails shape tests.
D - Peak area deconvoluted.
A Derived peak area.

Ac-228 $2.2696 E+00$

| 911.07 | $2.210 \mathrm{E}+00$ | $(\mathrm{P}$ | $1.788 \mathrm{E}-01$ | $4.92 \mathrm{E}+00$ | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 968.90 | $2.261 \mathrm{E}+00$ | (P $2.289 \mathrm{E}-01$ | $4.06 \mathrm{E}+00$ | G | |
| 338.40 | $2.384 \mathrm{E}+00$ | (P | $2.445 \mathrm{E}-01$ | $4.30 \mathrm{E}+00$ | G |
| 964.60 | $2.357 \mathrm{E}+00$ | (P | $7.628 \mathrm{E}-01$ | $1.09 \mathrm{E}+01$ | G |

ORTEC g v - i (3263) Env32 G53W4.24 1/31/2017 04:41:04 American Radiation Services Spectrum name: ARS05182.An1

Nuclide Ave activity Energy Activity Code Peak MDA Comments PB-214 1.0078E+00

$$
\begin{array}{llllll}
351.92 & 9.955 \mathrm{E}-01 & (\mathrm{P} & 4.800 \mathrm{E}-02 & 2.51 \mathrm{E}+00 & \mathrm{G} \\
295.21 & 1.019 \mathrm{E}+00 & (\mathrm{P} & 8.562 \mathrm{E}-02 & 3.82 \mathrm{E}+00 & \mathrm{G} \\
241.98 & 1.040 \mathrm{E}+00 & (\mathrm{P} & 1.901 \mathrm{E}-01 & 6.19 \mathrm{E}+00 & \mathrm{G}
\end{array}
$$

BI-214
8.9533E-01

609.31	$9.039 \mathrm{E}-01$	$(\mathrm{P}$	$4.709 \mathrm{E}-02$	$2.89 \mathrm{E}+00$	G
1764.49	$1.168 \mathrm{E}+00$	+P	$1.305 \mathrm{E}-01$	$5.75 \mathrm{E}+00$	G
1120.29	$1.325 \mathrm{E}+00$	+P	$1.716 \mathrm{E}-01$	$9.35 \mathrm{E}+00$	G
1238.11	$1.371 \mathrm{E}+00$	+P	$4.458 \mathrm{E}-01$	$1.52 \mathrm{E}+01$	G
768.36	$8.152 \mathrm{E}-01$	$\&(\mathrm{P}$	$4.858 \mathrm{E}-01$	$1.75 \mathrm{E}+01$	G

BI-212
8.2283E-01
727.17 8.228E-01 (P 1.450E-01 6.24E+00 G $1620.561 .790 \mathrm{E}+00+5.039 \mathrm{E}-011.81 \mathrm{E}+01 \mathrm{G}$ $785.421 .335 \mathrm{E}+00+7.778 \mathrm{E}-012.40 \mathrm{E}+01 \mathrm{G}$

PB-212 1.3533E+00

$$
\begin{array}{llllll}
238.63 & 1.350 \mathrm{E}+00 & (\mathrm{P} & 3.182 \mathrm{E}-02 & 1.25 \mathrm{E}+00 & \mathrm{G} \\
300.09 & 1.394 \mathrm{E}+00 & (\mathrm{P} & 4.216 \mathrm{E}-01 & 1.31 \mathrm{E}+01 & \mathrm{G}
\end{array}
$$

TL-208 3.7347E-01

$$
\begin{array}{llllll}
583.14 & 3.708 \mathrm{E}-01 & (\mathrm{P} & 2.681 \mathrm{E}-02 & 4.49 \mathrm{E}+00 & \mathrm{G} \\
510.72 & 5.123 \mathrm{E}-01 & +\mathrm{P} & 1.242 \mathrm{E}-01 & 4.16 \mathrm{E}+00 & \mathrm{G} \\
860.47 & 5.326 \mathrm{E}-01 & +\mathrm{P} & 1.725 \mathrm{E}-01 & 1.38 \mathrm{E}+01 & \mathrm{G} \\
277.36 & 4.093 \mathrm{E}-01 & (& 1.946 \mathrm{E}-01 & 1.95 \mathrm{E}+01 & \mathrm{G} \\
763.30 & 4.911 \mathrm{E}-01 & 1.060 \mathrm{E}+00 & 6.54 \mathrm{E}+01 & \mathrm{G}
\end{array}
$$

CS-134 5.5520E-02

795.86	$5.552 \mathrm{E}-02$	$\&(\mathrm{P}$	$2.441 \mathrm{E}-02$	$1.34 \mathrm{E}+01$	K	
604.72	$0.000 \mathrm{E}+00$	$\%$	$5.831 \mathrm{E}-02$	$1.00 \mathrm{E}+03$	K	
569.33	$2.912 \mathrm{E}-02$	$\%$	P	$1.259 \mathrm{E}-01$	$5.12 \mathrm{E}+01$	G
563.26	$7.639 \mathrm{E}-02$	$\%$	P	$2.275 \mathrm{E}-01$	$7.43 \mathrm{E}+01$	G

CS-137 7.8464E-02
661.66 7.846E-02 @(P 2.205E-02 1.32E+01 G

TH-234 $\quad 1.0184 \mathrm{E}+00$

K-40
$2.2158 \mathrm{E}+01$
$1460.752 .216 \mathrm{E}+01$ (P 3.071E-01 1.18E+00 G
(- This peak used in the nuclide activity average.

ORTEC g v-i (3263) Env32 G53W4.24 1/31/2017 04:41:04
American Radiation Services Spectrum name: ARS05182.An1

* - Peak is too wide, but only one peak in library.
! - Peak is part of a multiplet and this area went negative during deconvolution.
? - Peak is too narrow.
@ - Peak is too wide at FW25M, but ok at FWHM.
\% - Peak fails sensitivity test.
\$ - Peak identified, but first peak of this nuclide failed one or more qualification tests.
+ - Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
= - Peak outside analysis energy range.
\& - Calculated peak centroid is not close enough to the library energy centroid for positive identification.
P - Peakbackground subtraction
\} - Peak is too close to another for the activity to be found directly.

Nuclide Codes:
T - Thermal Neutron Activation
F - Fast Neutron Activation
I - Fission Product
N - Naturally Occurring Isotope
P - Photon Reaction
C - Charged Particle Reaction
M - No MDA Calculation R - Coincidence Corrected
H - Halflife limit exceeded

Peak Codes:
G - Gamma Ray
X - X-Ray
P - Positron Decay
S - Single-Escape
D - Double-Escape
K - Key Line
A - Not in Average
C - Coincidence Peak

Nuclide	```S U M M A R Y Time of Count Activity pCi/g```	```O F N U C L Uncertainty Counting pCi/g```	I D E S \quad I N 2 Sigma Total pCi/g	```S A M P L E MDA pCi/g```	*****
Ac-228	$2.2696 \mathrm{E}+00$	$1.5391 \mathrm{E}-01$	2.1209E-01	$0.179 \mathrm{E}+00$	
PB-214	$1.0078 \mathrm{E}+00$	5.2758E-02	$1.0183 \mathrm{E}-01$	0.480E-01	
BI-214	8.9533E-01	$5.5039 \mathrm{E}-02$	8.0369E-02	$0.471 \mathrm{E}-01$	
BI-212	8.2283E-01	$1.0677 \mathrm{E}-01$	$1.2008 \mathrm{E}-01$	$0.145 \mathrm{E}+00$	
PB-212	$1.3533 \mathrm{E}+00$	3.4735E-02	9.9351E-02	$0.318 \mathrm{E}-01$	
TL-208	3.7347E-01	3.5995E-02	$4.4169 \mathrm{E}-02$	$0.268 \mathrm{E}-01$	
CS-134 \#F	$F \quad 5.5520 \mathrm{E}-02$	1.5793E-02	1.6210E-02	$0.244 \mathrm{E}-01$	
CS-137 \#	$7.8464 \mathrm{E}-02$	2.2459E-02	2.2765E-02	0.220E-01	
TH-234	$1.0184 \mathrm{E}+00$	2.3272E-01	2.4312E-01	$0.384 \mathrm{E}+00$	
K-40	$2.2158 \mathrm{E}+01$	5.3899E-01	$1.5333 \mathrm{E}+00$	$0.307 \mathrm{E}+00$	

[^6]ORTEC g v - i (3263) Env32 G53W4.24 1/31/2017 04:41:04 American Radiation Services Spectrum name: ARS05182.An1
< - MDA value printed.
A - Activity printed, but activity < MDA.
B - Activity < MDA and failed test.
C - Area < Critical level.
F - Failed fraction or key line test.
H - Halflife limit exceeded
--------------------------- S U M M A R Y Total Activity (1120.1 to 1999.2 keV) $2.998 \mathrm{E}+01 \mathrm{pCi} / \mathrm{g}$

Ortec Gamma

3

			ARS1-B17-00169-05			
		Description	ORTEC GAMMA			
		Intemallo	ARS1-17-0	216-002		
	THimin	Anatysiseateh	ARS1-B1	-00169	4, Geometry	250mL Jar 1891-50-2
	2, mix.	- W SBG	ARS1-1	-00216	Fraction:	002
		Analysiscode	GAM-	-020	\%	1
			APPLIEDSCI	CE	- Detector in	1
	-	\%	APPLIEDS	,	Detector Name:	(ARSO3)
Uplta	TPU	MDH	DL	$\begin{aligned} & \text { Nuclide energy } \\ & \text { drev) } \end{aligned}$	$\begin{gathered} \text { peak } \\ \text { Eneroyikev } \end{gathered}$	WHM
$\mathrm{pCl} / \mathrm{g}$	$1.9759 \mathrm{E}-01$	$1.1000 \mathrm{E}-01$	$5.5000 \mathrm{E}-02$			
$\mathrm{pCl} / \mathrm{g}$	$7.7313 \mathrm{E}-02$	$4.1300 \mathrm{E}-02$	$2.0650 \mathrm{E}-02$			
$\mathrm{pCi} / \mathrm{g}$	$5.9470 \mathrm{E}-02$	$3.5900 \mathrm{E}-02$	$1.7950 \mathrm{E}-02$			
$\mathrm{pCl} / \mathrm{g}$	$1.2261 \mathrm{E}-01$	$1.2600 \mathrm{E}-01$	$6.3000 \mathrm{E}-02$			
$\mathrm{pCi} / \mathrm{g}$	$9.0139 \mathrm{E}-02$	$3.3100 \mathrm{E}-02$	1.6550E-02			
$\mathrm{pCi} / \mathrm{g}$	$3.3333 \mathrm{E}-02$	$1.7200 \mathrm{E}-02$	8.6000E-03			
$\mathrm{pCi} / \mathrm{g}$	1.4419E-02	2.1200E-02	$1.0600 \mathrm{E}-02$			
$\mathrm{pCl} / \mathrm{g}$	$1.4381 \mathrm{E}-02$	$1.6200 \mathrm{E}-02$	$8.1000 \mathrm{E}-03$			
$\mathrm{pCi} / \mathrm{g}$	2.6431E-01	$3.3800 \mathrm{E}-01$	$1.6900 \mathrm{E}-01$			
$\mathrm{pCi} / \mathrm{g}$	$1.5683 \mathrm{E}+00$	$1.9500 \mathrm{E}-01$	$9.7500 \mathrm{E}-02$			

$3.83 \mathrm{C} E-04$

ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 04:44:16 Page 1 ARS Spectrum name: ARS03720.An1

Sample description
Batch ID: 17-00169-05
SDG: ARSI-17-00216-002 Tech: WJS
Spectrum Filename: C:\User \backslash ARS03720.An1
Acquisition information

Start time:
Live time:
Real time:
Dead time:
Detector ID:

30-Jan-2017 14:41:14
50400
50574
0.34 \%

1

Detector system
(ARS03) MCB 129

Calibration
Filename: $\quad 250 \mathrm{~mL}$ Jar 1891-50-2 calib.Clb
250mL Jar 1891-50-2 9-21-16 WJS

Energy Calibration
Created:
Zero offset:
Gain:
Quadratic:
21-Sep-2016 10:50:41
0.212 keV
$0.250 \mathrm{keV} /$ channel
-1.731E-08 keV/Channel^2
Efficiency Calibration
Created:
Knee Energy:
Above the Knee:
$\log (E f f):$
Below the Knee:
$\log (E f f)$:

Library Files
Main analysis library:
APPLIEDSCIENCES.Lib
Library Match Width:
Peak stripping:
0.500

Library based
Analysis parameters
Analysis engine:
21-Sep-2016 10:53:41
140.00 keV

Quadratic Uncertainty $=1.08 \%$
$-9.869273 \mathrm{E}-01+(-3.409520 \mathrm{E}-01 * \log (E))+$ ($-2.950298 \mathrm{E}-02 * \log (\mathrm{E})^{\wedge} 2$)
Quadratic Uncertainty $=0.54 \%$
$-1.054118 \mathrm{E}+01+(3.189017 \mathrm{E}+00 * \log (\mathrm{E}))+$ $\left(-3.520465 \mathrm{E}-01 * \log (E)^{\wedge} 2\right)$

Start channel:
Stop channel:
Peak rejection level:
Env32 G53W4.22

Peak search sensitivity
10 (2.71 keV)

Sample Size:
8000 (1999.79 keV)
40.000%
3
Activity scaling factor: $\quad 1.0000 \mathrm{E}+06 /(1.0000 \mathrm{E}+00 * 3.8133 \mathrm{E}+02)=$ $2.6224 \mathrm{E}+03$
Detection limit method: Reg. Guide 4.16 Method

$712 . \quad 7.30$
363. 13.94
96. 34.30
378. 16.00
378. 16.00
490.9 .80
2262. 2.97
179. 17.71
63. 37.78

403 . 8.96
1321. 3.60
$1.34 \quad 1.095 \mathrm{E}-02$
$1.391 .052 \mathrm{E}-02$
1.51 1.035E-02
1.51 1.026E-02
1.51 1.026E-02
$1.60 \quad 9.674 \mathrm{E}-03$
1.66 9.273E-03
1.63 9.111E-03
$0.36 \quad 9.068 \mathrm{E}-03$
1.65 8.890E-03
$1.65 \quad 8.858 \mathrm{E}-03$

727.17	11.800	$7.557 \mathrm{E}-01$	BI 212
768.36	4.799	$1.012 \mathrm{E}+00$	BI 214
785.42	2.000	$\mathrm{PBC}<\mathrm{MDA}$	BI 212
795.86	85.460	$5.815 \mathrm{E}-02$	CS 134
860.47	12.000	$5.466 \mathrm{E}-01$	TL 208
911.07	29.000	$2.309 \mathrm{E}+00$	Ac 228
964.60	5.452	$2.322 \mathrm{E}+00$	Ac 228
968.90	17.460	$2.327 \mathrm{E}+00$	Ac 228

$768.36 \quad 4.799 \quad 1.012 \mathrm{E}+00$ BI214
PBC $<M D A$ BI212
$968.90 \quad 17.460 \quad 2.327 \mathrm{E}+00$ Ac228

ARS ORTEC	g v-i	Spectrum name: ARS03720.An1						
pk energy	area	uncert	Ewhm	corr	nuclide	brnch.	act.	nuc
1120.37	748.	6.82	1.66	7.944E-03	1120.29	14.797	8.517E-01	BI214
1238.50	325.	20.01	1.40	7.362E-03	1238.11	5.859	$1.018 \mathrm{E}+00$	BI214
1377.73	328	13.71	1.54	6.786E-03				
1460.94	11532.	1.01	1.83	6.487E-03	1460.75	10.700	$2.302 \mathrm{E}+01$	K40
1620.79	70.	29.19	2.12	5.987E-03	1620.56	2.750	5.990E-01	BI212
1701.76	41.	37.76	0.30	5.763E-03				
1764.68	657	4.93	2.23	5.602E-03	1764.49	15.357	9.823E-01	BI214

$* * * * * * * * * * * *$ U N I D E N T I F I E D
Peak Centroid Background Net Area
Channel Energy Counts Counts

83.31	21.05	1166.	779.	0.015	17.16	1.770	$\mathrm{RH}-106$	s
94.46	23.83	2020.	210.	0.004	73.48	0.381	$\mathrm{RH}-106$	s
127.37	32.06	1705.	202.	0.004	68.23	0.822	$\mathrm{XE}-138$	
185.79	46.68	2108.	1267.	0.025	13.44	0.857	$\mathrm{~PB}-210$	
212.37	53.32	2604.	282.	0.006	63.81	0.944	$\mathrm{RU}-103$	
290.57	72.85	4648.	346.	0.007	56.79	0.945	$\mathrm{TL}-208$	D
298.77	74.90	4371.	4154.	0.082	5.47	0.947	$\mathrm{TH}-234$	D
307.73	77.14	4300.	6279.	0.125	3.89	0.949	$\mathrm{~PB}-212$	D
323.88	81.21	2553.	196.	0.004	74.41	0.952	$\mathrm{AU}-196$	lD
336.02	84.24	3942.	982.	0.019	24.77	1.176	$\mathrm{HG}-203$	s
347.86	87.21	3224.	2100.	0.042	10.33	0.937	$\mathrm{~PB}-212$	
358.78	89.94	3148.	1170.	0.023	17.61	0.904	$\mathrm{AC}-228$	M
395.98	99.24	3078.	392.	0.008	53.97	0.995	$\mathrm{PA}-234 \mathrm{M}$	s
420.27	105.31	2718.	330.	0.007	58.79	0.909	$\mathrm{AC}-228$	
515.00	129.00	2728.	655.	0.013	30.13	0.979	$\mathrm{AC}-228$	s
742.47	185.88	2832.	1630.	0.032	13.97	1.238	$\mathrm{U}-235$	s
835.89	209.24	2035.	845.	0.017	21.13	1.164	$\mathrm{AC}-228$	S
891.96	223.26	1540.	181.	0.004	76.56	0.598	$\mathrm{BA}-133$	s
1079.12	270.06	1773.	651.	0.013	27.03	1.005	$\mathrm{AC}-228$	
1310.75	327.98	1460.	532.	0.011	30.57	1.122	$\mathrm{AC}-228$	
1636.37	409.40	1192.	385.	0.008	40.75	0.658	$\mathrm{AC}-228$	s
1850.61	462.96	1023.	703.	0.014	22.31	1.125	$\mathrm{AC}-228$	s
3731.63	933.20	423.	304.	0.006	39.38	0.427	-	S
3755.34	939.12	184.	63.	0.001	75.55	0.360	-	s
5510.30	1377.73	208.	328.	0.007	27.43	1.538	$\mathrm{BI}-214$	s
6807.07	1701.76	47.	41.	0.001	75.51	0.301	-	s

s - Peak fails shape tests.
D - Peak area deconvoluted.
L - Peak written from unknown list.
C - Area < Critical level.
M - Peak is close to a library peak.

This section based on library: APPLIEDSCIENCES.Lib

Nuclide	Peak Channel	Centroid Energy	Background Counts	Net Area Counts	Intensity Cts/Sec 2	Uncert Sigma \%	FWHM keV
TH-234	252.85	63.45	4631	670.	0.013	21.87	0.944
TH-234	368.55	92.38	4941.	464	0.009	41.92	0.962 D
TH-234	370.23	92.80	4261	542.	0.011	28.91	0.962 D
PB-212	953.22	238.58	2633.	9106.	0.181	2.92	1.063
PB-214	964.98	241.52	1738	1875.	0.037	10.39	1.831 s
TL-208	1108.24	277.35	1443.	395.	0.008	34.55	1.192
PB-214	1179.44	295.15	1639.	2305.	0.046	7.29	1.105
PB-212	1198.65	299.95	1428.	646.	0.013	24.69	1.411 s
Ac-228	1352.42	338.40	1078.	1930.	0.038	6.39	1.163 D
PB-214	1406.19	351.85	1659.	3771.	0.075	5.01	1.158
TL-208	2042.02	510.82	2117.	1597.	0.032	8.02	1.601 s
TL-208	2332.07	583.34	810.	3242 .	0.064	4.86	1.298
BI-214	2436.30	609.39	899.	2980.	0.059	4.90	1.333
CS-137	2645.48	661.69	582.	555.	0.011	17.41	1.208
BI-212	2908.35	727.40	586.	694.	0.014	14.60	1.338
BI-214	3071.14	768.10	586	363.	0.007	27.87	1.390
CS-134	3178.83	795.02	768.	366.	0.007	22.74	1.522
TL-208	3441.40	860.65	441	451.	0.009	19.60	1.596
Ac-228	3644.18	911.34	487.	2212.	0.044	5.95	1.655
Ac-228	3856.41	964.38	526.	390.	0.008	32.51	1.291
Ac-228	3874.83	968.99	672.	1187.	0.024	12.45	1.441
BI-214	4480.49	1120.37	551.	712.	0.014	13.63	1.658
BI-214	4953.15	1238.50	795.	312.	0.006	40.03	1.397 s
K-40	5843.29	1460.94	403.	11362.	0.225	2.02	1.831
BI-212	6483.03	1620.79	179.	70.	0.001	58.38	2.119 s
BI-214	7058.93	1764.68	121.	601.	0.012	9.85	2.235
s - Peak fails shape tests. D - Peak area deconvoluted. A Derived peak area.							

Ac-228 2.2789E+00

911.07	$2.309 \mathrm{E}+00$	$(\mathrm{P}$	$1.101 \mathrm{E}-01$	$2.97 \mathrm{E}+00$	G
968.90	$2.154 \mathrm{E}+00$	$(\mathrm{P}$	$2.242 \mathrm{E}-01$	$6.22 \mathrm{E}+00$	G
338.40	$2.398 \mathrm{E}+00$	$(\mathrm{P}$	$1.935 \mathrm{E}-01$	$3.20 \mathrm{E}+00$	G
964.60	$2.259 \mathrm{E}+00$	(P	$6.349 \mathrm{E}-01$	$1.63 \mathrm{E}+01$	G

ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 04:44:16 Page

Nuclide	Ave activity	Energy	Activity	Code Peak MDA	Comments
PB-214	8.2252E-01				
		351.92	8.090E-01	(P 4.131E-02 2	2. $50 \mathrm{E}+00 \mathrm{G}$
		295.21	8.488E-01	(P 7.049E-02 3	3. $64 \mathrm{E}+00 \mathrm{G}$
		241.98	$1.491 \mathrm{E}+00$	+ P 1.566E-01 5.	$5.20 \mathrm{E}+00 \mathrm{G}$

BI-214 7.5162E-01

$$
\begin{aligned}
& \text { 609.31 7.516E-01 (P 3.594E-02 2.45E+00 G } \\
& 1764.499 .823 \mathrm{E}-01+\mathrm{P} 8.821 \mathrm{E}-024.93 \mathrm{E}+00 \mathrm{G} \\
& 1120.298 .517 \mathrm{E}-01+\mathrm{P} 1.341 \mathrm{E}-016.82 \mathrm{E}+00 \mathrm{G} \\
& 1238.111 .018 \mathrm{E}+00+\mathrm{P} 4.370 \mathrm{E}-012.00 \mathrm{E}+01 \mathrm{G} \\
& 768.361 .012 \mathrm{E}+00+3.218 \mathrm{E}-011.39 \mathrm{E}+01 \mathrm{G}
\end{aligned}
$$

BI-212 7.5570E-01

$$
\begin{array}{rrrrrr}
727.17 & 7.557 \mathrm{E}-01 & (\mathrm{P} & 1.257 \mathrm{E}-01 & 7.30 \mathrm{E}+00 & \mathrm{G} \\
1620.56 & 5.990 \mathrm{E}-01 & - & \mathrm{P} & 5.553 \mathrm{E}-01 & 2.92 \mathrm{E}+01
\end{array} \mathrm{G}
$$

PB-212 1.2562E+00

$$
\begin{array}{lllll}
238.63 & 1.248 \mathrm{E}+00 & (\mathrm{P} 3.315 \mathrm{E}-02 & 1.46 \mathrm{E}+00 & \mathrm{G} \\
300.09 & 1.361 \mathrm{E}+00 & (& 3.767 \mathrm{E}-01 & 1.23 \mathrm{E}+01
\end{array}
$$

TL-208
4.1161E-01

$$
\begin{array}{llllll}
583.14 & 4.127 \mathrm{E}-01 & (\mathrm{P} & 1.723 \mathrm{E}-02 & 2.43 \mathrm{E}+00 & \mathrm{G} \\
510.72 & 7.072 \mathrm{E}-01 & +\mathrm{P} & 9.611 \mathrm{E}-02 & 4.01 \mathrm{E}+00 & \mathrm{G} \\
860.47 & 5.466 \mathrm{E}-01 & +\mathrm{P} & 1.218 \mathrm{E}-01 & 9.80 \mathrm{E}+00 & \mathrm{G} \\
277.36 & 3.968 \mathrm{E}-01 & (\mathrm{P} & 1.806 \mathrm{E}-01 & 1.73 \mathrm{E}+01 & \mathrm{G} \\
763.30 & 4.337 \mathrm{E}-01 & \mathrm{O} & 1.090 \mathrm{E}+00 & 7.60 \mathrm{E}+01 & \mathrm{G}
\end{array}
$$

CS-134
5.8822E-02

$$
\begin{array}{lrlllll}
795.86 & 5.882 \mathrm{E}-02 & \&(\mathrm{P} & 2.117 \mathrm{E}-02 & 1.14 \mathrm{E}+01 & \mathrm{~K} \\
604.72 & 3.886 \mathrm{E}-04 & \% & 1.879 \mathrm{E}-02 & 1.44 \mathrm{E}+03 & \mathrm{~K} \\
569.33-1.972 \mathrm{E}-02 & \% & \mathrm{P} & 1.117 \mathrm{E}-01 & 7.08 \mathrm{E}+02 & \mathrm{G} \\
563.26 & 5.455 \mathrm{E}-02 & \& & \mathrm{P} & 1.948 \mathrm{E}-01 & 6.00 \mathrm{E}+01 & \mathrm{G}
\end{array}
$$

CS-137 7.8232E-02
$661.667 .823 \mathrm{E}-02$ (P 1.622E-02 8.70E+00 G
TH-234
$7.0827 \mathrm{E}-01$
63.29 7.083E-01 (P 3.384E-01 1.09E+01 G $92.807 .083 \mathrm{E}-01\} \mathrm{P} 4.010 \mathrm{E}-011.45 \mathrm{E}+01 \mathrm{G}$ $92.387 .083 \mathrm{E}-01\} \mathrm{P} 5.037 \mathrm{E}-012.10 \mathrm{E}+01 \mathrm{G}$

K-40
$2.3017 \mathrm{E}+01$
$1460.752 .302 \mathrm{E}+01$ (P 1.950E-01 1.01E+00 G
(- This peak used in the nuclide activity average.

* - Peak is too wide, but only one peak in library.
! - Peak is part of a multiplet and this area went negative during deconvolution.
? - Peak is too narrow.
@ - Peak is too wide at FW25M, but ok at FWHM.
\% - Peak fails sensitivity test.
\$ - Peak identified, but first peak of this nuclide failed one or more qualification tests.
+ - Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
= - Peak outside analysis energy range.
\& - Calculated peak centroid is not close enough to the
library energy centroid for positive identification.
P - Peakbackground subtraction
\} - Peak is too close to another for the activity to be found directly.

Nuclide Codes:
T - Thermal Neutron Activation
F - Fast Neutron Activation
I - Fission Product
N - Naturally Occurring Isotope
P - Photon Reaction
C - Charged Particle Reaction
M - No MDA Calculation
R - Coincidence Corrected
H - Halflife limit exceeded

Peak Codes:

G - Gamma Ray
X - X-Ray
P - Positron Decay
S - Single-Escape
D - Double-Escape
K - Key Line
A - Not in Average
C - Coincidence Peak

Nuclide	```S U M M A R Y Time of Count Activity pCi/g```	O F N U C L Uncertainty Counting $\mathrm{pCi} / \mathrm{g}$	```D E S I Sigma Total pCi/g```	$\begin{aligned} & \text { S A M P } \\ & \text { MDA } \\ & \quad \mathrm{pCi} / \mathrm{g} \end{aligned}$
Ac-228	$2.2789 \mathrm{E}+00$	$1.3855 \mathrm{E}-01$	1.9759E-01	$0.110 \mathrm{E}+00$
PB-214	8.2252E-01	3.7862E-02	7.7313E-02	$0.413 \mathrm{E}-01$
BI-214	7.5162E-01	$3.8784 \mathrm{E}-02$	5.9470E-02	0.359E-01
BI-212	7.5570E-01	$1.1311 \mathrm{E}-01$	$1.2261 \mathrm{E}-01$	$0.126 \mathrm{E}+00$
PB-212	$1.2562 \mathrm{E}+00$	3.7826E-02	9.0139E-02	0.331E-01
TL-208	4.1161E-01	2.0861E-02	3.3333E-02	0.172E-01
CS-134 \#F	F $\quad 5.8822 \mathrm{E}-02$	1.3946E-02	1.4419E-02	0.212E-01
CS-137	7.8232E-02	$1.4030 \mathrm{E}-02$	$1.4381 \mathrm{E}-02$	$0.162 \mathrm{E}-01$
TH-234	7.0827E-01	2.5958E-01	$2.6431 \mathrm{E}-01$	$0.338 \mathrm{E}+00$
K-40	$2.3017 \mathrm{E}+01$	4.7090E-01	$1.5683 \mathrm{E}+00$	$0.195 \mathrm{E}+00$

[^7]```
ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 04:44:16 Page
```

    < - MDA value printed.
    A - Activity printed, but activity < MDA.
    B - Activity < MDA and failed test.
    C - Area < Critical level.
    F - Failed fraction or key line test.
    H - Halflife limit exceeded
    ---------------------------- S U M M A R Y
Total Activity ( 351.8 to 1999.8 kev) 3.008E+01 pCi/g

```


ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 05:00:03 Page 1
American Radiation Services Spectrum name: ARS06033.An1
Sample description
```

    Batch ID: 17-00169-06
    SDG: ARS1-17-00216-004 Tech: WJS
    ```

Spectrum Filename: C:\User \(\backslash\) ARS06033.Anl
Acquisition information
Start time:
Live time:
30-Jan-2017 14:55:40
Real time:
50400
Dead time:
Detector ID:

50655
\(0.50 \%\)
1

Detector system
(ARS06) MCB 130

Calibration
Filename: \(\quad 250 \mathrm{~mL}\) jar 1595-98-2 calib.Clb
250mL Jar Solid 1595-98-2 1.5g/cC BZF 11-6-13

Energy Calibration

Created:
Zero offset: Gain: Quadratic:

Efficiency Calibration Created: Knee Energy: Above the Knee: \(\log (E f f):\)

Below the Knee: \(\log (E f f):\)

Library Files
Main analysis library: APPLIEDSCIENCES.Lib
Library Match Width:
Peak stripping:
Analysis parameters
Analysis engine.
Start channel:
Stop channel:
Peak rejection level:
10 (2.67 keV)
8000 (1998.61 keV)
Peak search sensitivity:
40.000 \%

Sample Size:
3
Activity scaling factor: \(\quad 1.0000 \mathrm{E}+06 /(1.0000 \mathrm{E}+00 * 2.8453 \mathrm{E}+02)=\) \(3.5146 \mathrm{E}+03\)
Detection limit method: Reg. Guide 4.16 Method

ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 05:00:03 Page
2 American Radiation Services Spectrum name: ARS06033.An1
\begin{tabular}{lc}
Random error: & \(1.0000000 \mathrm{E}+00\) \\
Systematic error: & \(1.0000000 \mathrm{E}+00\) \\
Fraction Limit: & \(60.000 \%\) \\
Background width: & best method (based on spectrum). \\
Half lives decay limit: & 12.000 \\
Activity range factor: & 2.000 \\
Min. step backg. energy & 0.000 \\
Multiplet shift channel & 2.000
\end{tabular}
\begin{tabular}{cll}
Corrections & Status & Comments \\
Decay correct to date: & NO & \\
Decay during acquisition: & YES & \\
Decay during collection: & NO & \\
True coincidence correction: & NO & pbc APPLIEDSCIENCES.Pbc \\
Peaked background correction: & YES & \(30-\) Jan-2017 09:10:45 \\
& & \\
Absorption (Internal): & NO & \\
Geometry correction: & NO & \\
Random summing: & NO &
\end{tabular}
total peaks alloc. 28 cutoff 20.00000 \% \(\quad\) Energy Calibration

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 13.41 & 9632 . & 1.46 & 0.90 & 1.293E-02 & & & & \\
\hline 16.32 & 2431. & 4.94 & 0.90 & 1. \(614 \mathrm{E}-02\) & & & & \\
\hline 40.07 & 538. & 21.13 & 1.08 & 3.332E-02 & & & & \\
\hline 46.75 & 1453. & 10.08 & 1.03 & 3.597E-02 & & & & \\
\hline 53.34 & 711. & 18.07 & 1.41 & 3.798E-02 & & & & \\
\hline 57.99 & 276. & 33.08 & 0.94 & 3.911E-02 & & & & \\
\hline 59.75 & 493. & 20.34 & 0.94 & 3.948E-02 & & & & \\
\hline 63.48 & 1092. & 12.10 & 0.92 & 4.018E-02 & 63.29 & 3.900 & 9.381E-01 & TH234 \\
\hline 74.94 & 8030. & 1.86 & 0.96 & 4.169E-02 & & & & \\
\hline 77.27 & 12788. & 1.32 & 0.96 & 4.190E-02 & & & & \\
\hline 79.51 & 397. & 29.36 & 0.96 & 4.208E-02 & & & & \\
\hline 81.21 & 303. & 30.47 & 0.96 & 4.220E-02 & & & & \\
\hline 84.23 & 988. & 11.09 & 0.97 & 4.237E-02 & & & & \\
\hline 87.33 & 4100. & 3.01 & 0.97 & 4.252E-02 & & & & \\
\hline 90.10 & 3387. & 3.44 & 0.97 & 4.262E-02 & & & & \\
\hline 92.43 & 491. & 24.17 & 0.97 & 4.268E-02 & 92.38 & 2.570 & 8.505E-01 & TH234 \\
\hline & & & & & 92.80 & 3.000 & 7.285E-01 & TH234 \\
\hline 93.30 & 3936. & 3.01 & 0.97 & 4.270E-02 & 92.80 & 3.000 & \(5.412 \mathrm{E}+00\) & TH234 \\
\hline 99.83 & 932. & 14.89 & 1.04 & 4.277E-02 & & & & \\
\hline 105.54 & 1447. & 9.31 & 1.47 & \(4.274 \mathrm{E}-02\) & & & & \\
\hline 115.44 & 398. & 29.12 & 0.72 & \(4.253 \mathrm{E}-02\) & & & & \\
\hline 129.18 & 1803. & 8.10 & 1.08 & 4.117E-02 & & & & \\
\hline 154.11 & 622. & 18.95 & 1.14 & 3.718E-02 & & & & \\
\hline 186.06 & 3742. & 3.86 & 1.20 & 3.324E-02 & & & & \\
\hline 209.27 & 2636. & 4.69 & 1.12 & 3.095E-02 & & & & \\
\hline 238.56 & 16601. & 0.92 & 1.11 & 2.855E-02 & 238.63 & 43.100 & \(2.506 \mathrm{E}+00\) & PB2 12 \\
\hline 241.62 & 3370. & 2.92 & 1.11 & 2.832E-02 & 241.98 & 7.500 & \(2.992 \mathrm{E}+00\) & PB2 14 \\
\hline 270.08 & 2033. & 5.18 & 1.31 & 2.641E-02 & & & & \\
\hline 277.40 & 722. & 14.17 & 1.42 & 2.597E-02 & 277.36 & 6.500 & 7.924E-01 & TL2 08 \\
\hline 295.05 & 6011. & 1.99 & 1.24 & 2.497E-02 & 295.21 & 18.500 & \(2.414 \mathrm{E}+00\) & PB214 \\
\hline 299.94 & 1044. & 9.23 & 1.44 & 2.470E-02 & 300.09 & 3.270 & \(2.390 \mathrm{E}+00\) & PB2 12 \\
\hline 314.12 & 134. & 37.12 & 0.71 & 2.398E-02 & & & & \\
\hline 321.47 & 220. & 37.31 & 0.53 & 2.363E-02 & & & & \\
\hline 327.89 & 1461. & 6.75 & 1.24 & 2.332E-02 & & & & \\
\hline 338.10 & 5832. & 2.07 & 1.27 & 2.286E-02 & 338.40 & 12.010 & \(7.934 \mathrm{E}+00\) & Ac228 \\
\hline 351.73 & 10520. & 1.29 & 1.28 & 2.228E-02 & 351.92 & 35.800 & \(2.454 \mathrm{E}+00\) & PB7B10\& 1081 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 409.22 & 998. & 8.23 & 1.42 & 2.016E-02 & & & & \\
\hline 462.88 & 1766. & 5.34 & 1.29 & 1.856E-02 & & & & \\
\hline 510.65 & 3495. & 3.03 & 2.02 & \(1.736 \mathrm{E}-02\) & 510.72 & 22.500 & \(1.239 \mathrm{E}+00\) & TL208 \\
\hline 562.52 & 273. & 20.57 & 1.41 & 1.622E-02 & 563.26 & 8.380 & 3.780E-01 & CS134 \\
\hline 583.18 & 5475. & 2.93 & 1.53 & 1.584E-02 & 583.14 & 86.000 & 7.458E-01 & TL208 \\
\hline 609.31 & 7987. & 1.88 & 1.51 & 1.536E-02 & 609.31 & 44.791 & \(2.142 \mathrm{E}+00\) & BI214 \\
\hline 661.61 & 305. & 19.69 & 1.31 & 1.450E-02 & 661.66 & 85.100 & 4.326E-02 & CS137 \\
\hline 727.39 & 1541. & 5.69 & 1.65 & 1.355E-02 & 727.17 & 11.800 & \(1.816 \mathrm{E}+00\) & BI212 \\
\hline 768.41 & 684. & 7.17 & 1.60 & 1.303E-02 & 768.36 & 4.799 & \(2.060 \mathrm{E}+00\) & BI214 \\
\hline 772.29 & 373. & 11.91 & 1.60 & 1.298E-02 & & & & \\
\hline 781.86 & 162. & 25.11 & 1.61 & 1.287E-02 & & & & \\
\hline 785.73 & 340. & 11.64 & 1.61 & 1.282E-02 & 785.42 & 2.000 & \(2.502 \mathrm{E}+00\) & BI212 \\
\hline 794.85 & 1328. & 6.15 & 1.67 & 1.271E-02 & & & & \\
\hline 794.85 & 1328. & 6.15 & 1.67 & 1.271E-02 & 795.86 & 85.460 & 2.305E-01 & CSI34 \\
\hline 835.47 & 414. & 14.03 & 1.57 & 1.226E-02 & & & & \\
\hline 860.49 & 816. & 11.10 & 1.78 & 1.200E-02 & 860.47 & 12.000 & \(1.068 \mathrm{E}+00\) & TL208 \\
\hline 911.10 & 6960. & 1.44 & 1.76 & 1.151E-02 & 911.07 & 29.000 & \(7.802 \mathrm{E}+00\) & Ac228 \\
\hline 934.20 & 506 & 0 & 1.45 & \(1.130 \mathrm{E}-02\) & & & & \\
\hline
\end{tabular}

ORTEC g v - i (3263) Env32 American Radiation Services

Spectrum name: ARS06033.An1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline pk energy & area & uncert & fwhm & corr & nuclide & brnch. & act & nuc \\
\hline 964.62 & 1232. & 4.13 & 1.79 & 1.104E-02 & 964.60 & 5.452 & \(7.668 \mathrm{E}+00\) & Ac228 \\
\hline 968.90 & 4005 & 1.79 & 1.79 & 1.100E-02 & 968.90 & 17.460 & \(7.808 \mathrm{E}+00\) & Ac228 \\
\hline 1000.62 & 173 & 26.22 & 0.74 & \(1.074 \mathrm{E}-02\) & & & & \\
\hline 1120.17 & 1892 & 4.87 & 1.75 & 9.878E-03 & 1120.29 & 14.797 & \(2.418 \mathrm{E}+00\) & BI214 \\
\hline 1154.78 & 303 & 16.19 & 0.69 & 9.654E-03 & & & & \\
\hline 1237.93 & 1022. & 9.79 & 2.31 & 9.160E-03 & 1238.11 & 5.859 & \(3.591 E+00\) & BI214 \\
\hline 1377.32 & 602. & 8.84 & 1.50 & 8.444E-03 & & & & \\
\hline 1407.70 & 345. & 13.07 & 0.94 & 8.304E-03 & & & & \\
\hline 1460.54 & 9757. & 1.15 & 2.22 & 8.071E-03 & 1460.75 & 10.700 & \(2.068 \mathrm{E}+01\) & K40 \\
\hline 1588.38 & 768. & 9.68 & 2.04 & \(7.563 \mathrm{E}-03\) & & & & \\
\hline 1619.99 & 199. & 17.24 & 1.14 & \(7.445 \mathrm{E}-03\) & 1620.56 & 2.750 & \(1.830 \mathrm{E}+00\) & BI212 \\
\hline 1729.25 & 435. & 10.49 & 1.44 & 7.076E-03 & & & & \\
\hline 1764.11 & 1401. & 3.34 & 2.58 & 6.966E-03 & 1764.49 & 15.357 & \(2.411 E+00\) & BI214 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 52.94 & 13.41 & 6291. & 11598. & 0.230 & 3.21 & 1.177 & SE-75 & S \\
\hline 64.60 & 16.32 & 5997. & 2431. & 0.048 & 9.88 & 0.904 & KR-85 & 1D \\
\hline 159.58 & 40.07 & 3722 & 538. & 0.011 & 42.27 & 1.082 & EU-152 & s \\
\hline 186.30 & 46.75 & 5216. & 1453. & 0.029 & 20.16 & 1.032 & PB-210 & S \\
\hline 212.64 & 53.34 & 4739. & 711 & 0.014 & 36.14 & 1.410 & CE-144 & S \\
\hline 231.24 & 57.99 & 4029 & 276. & 0.005 & 66.16 & 0.942 & TA-182 & D \\
\hline 238.30 & 59.75 & 4771 & 493 & 0.010 & 40.68 & 0.943 & W-187 & D \\
\hline 299.05 & 74.95 & 6916. & 8228. & 0.163 & 3.61 & 0.957 & TH-234 & D \\
\hline 308.35 & 77.27 & 7448. & 13203. & 0.262 & 2.54 & 0.959 & PB-212 & D \\
\hline 317.33 & 79.51 & 6610. & 397. & 0.008 & 58.72 & 0.961 & BA-133 & D \\
\hline 324.13 & 81.22 & 4119. & 303. & 0.006 & 60.94 & 0.962 & AU-196 & D \\
\hline 336.22 & 84.24 & 5645. & 1448. & 0.029 & 20.11 & 1.332 & HG-203 & S \\
\hline 348.62 & 87.34 & 5532. & 4130. & 0.082 & 7.13 & 1.186 & PB-212 & s \\
\hline 359.90 & 90.10 & 4968. & 3056. & 0.061 & 7.46 & 0.971 & AC-228 & D \\
\hline 372.68 & 93.30 & 5373. & 3620. & 0.072 & 6.62 & 0.973 & AC-228 & D \\
\hline 398.58 & 99.83 & 4780. & 932. & 0.018 & 29.77 & 1.043 & PA-234M & S \\
\hline 421.43 & 105.54 & 4352. & 1447. & 0.029 & 18.61 & 1.475 & EU-155 & 5 \\
\hline 461.05 & 115.44 & 3725. & 398. & 0.008 & 58.25 & 0.723 & PU-239 & S \\
\hline 515.98 & 129.18 & 4884. & 1803. & 0.036 & 16.20 & 1.076 & AC-228 & \\
\hline 615.70 & 154.11 & 3788. & 622. & 0.012 & 37.91 & 1.139 & ND-147 & s \\
\hline 743.51 & 186.06 & 4714. & 3742. & 0.074 & 7.72 & 1.202 & RA-226 & S \\
\hline 836.34 & 209.27 & 3741. & 2636. & 0.052 & 9.37 & 1.116 & AC-228 & \\
\hline 1079.61 & 270.08 & 2265. & 2033. & 0.040 & 10.36 & 1.315 & AC-228 & s \\
\hline 1255.81 & 314.12 & 936 & 134. & 0.003 & 74.24 & 0.709 & PB-214 & s \\
\hline 1285.19 & 321.47 & 1706. & 220. & 0.004 & 74.62 & 0.526 & LU-177 & s \\
\hline 1310.90 & 327.89 & 2282. & 1461. & 0.029 & 13.51 & 1.241 & AC-228 & \\
\hline 1636.28 & 409.22 & 1379. & 998. & 0.020 & 16.47 & 1.416 & AC-228 & s \\
\hline 1850.96 & 462.88 & 1476. & 1766. & 0.035 & 10.68 & 1.287 & CS-138 & \\
\hline 3089.22 & 772.26 & 792. & 380. & 0.008 & 23.36 & 1.602 & AC-228 & D \\
\hline 3126.24 & 781.56 & 781. & 170. & 0.003 & 64.53 & 0.505 & - & 1 \\
\hline 3127.46 & 781.56 & 749. & 162. & 0.003 & 50.22 & 1.611 & - & D \\
\hline 3179.42 & 794.85 & 2028. & 190. & 0.004 & 68.72 & 1.667 & AC-228 & s \\
\hline 3342.00 & 835.47 & 658. & 414. & 0.008 & 28.07 & 1.571 & AC-228 & \\
\hline 3737.22 & 934.20 & 464 & 506. & 0.010 & 20.71 & 1.449 & BI-214 & \\
\hline 4003.09 & 1000.62 & 437. & 173. & 0.003 & 52.44 & 0.739 & PA-234M & s \\
\hline
\end{tabular}

ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 05:00:03 Page 4 American Radiation Services Spectrum name: ARS06033.Anl
\begin{tabular}{rrrrrrrrr}
Channel & Energy & Background & Net area & Cnts/sec & Uncert & \multicolumn{2}{c}{ FWHM Suspected } \\
4620.23 & 1154.78 & 582. & 303. & 0.006 & 32.37 & \(0.689 \mathrm{BI}-214\) & S \\
5511.33 & 1377.32 & 326. & 602. & 0.012 & 17.68 & \(1.496 \mathrm{BI}-214\) & s \\
5632.97 & 1407.70 & 274. & 345. & 0.007 & 26.13 & \(0.939 \mathrm{BI}-214\) & s \\
6356.60 & 1588.38 & 468. & 768. & 0.015 & 19.36 & \(2.044 \mathrm{AC}-228\) & \\
6920.86 & 1729.25 & 168. & 435. & 0.009 & 20.99 & \(1.444 \mathrm{BI}-214\) & s
\end{tabular}
```

s - Peak fails shape tests.
D - Peak area deconvoluted.
L - Peak written from unknown list.
C - Area < Critical level.

```

This section based on library: APPLIEDSCIENCES.Lib

\footnotetext{
s - Peak fails shape tests.
D - Peak area deconvoluted.
A Derived peak area.
}

ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 05:00:03 Page American Radiation Services Spectrum name: ARS06033.Anl

ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 05:00:03 Page

Nuclide Ave activity Energy Activity Code Peak MDA Comments
CS-137 4.3263E-02
\[
661.664 .326 \mathrm{E}-02 \quad(\mathrm{P} 2.391 \mathrm{E}-02 \quad 1.97 \mathrm{E}+01 \quad \mathrm{G}
\]

TH-234
8.5053E-01
\[
\begin{aligned}
& 63.29 \text { 9.381E-01 (P 4.330E-01 1.21E+01 G } \\
& \left.\begin{array}{l}
92.80 \\
92.58 \\
9.505 \mathrm{E}-01
\end{array}\right\} \begin{array}{llll}
\mathrm{P} & 5.820 \mathrm{E}-01 & 1.73 \mathrm{E}+01 & G \\
\mathrm{P} & 7.167 \mathrm{E}-01 & 2.42 \mathrm{E}+01 & G
\end{array}
\end{aligned}
\]

K-40 2.0681E+01
1460.75 2.068E+01 (P \(2.789 \mathrm{E}-01\) 1.15E+00 G
(- This peak used in the nuclide activity average.
* - Peak is too wide, but only one peak in library.
! - Peak is part of a multiplet and this area went negative during deconvolution.
? - Peak is too narrow.
@ - Peak is too wide at FW25M, but ok at FWHM.
\% - Peak fails sensitivity test.
\$ - Peak identified, but first peak of this nuclide failed one or more qualification tests.
+ - Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
= - Peak outside analysis energy range.
\& - Calculated peak centroid is not close enough to the library energy centroid for positive identification.
P - Peakbackground subtraction
\} - Peak is too close to another for the activity to be found directly.

Nuclide Codes:
T - Thermal Neutron Activation
F - Fast Neutron Activation
I - Fission Product
N - Naturally Occurring Isotope
P - Photon Reaction
C - Charged Particle Reaction
M - No MDA Calculation
R - Coincidence Corrected
H - Halflife limit exceeded

Peak Codes:
G - Gamma Ray
X - X-Ray
P - Positron Decay
S - Single-Escape
D - Double-Escape
K - Key Line
A - Not in Average
C - Coincidence Peak

ORTEC g v - i (3263) Env32 G53W4.22 31-JAN-2017 05:00:03 Page 7 American Radiation Services Spectrum name: ARS06033.Anl
\begin{tabular}{|c|c|c|c|c|c|}
\hline Nuclide & ```
S U M M A R Y
Time of Count
 Activity
 pCi/g
``` & O F N U C I Uncertainty Counting pCi/g & ```
D ES I
Sigma
Total
    pCi/g
``` & \[
\begin{aligned}
& \text { S A MPLE } \\
& \text { MDA } \quad \mathrm{pCi} / \mathrm{g}
\end{aligned}
\] & ***** \\
\hline Ac-228 & \(7.8164 \mathrm{E}+00\) & 2.0301E-01 & 5.2619E-01 & \(0.135 \mathrm{E}+00\) & \\
\hline PB-214 & \(2.4404 \mathrm{E}+00\) & 5.8739E-02 & 2.1583E-01 & 0.492E-01 & \\
\hline BI-214 & \(2.1363 \mathrm{E}+00\) & 8.2224E-02 & 1.5697E-01 & 0.475E-01 & \\
\hline BI-212 & \(1.8187 \mathrm{E}+00\) & \(2.0694 \mathrm{E}-01\) & 2.3757E-01 & \(0.198 \mathrm{E}+00\) & \\
\hline PB-212 & \(2.4924 \mathrm{E}+00\) & 6.4417E-02 & 1.8227E-01 & \(0.494 \mathrm{E}-01\) & \\
\hline TL-208 & 7.4910E-01 & 4.4581E-02 & 6.6493E-02 & 0.304E-01 & \\
\hline CS-134 \#F & - 1.9758E-01 & \(2.0130 \mathrm{E}-02\) & 2.3701E-02 & 0.274E-01 & \\
\hline CS-137 & 4.3263E-02 & \(1.8367 \mathrm{E}-02\) & 1.8463E-02 & \(0.239 \mathrm{E}-01\) & \\
\hline TH-234 & 8.5053E-01 & 2.9075E-01 & 2.9732E-01 & \(0.433 \mathrm{E}+00\) & \\
\hline K-40 & \(2.0681 \mathrm{E}+01\) & 4.8908E-01 & \(1.4161 \mathrm{E}+00\) & \(0.279 \mathrm{E}+00\) & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
\# - All peaks for activity calculation had bad shape. \\
* - Activity omitted from total
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\& - Activity omitted from total and all peaks had bad shape.} \\
\hline \multicolumn{6}{|l|}{A - Activity printed, but activity < MDA.} \\
\hline \multicolumn{6}{|l|}{B - Activity < MDA and failed test.} \\
\hline \multicolumn{6}{|l|}{C - Area < Critical level.} \\
\hline \multicolumn{6}{|l|}{F - Failed fraction or key line test.} \\
\hline \multicolumn{6}{|l|}{H - Halflife limit exceeded} \\
\hline Total Acti & ivity (1000.6 & to 1998.6 6 M & \(\begin{array}{rlr}\text { A } \\ \mathrm{Y} \\ & 3.903 \mathrm{E}\end{array}\) & \(1 \mathrm{pCi} / \mathrm{g}\) & \\
\hline
\end{tabular}

SDG ARS1-17-00216
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fraction & Container & Client ID & Aliquot & Units & Geometry & Prep Type & Origin & Origin2 & ICOC ID \\
\hline 001 & 1 & BB-16L & 211.0000 & g & & ORIG & SCl & & 255884 \\
\hline 001 & 2 & BB-16L & 1195.0000 & 9 & & ORIG & SCl & & 255894 \\
\hline 001 & 2 & BB-16L & 549.6800 & g & & DRYF & PRP & & 256078 \\
\hline 001 & 2 & BB-16L & 292.7500 & 9 & 250 mL Jar & DGAM & PRP & & 256081 \\
\hline 001 & 2 & BB-16L & 37.2600 & g & & DRAD & ALI & Manual & 256085 \\
\hline 002 & 1 & BB-18 & 218.0000 & g & & ORIG & SCl & & 255883 \\
\hline 002 & 2 & BB-18 & 237.0000 & 9 & & ORIG & SCI & & 255895 \\
\hline 002 & 3 & BB-18 & 234.0000 & g & & ORIG & SCI & & 255896 \\
\hline 002 & 4 & BB-18 & 1366.0000 & g & & ORIG & SCI & & 255899 \\
\hline 002 & 4 & BB-18 & 683.3300 & 9 & & DRYF & PRP & & 256079 \\
\hline 002 & 4 & BB-18 & 381.3300 & 9 & 250 mL Jar & DGAM & PRP & & 256082 \\
\hline 002 & 4 & BB-18 & 52.0400 & g & & DRAD & ALI & Manual & 256086 \\
\hline 003 & 1 & OS-2 & 226.0000 & 9 & & ORIG & SCI & & 255885 \\
\hline 003 & 2 & OS-2 & 206.0000 & 9 & & ORIG & SCl & & 255893 \\
\hline 004 & 1 & BB-19M & 1266.0000 & g & & ORIG & SCl & & 255886 \\
\hline 004 & 2 & BB-19M & 238.0000 & 9 & & ORIG & SCl & & 255892 \\
\hline 004 & 3 & BB-19M & 211.0000 & g & & ORIG & SCl & & 255897 \\
\hline 004 & 4 & BB-19M & 216.0000 & 9 & & ORIG & SCI & & 255898 \\
\hline 004 & 4 & BB-19M & 742.2500 & g & & DRYF & PRP & & 256080 \\
\hline 004 & 4 & BB-19M & 284.5300 & 9 & 250 mL Jar & DGAM & PRP & & 256083 \\
\hline 004 & 4 & BB-19M & 34.3700 & 9 & & DRAD & ALI & Manual & 256087 \\
\hline 005 & 1 & BB-16B & 214.0000 & 9 & & ORIG & SCl & & 255887 \\
\hline 006 & 1 & BB-16A & 228.0000 & 9 & & ORIG & SCl & & 255888 \\
\hline 007 & 1 & BB-17 & 206.0000 & 9 & & ORIG & SCl & & 255889 \\
\hline 007 & 2 & BB-17 & 215.0000 & 9 & & ORIG & SCl & & 255891 \\
\hline 008 & 1 & BB-17 Mud/Sludge & 352.0000 & g & & ORIG & SCI & & 255890 \\
\hline 008 & 1 & BB-17 Mud/Sludge & 22.0400 & 9 & & DRAD & ALI & Manual & 256084 \\
\hline
\end{tabular}
 상 동 옹

\begin{tabular}{|r|c|}
\hline SDG & FR \\
\hline ARS1-17-00216 & 001 \\
\hline ARS1-17-00216 & 002 \\
ARS1-17-00216 & 004 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \text { PBatch Sarmple ID } \\
& \text { ARS1-P17-00121-01 } \\
& \text { ARS1-P17-00121-02 } \\
& \text { ARS1-P17-00121-03 }
\end{aligned}
\]
\begin{tabular}{c|c|c}
\\
Tare g & Cont+Sample g & Net Sample g \\
43.43 & 336.18 & 292.75 \\
\hline 43.77 & 425.10 & 381.33 \\
\hline 43.20 & 327.73 & 284.53 \\
\hline
\end{tabular}

Prep Batch ID
\begin{tabular}{c|c}
\begin{tabular}{c}
Prep Batch ID \\
ARS1-P17-00121- \\
\(\mathbf{0 1}\)
\end{tabular} & ARS1-17-00216 \\
\hline \begin{tabular}{c}
ARS1-P17-00121- \\
\(\mathbf{0 2}\)
\end{tabular} & ARS1-17-00216 \\
\hline \begin{tabular}{c|c}
ARS1-P17-00121- \\
\(\mathbf{0 3}\)
\end{tabular} & ARS1-17-00216 \\
&
\end{tabular}
Printed: 1/28/2017 10:19 AM

Stop Time
\(1 / 28 / 2017\) 9:31 AM
\(1 / 28 / 20179: 31\) AM
\(1 / 28 / 20179: 31\) AM
ARS International

\section*{Preanalytical Sample Preparation Review Checklist}

Prep Batch/SDG: ARS1-17-00216

\section*{Sample Matrix:}
so

Check if sample(s) are re-prepped
SAMPLE PREPARATION
\begin{tabular}{|ccc|c|c|}
\hline \multicolumn{2}{|c|}{ Prep. Tech. Review } & \\
\hline & Kes & No & N/A & \\
\hline Yes & No & No & N/A & \\
\hline YRS1- & & & \\
\hline Yes & No & N/A & \\
\hline Yes & No & No & N/A & \\
\hline Yes & No & N/A & \\
\hline
\end{tabular}
12) Sample Prep Anomaly? \(\quad \square\) No \(\quad \square\) Yes (See Tech Notes) NCR \# (If initiated):
\(\qquad\)
\begin{tabular}{|c|c|c|}
\hline & 1100 & \\
\hline & Date/Time & Lot\# of sand blank (if PrepBlank required) \\
\hline
\end{tabular}

BATCH QC VALIDATION (Section below must be completed ONLY if a PrepBlank is required)

COMMENTS
ARS1-17-00216-001-004 are bias low

Calibration Data from file: 250 mL Tuna Can 1891-50-3 polynomial calib. Clb
Energy Calibration Date: 09/29/2016 Time: 07:56:50
Efficiency Calibration Date: 09/29/2016 Time: 08:00:17
```

Calibration Description: 250mL Tuna Can 1891-50-3 polynomial 9-29-16 WJS

```
\begin{tabular}{rl}
Energy Calibration Fit \\
Energy \(=\) & 0.1960
\end{tabular}\(+0.250053 *\) Channel \(-1.75909 \mathrm{e}-008 *\) Channel**2

Efficiency Calibration Fit
Polynomial Uncertainty \(=1.2946 \%\)
Coefficients: -0.388262-4.463417 0.420417 -0.041583 0.001635-0.000025

Efficiency Table
\begin{tabular}{|c|c|c|c|}
\hline Energy & Efficiency & Fit & Delta \\
\hline 46.52 & 2.5818E-002 & 2.5782E-002 & \(0.14 \%\) \\
\hline 59.54 & 3.4548E-002 & 3.4665E-002 & -0.34\% \\
\hline 88.03 & 4.5342E-002 & 4.5059E-002 & 0.62\% \\
\hline 122.07 & \(4.7017 \mathrm{E}-002\) & \(4.6464 \mathrm{E}-002\) & 1.18\% \\
\hline 159.00 & \(4.1438 \mathrm{E}-002\) & \(4.2531 \mathrm{E}-002\) & -2.64\% \\
\hline 320.07 & 2.6489E-002 & 2.6448E-002 & \(0.15 \%\) \\
\hline 391.69 & 2.2950E-002 & 2.2663E-002 & 1. \(25 \%\) \\
\hline 514.00 & 1.8273E-002 & 1.8486E-002 & -1.16\% \\
\hline 661.66 & 1.5997E-002 & 1.5385E-002 & 3.83\% \\
\hline 1173.24 & 9.9036E-003 & 1.0155E-002 & -2.54\% \\
\hline 1332.50 & \(8.9039 \mathrm{E}-003\) & 9.2051E-003 & -3.38\% \\
\hline 1836.08 & 7.2014E-003 & \(7.0172 \mathrm{E}-003\) & \(2.56 \%\) \\
\hline
\end{tabular}

Calibration Certificate Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Isotope & Energy & Pct & Halflife & Activity & GPS & Error & & Date \& Time \\
\hline Pb-210 & 46.52 & 4.00 & \(7.45 \mathrm{E}+003\) & 0.21 & 313.61 & 4.00\% & 08/01/2016 & 14:00:00 \\
\hline Am-241 & 59.54 & 36.30 & \(1.58 \mathrm{E}+005\) & 0.02 & 280.30 & 3.00\% & 08/01/2016 & 14:00:00 \\
\hline Cd-109 & 88.03 & 3.61 & \(4.36 E+002\) & 0.22 & 292.79 & 3.20\% & 08/01/2016 & 14:00:00 \\
\hline Co-57 & 122.07 & 85.60 & \(2.72 \mathrm{E}+002\) & 0.01 & 239.98 & 3.10\% & 08/01/2016 & 14:00:00 \\
\hline Te-123M & 159.00 & 83.50 & 1.20E+002 & 0.01 & 334.90 & 3.10\% & 08/01/2016 & 14:00:00 \\
\hline \(\mathrm{Cr}-51\) & 320.07 & 9.83 & \(2.77 \mathrm{E}+001\) & 0.25 & 910.00 & 3.00\% & 08/01/2016 & 14:00:00 \\
\hline \(\mathrm{Sn}-113\) & 391.69 & 64.16 & \(1.15 \mathrm{E}+002\) & 0.04 & 951.47 & 3.00\% & 08/01/2016 & 14:00:00 \\
\hline Sr-85 & 513.99 & 99.28 & \(6.47 \mathrm{E}+001\) & 0.05 & 1775.70 & 3.00\% & 08/01/2016 & 14:00:00 \\
\hline Cs-137 & 661.66 & 85.21 & \(1.10 \mathrm{E}+004\) & 0.03 & 1054.29 & 3.10\% & 08/01/2016 & 14:00:00 \\
\hline Y-88 & 898.02 & 95.00 & \(1.07 \mathrm{E}+002\) & 0.08 & 2719.56 & 3.00\% & 08/01/2016 & 14:00:00 \\
\hline Co-60 & 1173.24 & 99.90 & \(1.93 \mathrm{E}+003\) & 0.04 & 1527.31 & 3.10\% & 08/01/2016 & 14:00:00 \\
\hline Co-60 & 1332.50 & 99.98 & \(1.93 \mathrm{E}+003\) & 0.04 & 1528.56 & 3.10\% & 08/01/2016 & 14:00:00 \\
\hline Y-88 & 1836.01 & 99.35 & \(1.07 \mathrm{E}+002\) & 0.08 & 2844.08 & 3.00\% & 08/01/2016 & 14:00:00 \\
\hline
\end{tabular}

ORTEC g v - i (3263) Env32 G53W4.22 29-SEP-2016 08:12:02 Page 1 ARS Spectrum name: ARS03099.An1

Sample description Batch ID: CALVER SDG: 250mL Tuna Can 1891-50-3 polynomial Tech: WJS

Spectrum Filename: C:\User \(\backslash\) ARS03099.An1
Acquisition information Start time: 29-Sep-2016 08:01:36
Live time: 600
Real time: 618
Dead time:
Detector ID:
\(2.86 \%\)
1

Detector system
(ARS03) MCB 129

Calibration
Filename: \(\quad 250 \mathrm{~mL}\) Tuna Can 1891-50-3 polynomial cali b.Clb

250mL Tuna Can 1891-50-3 polynomial 9-29-16 WJS

Energy Calibration
Created: 29-Sep-2016 07:56:50

Zero offset:
0.196 keV

Gain:
\(0.250 \mathrm{keV} / \mathrm{channel}\)
Quadratic:
-1.759E-08 keV/Channel^2
Efficiency Calibration
Created:
29-Sep-2016 08:00:17
Type:
Polynomial
Uncertainty:
Coefficients:
\(1.295 \%\)
\(\begin{array}{rrr}-0.388262 & -4.463417 & 0.420417 \\ -0.041583 & 0.001635 & -0.000025\end{array}\)

Library Files
Main analysis library: northamericancal.Lib
Library Match Width:
Peak stripping:
0.500

Library based
Analysis parameters

```

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

```
\begin{tabular}{clll}
Corrections & Status & \multicolumn{1}{c}{ Comments } \\
Decay correct to date: & YES & 01 -Aug-2016 14:00:00 \\
Decay during acquisition: & NO & \\
Decay during collection: & NO & \\
True coincidence correction: & NO & \\
Peaked background correction: & YES & pbc DOE.Pbc \\
& & \(13-\) Sep-2016 08:40:53 \\
Absorption (Internal): & NO & \\
Geometry correction: & NO & \\
Random summing: & NO & \\
& & &
\end{tabular}
\begin{tabular}{cc}
total peaks alloc. 13 cutoff & 20.00000
\end{tabular}

\begin{tabular}{rrrrrrrrr}
\hline 32.09 & 416. & 19.90 & 1.10 & \(1.614 \mathrm{E}-02\) & & & \\
46.58 & 4994. & 3.03 & 0.90 & \(2.584 \mathrm{E}-02\) & 46.52 & 4.050 & \(2.162 \mathrm{E}+05\) & PB210 \\
59.60 & 5806. & 2.27 & 0.91 & \(3.470 \mathrm{E}-02\) & 59.54 & 35.700 & \(2.114 \mathrm{E}+04\) & AM241 \\
88.05 & 7117. & 2.36 & 0.93 & \(4.506 \mathrm{E}-02\) & 88.03 & 3.610 & \(2.152 \mathrm{E}+05\) & CD109 \\
122.05 & 5769. & 2.19 & 0.97 & \(4.647 \mathrm{E}-02\) & 122.07 & 85.500 & \(7.598 \mathrm{E}+03\) & CO57 \\
136.45 & 694. & 14.28 & 0.96 & \(4.523 \mathrm{E}-02\) & & & & \\
159.01 & 6105. & 2.18 & 1.01 & \(4.253 \mathrm{E}-02\) & 159.00 & 84.000 & \(1.082 \mathrm{E}+04\) & TE123M \\
254.97 & 421. & 16.59 & 1.18 & \(3.142 \mathrm{E}-02\) & & & & \\
319.96 & 3386. & 3.09 & 1.18 & \(2.646 \mathrm{E}-02\) & 320.07 & 9.830 & \(2.551 \mathrm{E}+05\) & CR51 \\
391.63 & 9376. & 1.38 & 1.21 & \(2.267 \mathrm{E}-02\) & 391.69 & 64.000 & \(4.148 \mathrm{E}+04\) & SN113 \\
514.00 & 10386. & 1.31 & 1.31 & \(1.849 \mathrm{E}-02\) & 514.00 & 99.270 & \(4.777 \mathrm{E}+04\) & SR85 \\
567.16 & 75. & 36.22 & 0.75 & \(1.720 \mathrm{E}-02\) & & & & \\
661.71 & 10010. & 1.37 & 1.46 & \(1.538 \mathrm{E}-02\) & 661.66 & 85.210 & \(3.452 \mathrm{E}+04\) & CS137 \\
898.09 & 12936. & 1.06 & 1.54 & \(1.236 \mathrm{E}-02\) & 898.07 & 92.700 & \(7.452 \mathrm{E}+04\) & Y 88 \\
1173.32 & 8779. & 1.43 & 1.87 & \(1.015 \mathrm{E}-02\) & 1173.24 & 99.900 & \(3.981 \mathrm{E}+04\) & CO60 \\
1332.60 & 8010. & 1.35 & 1.85 & \(9.204 \mathrm{E}-03\) & 1332.50 & 99.982 & \(4.004 \mathrm{E}+04\) & CO 60 \\
1418.44 & 54. & 35.14 & 0.67 & \(8.757 \mathrm{E}-03\) & & & & \\
1836.06 & 8486. & 1.12 & 2.29 & \(7.017 \mathrm{E}-03\) & 1836.08 & 99.350 & \(8.033 \mathrm{E}+04\) & Y 88
\end{tabular}

ORTEC g v - i (3263) Env32 G53W4.22 29-SEP-2016 08:12:02 Page 3 ARS Spectrum name: ARS03099.Anl
```

s - Peak fails shape tests.
D - Peak area deconvoluted.
L - Peak written from unknown list.
C - Area < Critical level.

```

This section based on library: northamericancal.Lib

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{PB-210} & \multirow[t]{2}{*}{\(2.1623 E+05\)} & & & \\
\hline & & \(46.522 .162 \mathrm{E}+05\) & (P 1.311E+04 & \(3.03 \mathrm{E}+00 \mathrm{G}\) \\
\hline \multirow[t]{2}{*}{AM-241} & \(2.1138 \mathrm{E}+04\) & & & \\
\hline & & \(59.542 .114 \mathrm{E}+04\) & (\(1.063 \mathrm{E}+03\) & \(2.27 \mathrm{E}+00 \mathrm{G}\) \\
\hline \multirow[t]{2}{*}{CD-109} & \(2.1522 \mathrm{E}+05\) & & & \\
\hline & & \(88.032 .152 \mathrm{E}+05\) & (9.580E+03 & \(2.36 \mathrm{E}+00 \mathrm{G}\) \\
\hline \multirow[t]{2}{*}{CO-57} & \(7.5984 \mathrm{E}+03\) & & & \\
\hline & & 122.07 7.598E+03 & (\(3.468 \mathrm{E}+02\) & \(2.19 \mathrm{E}+00 \mathrm{G}\) \\
\hline
\end{tabular}

ORTEC g v - i (3263) Env32 G53W4.22 29-SEP-2016 08:12:02 Page
ARS Spectrum name: ARS03099.An1

ORTEC g v - i (3263) Env32 G53W4.22 29-SEP-2016 08:12:02 Page 5 ARS Spectrum name: ARS03099.An1

C - Charged Particle Reaction
M - No MDA Calculation
R - Coincidence Corrected
H - Halflife limit exceeded

K - Key Line
A - Not in Average
C - Coincidence Peak
\begin{tabular}{|c|c|c|c|c|c|}
\hline *****
Nuclide & ```
S U M M A R Y
 Time of Count
 Activity
 pCi/g
``` & O F N U C L I Time Corrected Activity \(\mathrm{pCi} / \mathrm{g}\) & D E S I N Uncertainty Counting \(\mathrm{pCi} / \mathrm{g}\) & ```
    S A M P L E
1 Sigma
    Total
        pCi/g
``` & \[
\begin{aligned}
& \text { MDA } \\
& \mathrm{pCi} / \mathrm{g}
\end{aligned}
\] \\
\hline PB-210 & \(2.1515 \mathrm{E}+05\) & \(2.1623 \mathrm{E}+05\) & \(6.5595 \mathrm{E}+03\) & \(1.2374 \mathrm{E}+04\) & \(1.311 \mathrm{E}+04\) \\
\hline AM-241 & \(2.1133 \mathrm{E}+04\) & \(2.1138 \mathrm{E}+04\) & \(4.7973 \mathrm{E}+02\) & \(9.7911 \mathrm{E}+02\) & \(1.063 \mathrm{E}+03\) \\
\hline CD-109 & \(1.9708 \mathrm{E}+05\) & \(2.1522 \mathrm{E}+05\) & \(5.0888 \mathrm{E}+03\) & \(9.8644 \mathrm{E}+03\) & 9.580E+03 \\
\hline CO-57 & \(6.5410 \mathrm{E}+03\) & \(7.5984 \mathrm{E}+03\) & \(1.6625 \mathrm{E}+02\) & \(3.0654 \mathrm{E}+02\) & \(3.468 \mathrm{E}+02\) \\
\hline TE-123M & \(7.6974 \mathrm{E}+03\) & \(1.0817 \mathrm{E}+04\) & \(2.3569 \mathrm{E}+02\) & \(4.4155 \mathrm{E}+02\) & \(4.941 \mathrm{E}+02\) \\
\hline CR-51 & \(5.8658 \mathrm{E}+04\) & \(2.5510 \mathrm{E}+05\) & \(7.8821 \mathrm{E}+03\) & \(1.1482 \mathrm{E}+04\) & \(1.597 \mathrm{E}+04\) \\
\hline SN-113 & \(2.9118 \mathrm{E}+04\) & \(4.1479 \mathrm{E}+04\) & \(5.7329 \mathrm{E}+02\) & \(1.6004 \mathrm{E}+03\) & \(8.060 \mathrm{E}+02\) \\
\hline SR-85 & \(2.5494 \mathrm{E}+04\) & \(4.7774 E+04\) & \(6.2408 \mathrm{E}+02\) & \(1.6310 \mathrm{E}+03\) & \(9.051 \mathrm{E}+02\) \\
\hline CS-137 & \(3.4395 \mathrm{E}+04\) & \(3.4523 \mathrm{E}+04\) & \(4.7294 \mathrm{E}+02\) & \(8.8900 \mathrm{E}+02\) & \(6.163 \mathrm{E}+02\) \\
\hline CO-60 & 3.9093E+04 & 3.9929E+04 & 3.9289E+02 & \(8.8939 \mathrm{E}+02\) & \(5.308 \mathrm{E}+02\) \\
\hline Y-88 & \(5.4827 \mathrm{E}+04\) & \(8.0332 \mathrm{E}+04\) & \(9.0256 \mathrm{E}+02\) & \(2.5088 \mathrm{E}+03\) & 4.262E+02 \\
\hline
\end{tabular}
< - MDA value printed.
A - Activity printed, but activity < MDA.
B - Activity < MDA and failed test.
C - Area < Critical level.
F - Failed fraction or key line test.
H - Halflife limit exceeded
S U M M ARY
Total Activity (29.0 to 1999.5 keV\() \quad 6.892 \mathrm{E}+05 \mathrm{pCi} / \mathrm{g}\)
Total Decayed Activity (29.0 to 1999.5 keV) \(9.7014381 \mathrm{E}+05 \mathrm{pCi} / \mathrm{g}\)
ARS03 Calibration Verification - 250 mL Tuna Can Polynomial
9/29/2016
\({ }_{3130}{ }^{\text {\%odif }}{ }_{1.35 \%}\) PASS
22300 100.00\% NOT MEASURED

\(\begin{array}{ll}\text { 10988 } & 10000 \% \text { NOT MEASSRED } \\ \text { 276650 } \\ \text { 100.00\% NOT MEASURED } \\ \text { 43580 } \\ 100.00 \% & \text { NOT MEASURED }\end{array}\)
 iteria Dif

응
1595-98-4
0.232
02273 0.2223
0.008038 0.01098
0.2766 \(\stackrel{\infty}{\circ}\) 0.05122 \begin{tabular}{l}
\(\circ \circ\) \\
\hline 8.8 \\
0.8 \\
\hline-1
\end{tabular}

Sample description
Batch ID: Calibration Verification
SDG: 250 mL Tuna Can 1595-98-4 polynomial Tech: WJS
Spectrum Filename: C:\User\ARS03100.An1
Acquisition information
Start time: 29-Sep-2016 08:33:47
Live time: 600
Real time: 607
Dead time: 1.14 \%
Detector ID: 1
Detector system
(ARSO3) MCB 129

Calibration
Filename: \(\quad 250 \mathrm{~mL}\) Tuna Can 1891-50-3 polynomial cali b.clb

250mL Tuna Can 1891-50-3 polynomial 9-29-16 WJS

Energy Calibration Created:

29-Sep-2016 07:56:50 Zero offset:
0.196 keV Gain:
\(0.250 \mathrm{keV} / \mathrm{channel}\) Quadratic:
-1.759E-08 keV/Channel^2
Efficiency Calibration Created:

29-Sep-2016 08:00:17
Type:
Polynomial
Uncertainty:
1.295 \%

Coefficients:
\(-0.388262 \quad-4.463417 \quad 0.420417\)
\(-0.041583 \quad 0.001635-0.000025\)
Library Files
Main analysis library: northamericancal.Lib
Library Match Width:
0.500

Peak stripping:
Library based
Analysis parameters
\begin{tabular}{|c|c|}
\hline Analysis engine: & Env32 G53W4.22 \\
\hline Start channel: & 115 (28.95 keV) \\
\hline Stop channel: & 8000 (1999.49 keV) \\
\hline Peak rejection level: & \(40.000 \%\) \\
\hline Peak search sensitivity: & 3 \\
\hline Sample Size: & \(1.0000 \mathrm{E}+00\) \\
\hline Activity scaling factor: & \(1.0000 \mathrm{E}+06 /(1.0000 \mathrm{E}+00\) * \(1.0000 \mathrm{E}+00)\) 1. \(0000 \mathrm{E}+06\) \\
\hline Detection limit method: & Reg. Guide 4.16 Method \\
\hline Random exror: & \(1.0000000 \mathrm{E}+00\) \\
\hline Systematic error: & \(1.0000000 \mathrm{E}+00\) \\
\hline Fraction Limit: & \(60.000 \%\) \\
\hline Background width: & best method (based on spectrum). \\
\hline Half lives decay limit: & 12.000 \\
\hline
\end{tabular}

s - Peak fails shape tests.
D - Peak area deconvoluted.
L - Peak written from unknown list.
C - Area < Critical level.
M - Peak is close to a library peak.

This section based on library: northamericancal.Lib

s - Peak fails shape tests.
D - Peak area deconvoluted.
A Derived peak area.

Nuclide Codes:
T - Thermal Neutron Activation
F - Fast Neutron Activation
I - Fission Product
N - Naturally Occurring Isotope
P - Photon Reaction
C - Charged Particle Reaction
M - No MDA Calculation
R - Coincidence Corrected
H - Halflife limit exceeded

Peak Codes:
G - Gamma Ray
X - X-Ray
P - Positron Decay
S - Single-Escape
D - Double-Escape
K - Key Line
A - Not in Average
C - Coincidence Peak

\begin{tabular}{lrrrrrr}
SN-113 \#A & \(1.2114 \mathrm{E}+01\) & \(>12\) Halflives & \(1.0119 \mathrm{E}+02\) & \(1.0120 \mathrm{E}+02\) & \(3.413 \mathrm{E}+02\) \\
\(\mathrm{SR}-85\) & \#A & \(2.0260 \mathrm{E}+01\) & \(>12\) Halflives & \(7.4748 \mathrm{E}+01\) & \(7.4751 \mathrm{E}+01\) & \(2.519 \mathrm{E}+02\) \\
\(\mathrm{CS}-137\) & \(3.3076 \mathrm{E}+04\) & \(3.6485 \mathrm{E}+04\) & \(4.1622 \mathrm{E}+02\) & \(8.9785 \mathrm{E}+02\) & \(3.137 \mathrm{E}+02\) \\
\(\mathrm{CO}-60\) & & \(2.3297 \mathrm{E}+04\) & \(4.0717 \mathrm{E}+04\) & \(4.2451 \mathrm{E}+02\) & \(9.1774 \mathrm{E}+02\) & \(3.913 \mathrm{E}+02\) \\
\(\mathrm{Y}-88\) & \#A & \(-1.9474 \mathrm{E}+00\) & \(>12\) Halflives & \(8.5830 \mathrm{E}+01\) & \(8.5830 \mathrm{E}+01\) & \(1.434 \mathrm{E}+02\)
\end{tabular}
\# - All peaks for activity calculation had bad shape.
* - Activity omitted from total
\& - Activity omitted from total and all peaks had bad shape.
< - MDA value printed.
A - Activity printed, but activity < MDA.
B - Activity < MDA and failed test.
C - Area < Critical level.
F - Failed fraction or key line test.
H - Halflife limit exceeded

Total Activity (29.0 to 1999.5 keV) \(2.998 \mathrm{E}+05 \mathrm{pCi} / \mathrm{g}\)
Total Decayed Activity (29.0 to 1999.5 keV\() 5.5743175 \mathrm{E}+05 \mathrm{pCi} / \mathrm{g}\)

\title{
Calibration Data from file: 250 mL Tuna Can ITSI.CIb \\ Energy Calibration Date: 11/25/2014 Time: 08:56:23 \\ Efficlency Calibration Date: 11/25/2014 Time: 10:50:52
}

Calibration Description:
250 mL Tuna Can \(1.5 \mathrm{~g} / \mathrm{cc}\) 1748-90-1 BZF 11-25-14

Efficiency Calibration Fit
Polynomial Uncertainty \(=1.5201 \%\)
Coefficients:
\(\begin{array}{lllllll}-0.306766 & -4.512900 & 0.474502 & -0.050620 & 0.002132 & -0.000033\end{array}\)
\begin{tabular}{rrrr}
\begin{tabular}{c}
Efficiency \\
Energy
\end{tabular} & \begin{tabular}{c}
Table \\
Efficiency
\end{tabular} & Fit & Delta \\
\hdashline 46.52 & \(2.7277 \mathrm{E}-002\) & \(2.7230 \mathrm{E}-002\) & \(0.17 \%\) \\
59.54 & \(3.4153 \mathrm{E}-002\) & \(3.4317 \mathrm{E}-002\) & \(-0.48 \%\) \\
88.03 & \(4.5357 \mathrm{E}-002\) & \(4.4717 \mathrm{E}-002\) & \(1.41 \%\) \\
122.07 & \(4.7290 \mathrm{E}-002\) & \(4.7970 \mathrm{E}-002\) & \(-1.44 \%\) \\
320.07 & \(2.8227 \mathrm{E}-002\) & \(2.8415 \mathrm{E}-002\) & \(-0.66 \%\) \\
391.69 & \(2.4573 \mathrm{E}-002\) & \(2.4295 \mathrm{E}-002\) & \(1.13 \%\) \\
513.99 & \(1.9414 \mathrm{E}-002\) & \(1.9766 \mathrm{E}-002\) & \(-1.81 \%\) \\
661.66 & \(1.7460 \mathrm{E}-002\) & \(1.6454 \mathrm{E}-002\) & \(5.76 \%\) \\
898.02 & \(1.2982 \mathrm{E}-002\) & \(1.3302 \mathrm{E}-002\) & \(-2.46 \%\) \\
1173.24 & \(1.0871 \mathrm{E}-002\) & \(1.1066 \mathrm{E}-002\) & \(-1.80 \%\) \\
1332.50 & \(9.9745 \mathrm{E}-003\) & \(1.0121 \mathrm{E}-002\) & \(-1.46 \%\) \\
1836.01 & \(8.1120 \mathrm{E}-003\) & \(7.9677 \mathrm{E}-003\) & \(1.78 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Isotope & Energy & Pct & Halflife & Activity & GPS & Error & & Date \& Tim \\
\hline Pb-210 & 46.52 & 4.00 & \(7.45 E+003\) & 0.21 & 315.68 & 4. 10\% & 10/1/2014 & 14:00:00 \\
\hline Am-241 & 59.54 & 36.30 & \(1.58 \mathrm{E}+005\) & 0.02 & 283.80 & 3.10\% & 10/1/2014 & 14:00:00 \\
\hline Cd-109 & 88.03 & 3.61 & \(4.36 \mathrm{E}+002\) & 0.20 & 272.35 & 3.10\% & 10/1/2014 & 14:00:00 \\
\hline Co-57 & 122.07 & 85.60 & \(2.72 \mathrm{E}+002\) & 0.01 & 234.18 & 3.10\% & 10/1/2014 & 14:00:00 \\
\hline \(\mathrm{Te}-123 \mathrm{M}\) & 159.00 & 83.50 & 1.20E+002 & 0.01 & 329.34 & \(3.10 \%\) & 10/1/2014 & 14:00:00 \\
\hline Cr-51 & 320.07 & 9.83 & 2.77E+001 & 0.25 & 915.46 & 3.00\% & 10/1/2014 & 14:00:00 \\
\hline Sn-113 & 391.69 & 64.16 & 1.15E+002 & 0.04 & 848.44 & 3.00\% & 10/1/2014 & 14:00:00 \\
\hline Sr-85 & 513.99 & 99.28 & \(6.47 \mathrm{E}+001\) & 0.05 & 1677.99 & 3.00\% & 10/1/2014 & 14:00:00 \\
\hline Cs-137 & 661.66 & 85.21 & 1.10E+004 & 0.03 & 999.74 & 3.10\% & 10/1/2014 & 14:00:00 \\
\hline Y-88 & 898.02 & 95.00 & 1.07E+002 & 0.07 & 2578.96 & 3.00\% & 10/1/2014 & 14:00:00 \\
\hline Co-60 & 1173.24 & 99.90 & \(1.93 \mathrm{E}+003\) & 0.04 & 1465.58 & 3.00\% & 10/1/2014 & 14:00:00 \\
\hline Co-60 & 1332.50 & 99.98 & \(1.93 \mathrm{E}+003\) & 0.04 & 1466.79 & 3.00\% & 10/1/2014 & 14:00:00 \\
\hline Y-88 & 1836.01 & 99.35 & \(1.07 \mathrm{E}+002\) & 0.07 & 2697.04 & 3.00\% & 10/1/2014 & 14:00:00 \\
\hline
\end{tabular}

ORTEC g v - i (3263) Env32 G53W4.24 6/9/2015 11:19:37 American Radiation Services Spectrum name: ARs05302. AnI

Sample description
250mL Tuna Can 1748-90-1

Spectrum Filename: C:\User \(\backslash\) ARCHIVES \(\backslash 4-21-14\) TO 1-2-15\ARS05302.An1
Acquisition information
\begin{tabular}{lcl}
Start time: & \(11 / 25 / 2014\) & \(12: 06: 19\) \\
Live time: & 600 \\
Real time: & 618 \\
Dead time: & \(2.84 \%\) & \\
Detector ID: & 37
\end{tabular}

Detector system
(ARS05) MCB 338

Calibration
Filename: \(\quad 250 \mathrm{~mL}\) Tuna Can ITSI.Clb
250mL Tuna Can 1.5g/cc 1748-90-1 BZF 11-25-14

Energy Calibration
Created:
Zero offset: Gain:

11/25/2014 08:56:23
0.256 keV
\(0.250 \mathrm{keV} / \mathrm{channel}\)
Quadratic:
Efficiency Calibration
created:
Type:
Uncertainty:
Coefficients:
\begin{tabular}{lrr}
\(11 / 25 / 2014\) & \(10: 50: 52\) & \\
Polynomial & & \\
\(1.520 \%\) & & \\
-0.306766 & -4.512900 & 0.474502 \\
-0.050620 & 0.002132 & -0.000033
\end{tabular}

Library Files
Main analysis library: northamericancal. Lib Libraxy Match Width:
" Peak stripping:
0.500

Library based
Analysis parameters
\begin{tabular}{|c|c|}
\hline Analysis engine: & Env32 G53W4.24 \\
\hline Start channel: & 0 (0.26 keV) \\
\hline Stop channel: & 8000 (1998.49 keV) \\
\hline Peak rejection level: & 40.000\% \\
\hline Peak search sensitivity: & 3 \\
\hline Sample Size: & \(1.0000 \mathrm{E}+00\) \\
\hline Activity scaling factor: & \(1.0000 \mathrm{E}+06 /(1.0000 \mathrm{E}+00 * 1.0000 \mathrm{E}+00)\) \\
\hline & \(2.0000 \mathrm{E}+06\) \\
\hline Detection limit method: & Reg. Guide 4.16 Method \\
\hline Random errox: & \(1.0000000 \mathrm{E}+00\) \\
\hline Systematic error: & \(1.0000000 \mathrm{E}+00\) \\
\hline Fraction Limit: & \(60.000 \%\) \\
\hline Background width: & best method (based on spectrum) \\
\hline Half lives decay limit: & 12.000 \\
\hline
\end{tabular}

ORTEC g v - i (3263) Env32 G53W4.24 6/9/2015 11:19:37
American Radiation Services Spectrum name: ARS05302.An1
\begin{tabular}{lc}
Activity range factor: & 2.000 \\
Min. step backg, energy & 0.000 \\
Multiglet shift channel & 2.000 \\
& \\
Corrections & Stat \\
Decay correct to date: & YES \\
Decay during acquisition: & NO \\
Decay during collection: & NO \\
True coincidence correction: & NO \\
Peaked background correction: & YES \\
& \\
& \\
Absorption (Internal): & NO \\
Geometry correction: & NO \\
Random summing: & NO
\end{tabular}
total peaks alloc. 13 cutoff 20.00000 :
Energy Calibxation
Normalized diff: 0.0192

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 20.57 & 400. & 7.97 & 0.75 & 1.354E-02 & & & & \\
\hline 22.16 & 1224. & 4.32 & 0.75 & \(1.438 \mathrm{E}-02\) & & & & \\
\hline 24.89 & 936. & 6.28 & 0.76 & 1.583E-02 & & & & \\
\hline 27.55 & 401. & 12.74 & 0.76 & \(1.723 \mathrm{E}-02\) & & & & \\
\hline 31.82 & 248. & 27.73 & 0.63 & 1.951E-02 & & & & \\
\hline 46.49 & 5368. & 2.29 & 0.76 & 2.726E-02 & 46.52 & 4.000 & 2.226E+05 & PB210 \\
\hline 59.52 & 5948 & 2.21 & 0.75 & 3.431E-02 & 59.54 & 36.300 & 2. \(151 \mathrm{E}+04\) & AM241 \\
\hline 88.04 & 6773 & 1.96 & 0.81 & 4.472E-02 & 88.03 & 3.610 & \(2.062 \mathrm{E}+05\) & CD109 \\
\hline 122.10 & 5899. & 2.41 & 0.86 & 4.797E-02 & 122.07 & 85.600 & \(7.442 \mathrm{E}+03\) & C057 \\
\hline 136.51 & 741. & 11.36 & 0.97 & 4.725E-02 & & & & \\
\hline 158.99 & 6021. & 2.14 & 0.92 & 4.500E-02 & 159.00 & 83.500 & 9.920E+03 & TE123M \\
\hline 184.88 & 179. & 39.49 & 0.52 & 4.180E-02 & & & & \\
\hline 255.21 & 486. & 15.75 & 1.24 & 3.375E-02 & & & & \\
\hline 320.10 & 3810. & 3.03 & 1.10 & 2.841E-02 & 320.07 & 9.830 & \(2.429 \mathrm{E}+05\) & CR51 \\
\hline 391.70 & 9051. & 1.31 & 1.12 & 2.429E-02 & 391.69 & 64.160 & \(3.641 \mathrm{E}+04\) & SN113 \\
\hline 513.98 & 11162. & 1.22 & 1.23 & 1.977E-02 & 513.99 & 99.280 & \(4.613 \mathrm{E}+04\) & SR85 \\
\hline 519.30 & 152. & 25.40 & 0.38 & 1.962E-02 & & & & \\
\hline 661.67 & 10518. & 1.16 & 1.39 & 1.645E-02 & 661.66 & 85.210 & \(3.391 E+04\) & CS137 \\
\hline 898.09 & 14005. & 0.96 & 1.63 & \(1.330 \mathrm{E}-02\) & 898.02 & 95.000 & \(7.133 \mathrm{E}+04\) & Y88 \\
\hline 1173.26 & 9482 . & 1.16 & 1.92 & 1.107E-02 & 1173.24 & 99.900 & \(3.941 \mathrm{E}+04\) & C060 \\
\hline 1332.54 & 8562. & 1.29 & 2.01 & 1.012E-02 & 1332.50 & 99.982 & \(3.887 \mathrm{E}+04\) & C060 \\
\hline 1836.03 & 9130. & 1.07 & 2.56 & 7.968E-03 & 1836.01 & 99.350 & \(7.423 \mathrm{E}+04\) & Y88 \\
\hline
\end{tabular}
************ U N I D E N T I F I E D
Peak Centroid Background Net Area Channel Energy Counts Counts

\begin{tabular}{rrrllllll}
\hline 81.26 & 20.52 & 406. & 304. & 0.507 & 21.94 & 0.750 & MO-99 & D \\
87.61 & 22.10 & 1061. & 950. & 1.584 & 11.66 & 0.752 & \(\mathrm{RH}-106\) & D \\
98.41 & 24.84 & 1743. & 945. & 1.575 & 17.39 & 1.344 & \(\mathrm{AG}-110 \mathrm{M}\) & s \\
109.05 & 27.50 & 1160. & 350. & 0.583 & 33.53 & 0.655 & \(\mathrm{SB}-124\) & \\
126.36 & 31.82 & 1494. & 248. & 0.413 & 55.46 & 0.628 & \(\mathrm{XE}-138\) & s \\
545.46 & 136.51 & 2004. & 741. & 1.235 & 22.73 & 0.970 & \(\mathrm{CO}-57\) & \\
739.12 & 184.88 & 1606. & 179. & 0.298 & 78.98 & 0.521 & \(\mathrm{TH}-234\) & s
\end{tabular}

ORTEC g v - i (3263) Env32 G53W4.24 6/9/2015 11:19:37
American Radiation Services Spectrum name: ARS05302.AnI
\begin{tabular}{rrrrrrrr}
Channel & Energy & Background. & Net area & Cnts/sec & Uncert & FWHM Suspected \\
1020.68 & 255.21 & 1532. & 486. & 0.809 & 31.51 & 1.243 & SN-113 \\
2077.94 & 519.30 & 424. & 152. & 0.254 & 50.80 & 0.383 & s
\end{tabular}
s - Peak fails shape tests.
D - Peak area deconvoluted.
L - Peak written from unknown list.
C - Area < Critical level.

This section based on library: northamericancal.Lib

s - Peak fails shape tests.
D - Peak area deconvoluted.
A Derived peak area.

ORTEC gv-i (3263) Env32 G53W4.24 6/9/2015 11:19:37
American Radiation Services Spectrum name: ARS05302.Anl

ORTEC g v-i (3263) Env32 G53W4.24 6/9/2015 11:19:37
American Radiation Services Spectrum name: ARS05302.AnI
\begin{tabular}{ll}
I - Fission Product & P - Positron Decay \\
N - Naturally Occurring Isotope & S - Single-Escape \\
P - Photon Reaction & D - Double-Escape \\
C - Charged Particle Reaction & K - Key Line \\
M - No MDA Calculation & A - Not in Average \\
R - Coincidence Corrected & C - Coincidence Peak \\
H - Halflife limit exceeded &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Nuclide & ```
S U M M A R Y
 Time of Count
 Activity
 pCi/g
``` & ```
O F NUCLI
Time Corrected
    Activity
        pCi/g
``` & D ES I N Uncertainty Counting pCi/g & ```
 S A M P L E
2 Sigma
 Total
 pCi/g
``` & \[
\begin{aligned}
& \text { MDA } \\
& \quad \mathrm{pCi} / \mathrm{g}
\end{aligned}
\] \\
\hline PB-210 \# & \(2.2145 \mathrm{E}+05\) & \(2.2259 \mathrm{E}+05\) & \(1.0197 \mathrm{E}+04\) & \(2.4221 \mathrm{E}+04\) & \(1.032 \mathrm{E}+04\) \\
\hline AM-241 & \(2.1506 \mathrm{E}+04\) & 2.1512E+04 & \(9.5257 \mathrm{E}+02\) & \(2.0080 \mathrm{E}+03\) & \(9.287 \mathrm{E}+02\) \\
\hline CD-109 & \(1.8897 \mathrm{E}+05\) & \(2.0621 \mathrm{E}+05\) & 8.0651E+03 & \(1.7904 \mathrm{E}+04\) & 7.772E+03 \\
\hline CO-57 & \(6.4712 \mathrm{E}+03\) & \(7.4418 \mathrm{E}+03\) & \(3.5935 \mathrm{E}+02\) & \(6.4654 \mathrm{E}+02\) & \(3.421 E+02\) \\
\hline TE-123M & \(7.2174 \mathrm{E}+03\) & \(9.9197 \mathrm{E}+03\) & \(4.2431 \mathrm{E}+02\) & \(8.7406 \mathrm{E}+02\) & \(3.990 \mathrm{E}+02\) \\
\hline CR-51 & \(6.1619 \mathrm{E}+04\) & \(2.4354 \mathrm{E}+05\) & \(1.5151 \mathrm{E}+04\) & \(2.2584 \mathrm{E}+04\) & \(1.389 \mathrm{E}+04\) \\
\hline SN-113 & \(2.6155 \mathrm{E}+04\) & 3.6409E+04 & \(9.5328 \mathrm{E}+02\) & \(2.8215 \mathrm{E}+03\) & \(6.835 \mathrm{E}+02\) \\
\hline SR-85 & \(2.5621 \mathrm{E}+04\) & 4.6133E+04 & \(1.1245 \mathrm{E}+03\) & \(3.0677 \mathrm{E}+03\) & \(7.788 \mathrm{E}+02\) \\
\hline CS-137 & \(3.3791 \mathrm{E}+04\) & \(3.3908 \mathrm{E}+04\) & \(7.8689 \mathrm{E}+02\) & \(1.5809 \mathrm{E}+03\) & \(4.981 \mathrm{E}+02\) \\
\hline CO-60 & \(3.8373 \mathrm{E}+04\) & \(3.9140 \mathrm{E}+04\) & \(6.7889 \mathrm{E}+02\) & \(1.6118 \mathrm{E}+03\) & \(4.585 \mathrm{E}+02\) \\
\hline Y-88 & \(5.1951 \mathrm{E}+04\) & \(7.4234 \mathrm{E}+04\) & \(1.5898 \mathrm{E}+03\) & \(4.6469 \mathrm{E}+03\) & \(2.937 \mathrm{E}+02\) \\
\hline
\end{tabular}
```

 # - All peaks for activity calculation had bad shape.
 * - Activity omitted from total
 & - Activity omitted from total and all peaks had bad shape.
 < - MDA value printed.
 A - Activity printed, but activity < MDA.
 B - Activity < MDA and failed test.
 C - Area < Critical level.
 F - Failed fraction or key line test.
 H - Halflife limit exceeded
 --
Total Activity (24.7 to 1998.5 keV) 6.831E+05 pCi/g
Total Decayed Activity (24.7 to 1998.5 keV) 9.4103131E+05 pCi/g

```


Calibration Data from file: 250 mL Tuna Can 1748-90-1 calib poly. Clb
Energy Calibration Date: 06/10/15 Time: 12:26:28
Efficiency Calibration Date: 06/10/15 Time: 12:34:11
Calibration Description:
250mL Tuna Can 1748-90-1 Polynomial WJS 6-10-15

Energy Calibration Fit
Energy \(=0.1924+0.249984 *\) Channel \(-2.86432 \mathrm{e}-008 *\) Channel**2
FWHM \((c h)=3.5645+0.000971 * C h a n n e 1-1.57333 e-008 *\) Channel**2
Energy/FWHM Table
\begin{tabular}{rrrrrrr} 
Channel & Energy (keV) & Fit (keV) & Delta & FWHM (keV) & Fit (keV) & Delta \\
\hdashline 185.55 & 46.52 & 46.58 & \(-0.12 \%\) & 0.92 & 0.94 & \(-2.16 \%\) \\
237.55 & 59.54 & 59.57 & \(-0.06 \%\) & 0.95 & 0.95 & \(-0.06 \%\) \\
351.53 & 88.03 & 88.07 & \(-0.04 \%\) & 1.00 & 0.98 & \(1.96 \%\) \\
487.63 & 122.07 & 122.08 & \(-0.01 \%\) & 1.00 & 1.01 & \(-0.72 \%\) \\
635.30 & 159.00 & 159.00 & \(0.00 \%\) & 1.07 & 1.04 & \(2.11 \%\) \\
1565.65 & 391.69 & 391.51 & \(0.05 \%\) & 1.27 & 1.26 & \(0.91 \%\) \\
2055.47 & 513.99 & 513.91 & \(0.02 \%\) & 1.33 & 1.37 & \(-2.94 \%\) \\
2646.92 & 661.66 & 661.68 & \(-0.00 \%\) & 1.50 & 1.51 & \(-0.63 \%\) \\
3593.17 & 898.02 & 898.06 & \(-0.00 \%\) & 1.73 & 1.71 & \(1.24 \%\) \\
4695.26 & 1173.24 & 1173.30 & \(-0.01 \%\) & 1.94 & 1.94 & \(0.11 \%\) \\
5333.13 & 1332.50 & 1332.57 & \(-0.01 \%\) & 2.07 & 2.07 & \(0.13 \%\) \\
7349.69 & 1836.01 & 1835.95 & \(0.00 \%\) & 2.45 & 2.46 & \(-0.16 \%\)
\end{tabular}

Efficiency Calibration Fit
Polynomial Uncertainty \(=1.5812\) \%
\(\quad\) Coefficients:
\(\quad-0.368747-4.2573290 .454276-0.0476220 .001987-0.000031\)
\begin{tabular}{|c|c|c|c|}
\hline Efficiency Energy & Efficiency & Fit & Delta \\
\hline 46.52 & 3.2817E-002 & 3.2771E-002 & \(0.14 \%\) \\
\hline 59.54 & 4.2932E-002 & 4.3099E-002 & -0.39\% \\
\hline 88.03 & 5.6756E-002 & 5.6130E-002 & 1.10\% \\
\hline 122.07 & 5.8706E-002 & \(5.9331 \mathrm{E}-002\) & -1.06\% \\
\hline 391.69 & 2.9253E-002 & 2.9580E-002 & -1.12\% \\
\hline 513.99 & 2.4000E-002 & 2.4014E-002 & -0.06\% \\
\hline 661.66 & 2.0913E-002 & \(1.9904 \mathrm{E}-002\) & 4.82\% \\
\hline 1173.24 & 1.2688E-002 & 1.3087E-002 & -3.14\% \\
\hline 1332.50 & 1.1566E-002 & 1.1870E-002 & -2.63\% \\
\hline 1836.01 & 9.3161E-003 & 9.0886E-003 & 2.44\% \\
\hline
\end{tabular}

Calibration Certificate Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Isotope & Energy & Pct & Halflife & Activity & GPS & Error & & Date \& Time \\
\hline \(\mathrm{Pb}-210\) & 46.52 & 4.00 & \(7.45 \mathrm{E}+003\) & 0.21 & 315.68 & 4.10\% & 10/01/14 & 14:00:00 \\
\hline Am-241 & 59.54 & 36.30 & 1.58E+005 & 0.02 & 283.80 & 3.10\% & 10/01/14 & 14:00:00 \\
\hline Cd-109 & 88.03 & 3.61 & \(4.36 \mathrm{E}+002\) & 0.20 & 272.35 & 3.10\% & 10/01/14 & 14:00:00 \\
\hline Co-57 & 122.07 & 85.60 & 2.72E+002 & 0.01 & 234.18 & 3.10\% & 10/01/14 & 14:00:00 \\
\hline Te-123M & 159.00 & 83.50 & 1.20E+002 & 0.01 & 329.34 & 3.10\% & 10/01/14 & 14:00:00 \\
\hline Cr-51 & 320.07 & 9.83 & \(2.77 E+001\) & 0.25 & 915.46 & 3.00\% & 10/01/14 & 14:00:00 \\
\hline Sn-113 & 391.69 & 64.16 & \(1.15 E+002\) & 0.04 & 848.44 & 3.00\% & 10/01/14 & 14:00:00 \\
\hline Sr-85 & 513.99 & 99.28 & \(6.47 E+001\) & 0.05 & 1677.99 & 3.00\% & 10/01/14 & 14:00:00 \\
\hline Cs-137 & 661.66 & 85.21 & \(1.10 \pm+004\) & 0.03 & 999.74 & 3.10\% & 10/01/14 & 14:00:00 \\
\hline Y-88 & 898.02 & 95.00 & \(1.07 E+002\) & 0.07 & 2578.96 & 3.00\% & 10/01/14 & 14:00:00 \\
\hline Co-60 & 1173.24 & 99.90 & \(1.93 E+003\) & 0.04 & 1465.58 & 3.00\% & 10/01/14 & 14:00:00 \\
\hline Co-60 & 1332.50 & 99.98 & \(1.93 \mathrm{E}+003\) & 0.04 & 1466.79 & \(3.00 \%\) & 10/01/14 & 14:00:00 \\
\hline Y-88 & 1836.01 & 99.35 & \(1.07 \mathrm{E}+002\) & 0.07 & 2697.04 & 3.00\% & 10/01/14 & 14:00:00 \\
\hline
\end{tabular}

ORTEC GV - i (3263) Env32 G53W4.22 10-JUN-2015 12:47:02 Page

Sample description Batch ID: 250 mL Tuna Can Polynomial CalVer SDG: 1748-90-1 Tech: wJS

Spectrum Filename: C:\User\ARS06665.An1
Acquisition information Start time:

10-Jun-2015 12:36:35
Live time:
600
Real time:
618
Dead time: Detector ID:

Detector system
(ARSO6) MCB 130

Calibration
Filename: \(\quad 250 \mathrm{~mL}\) Tuna Can 1748-90-1 calib poly.Clb
250mL Tuna Can 1748-90-1 Polynomial WJS 6-10-15

Energy Calibration Created:

10-Jun-2015 12:26:28
Zero offset:
0.192 keV

Gain:
\(0.250 \mathrm{keV} /\) Channel
Quadratic:
\(-2.864 \mathrm{E}-08 \mathrm{keV} / \mathrm{channel}^{\wedge} 2\)
Efficiency Calibration
Created:
Type:
Uncertainty:
Coefficients:
\[
\begin{array}{lrr}
\text { lo-Jun-2015 } & 12: 34: 11 & \\
\text { Polynomial } & & \\
1.581 \% & & \\
-0.368747 & -4.257329 & 0.454276 \\
-0.047622 & 0.001987 & -0.000031
\end{array}
\]

Library Files
Main analysis library: northamericancal.Lib
Library Match Width:
Peak stripping:
0.500

Library based
Analysis parameters
\begin{tabular}{|c|c|c|}
\hline Analysis engine: & Env32 G53W4.22 & \\
\hline Start channel: & 10 ( 2.69 keV ) & \\
\hline Stop channel: & 8000 ( 1998.23 keV ) & \\
\hline Peak rejection level: & \(40.000 \%\) & \\
\hline Peak search sensitivity: & 3 & \\
\hline Sample Size: & \(1.0000 \mathrm{E}+00\) & \\
\hline Activity scaling factor: & \[
1.0000 \mathrm{E}+06 /(1.0000 \mathrm{E}+00 *
\]
\[
1.0000 \mathrm{E}+06
\] & \(1.0000 \mathrm{E}+00)\) \\
\hline Detection limit method: & Reg. Guide 4.16 Method & \\
\hline Random error: & \(1.0000000 \mathrm{E}+00\) & \\
\hline Systematic error: & \(1.0000000 \mathrm{E}+00\) & \\
\hline Fraction Limit: & 50.000\% & \\
\hline Background width: & best method (based on spec & rum) . \\
\hline Half lives decay limit: & 12.000 & \\
\hline
\end{tabular}

ORTEC. g v - i (3263) Env32 G53W4.22 10-JUN-2015 12:47:02 Page 2 American Radiation Services Spectrum name: ARS06665.Anl
\begin{tabular}{ll} 
Activity range factor: & 2.000 \\
Min. step backg. energy & 0.000 \\
Multiplet shift channel & 2.000
\end{tabular}
\begin{tabular}{cll} 
Corrections & Status & Comments \\
Decay correct to date: & YES & \(01-\) Oct-2014 14:00:00 \\
Decay during acquisition: & NO & \\
Decay during collection: & NO & \\
True coincidence correction: & NO & \\
Peaked background correction: & YES & pbc DOE. Pbc \\
& & 11-Aug-2014 08:00:33 \\
Absorption (Internal): & NO & \\
Geometry correction: & NO & \\
Random summing: & NO &
\end{tabular}
total peaks alloc. 12 cutoff 20.00000 \%
Energy Calibration
Normalized diff: 0.0427

\begin{tabular}{rrrrrrrrrl}
\hline 13.32 & 219. & 15.97 & 0.96 & \(7.026 \mathrm{E}-03\) & & & & & \\
22.23 & 665. & 7.23 & 0.91 & \(1.392 \mathrm{E}-02\) & & & & \\
25.03 & 666. & 7.60 & 0.92 & \(1.610 \mathrm{E}-02\) & & & & \\
32.12 & 427. & 15.77 & 1.22 & \(2.163 \mathrm{E}-02\) & & & \\
36.53 & 268. & 25.92 & 1.17 & \(2.505 \mathrm{E}-02\) & & & \\
46.58 & 6015. & 2.03 & 0.92 & \(3.284 \mathrm{E}-02\) & 46.52 & 4.000 & \(2.113 \mathrm{E}+05\) & PB210 \\
59.59 & 7010. & 2.16 & 0.95 & \(4.313 \mathrm{E}-02\) & 59.54 & 36.300 & \(2.020 \mathrm{E}+04\) & AM241 \\
88.05 & 5934. & 2.14 & 0.98 & \(5.613 \mathrm{E}-02\) & 88.03 & 3.610 & \(1.969 \mathrm{E}+05\) & CD109 \\
122.05 & 4226. & 2.44 & 1.04 & \(5.933 \mathrm{E}-02\) & 122.07 & 85.600 & \(7.116 \mathrm{E}+03\) & CO57 \\
136.55 & 610. & 11.08 & 1.08 & \(5.819 \mathrm{E}-02\) & & & & \\
159.00 & 2491. & 3.57 & 1.01 & \(5.519 \mathrm{E}-02\) & 159.00 & 83.500 & \(1.048 \mathrm{E}+04\) & TE123M \\
254.62 & 184. & 31.51 & 0.81 & \(4.123 \mathrm{E}-02\) & & & & \\
391.43 & 3185. & 3.11 & 1.34 & \(2.960 \mathrm{E}-02\) & 391.69 & 64.160 & \(3.447 \mathrm{E}+04\) & SN113 \\
514.01 & 1478. & 5.26 & 1.46 & \(2.401 \mathrm{E}-02\) & 513.99 & 99.280 & \(4.146 \mathrm{E}+04\) & SR85 \\
527.26 & 133. & 30.35 & 0.75 & \(2.356 \mathrm{E}-02\) & & & & & \\
583.20 & 66. & 35.65 & 1.07 & \(2.185 \mathrm{E}-02\) & & & & & \\
622.46 & 111. & 37.66 & 0.53 & \(2.082 \mathrm{E}-02\) & & & & \\
661.68 & 12020. & 1.14 & 1.50 & \(1.990 \mathrm{E}-02\) & 661.66 & 85.210 & \(3.243 \mathrm{E}+04\) & CS137 \\
898.08 & 4708. & 2.28 & 1.69 & \(1.594 \mathrm{E}-02\) & 898.02 & 95.000 & \(7.200 \mathrm{E}+04\) & Y 88 \\
1173.26 & 10239. & 1.14 & 1.94 & \(1.309 \mathrm{E}-02\) & 1173.24 & 99.900 & \(3.863 \mathrm{E}+04\) & CO60 \\
1332.59 & 9189. & 1.13 & 2.03 & \(1.187 \mathrm{E}-02\) & 1332.50 & 99.982 & \(3.819 \mathrm{E}+04\) & CO60 \\
1835.93 & 2927. & 2.00 & 2.53 & \(9.089 \mathrm{E}-03\) & 1836.01 & 99.350 & \(7.507 \mathrm{E}+04\) & Y 88
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
Channel
\end{tabular} & troid Energy & Background Counts & Net Area Counts & \[
\begin{aligned}
& \text { Intensity } \\
& \text { Cts/Sec } 2
\end{aligned}
\] & \begin{tabular}{l}
Uncert \\
Sigma \%
\end{tabular} & FWHM keV & Suspect Nuclide & \\
\hline 52.52 & 13.32 & 356. & 219. & 0.366 & 31.94 & 0.957 & SE-75 & \\
\hline 88.01 & 22.19 & 842. & 641. & 1.068 & 17.56 & 0.888 & RH-106 & \\
\hline 99.24 & 25.00 & 947. & 752. & I. 254 & 16.28 & 1.048 & RH-106 & \(s\) \\
\hline 127.71 & 32.12 & 1120. & 427. & 0.712 & 31.54 & 1.220 & J-131 & s \\
\hline 145.36 & 36.53 & 1308. & 268. & 0.447 & 51.85 & 1.165 & XE-138 & s \\
\hline 545.50 & 136.55 & 1132 & 610. & 1.018 & 22.16 & 1.083 & CO-57 & \\
\hline 1017.90 & 254.62 & 902. & 184 & 0.306 & 63.01 & 0.814 & TH-227 & \(s\) \\
\hline 2108.93 & 527.26 & 315. & 133. & 0.222 & 60.70 & 0.748 & - & s \\
\hline 2332.79 & 583.20 & 195. & 66. & 0.110 & 71.29 & 1.070 & TL-208 & 5 \\
\hline
\end{tabular}

ORTEC g v-i (3263) Env32 G53W4.22 10-JUN-2015 12:47:02 Page 3 American Radiation Services Spectrum name: ARS06665.Anl
\begin{tabular}{rrrrrrrr} 
Channel & Energy Background & Net area & Cnts/sec & Uncert & FWHM Suspected \\
2489.95 & 622.46 & 325. & i11. & 0.184 & 75.33 & \(0.528 \mathrm{RH}-106\) & \(\mathbf{s}\)
\end{tabular}
s - Peak fails shape tests.
D - Peak area deconvoluted.
L - Peak written from unknown list.
C - Area < Critical level.

This section based on library: northamericancal.Lib


\footnotetext{
s - Peak fails shape tests.
D - Peak area deconvoluted.
A Derived peak area.
}


ORTEC GV-i (3263) Env32 G53W4.22 10-JUN-2015 12:47:02 Page American Radiation Services Spectrum name: ARS06665.Anl


ORTEC g v. - i (3263) Env32
G53W4.22 10-JUN-2015 12:47:02 Page

C - Charged Particle Reaction
M - No MDA Calculation
R - Coincidence Corrected
H - Halflife limit exceeded

K - Key Line
A - Not in Average
C - Coincidence Peak
\begin{tabular}{|c|c|c|c|c|c|}
\hline ***** \({ }^{\text {N }}\) Nuclide & ```
S U M M A R Y
    Time of Count
    Activity
        pCi/g
``` & ```
OF NUC L I
Time Corrected
 Activity
 pCi/g
``` & DES IN Uncertainty Counting \(\mathrm{pCi} / \mathrm{g}\) & ```
    S A M P L E
2 Sigma
    Total
        pCi/g
``` & \[
\begin{aligned}
& \mathrm{MDA} \\
& \mathrm{pCi} / \mathrm{g}
\end{aligned}
\] \\
\hline PB-210 & \(2.0645 \mathrm{E}+05\) & \(2.1135 \mathrm{E}+05\) & \(8.5945 \mathrm{E}+03\) & \(2.2564 \mathrm{E}+04\) & \(8.858 \mathrm{E}+03\) \\
\hline AM-241 & \(2.0173 \mathrm{E}+04\) & \(2.0195 E+04\) & \(8.7421 \mathrm{E}+02\) & \(1.8778 \mathrm{E}+03\) & \(7.165 \mathrm{E}+02\) \\
\hline CD-109 & 1.3192E+05 & 1.9691E+05 & \(8.4182 \mathrm{E}+03\) & \(1.7703 \mathrm{E}+04\) & \(7.724 \mathrm{E}+03\) \\
\hline CO-57 & \(3.7481 \mathrm{E}+03\) & \(7.1160 \mathrm{E}+03\) & \(3.4662 \mathrm{E}+02\) & \(6.3628 \mathrm{E}+02\) & \(3.244 \mathrm{E}+02\) \\
\hline TE-123M & \(2.4353 \mathrm{E}+03\) & \(1.0475 \mathrm{E}+04\) & 7.4772E+02 & \(1.1946 \mathrm{E}+03\) & \(7.177 \mathrm{E}+02\) \\
\hline CR-51 \#A & A \(\quad 2.9533 \mathrm{E}+02\) & 1.6155E+05 & \(7.4048 \mathrm{E}+05\) & \(7.4059 \mathrm{E}+05\) & \(1.234 \mathrm{E}+06\) \\
\hline SN-113 & \(7.5589 \mathrm{E}+03\) & \(3.4470 \mathrm{E}+04\) & 2.1428E+03 & \(3.4517 \mathrm{E}+03\) & 1.806E+03 \\
\hline SR-85 & \(2.7925 \mathrm{E}+03\) & \(4.1463 \mathrm{E}+04\) & \(4.3598 \mathrm{E}+03\) & \(5.1155 \mathrm{E}+03\) & \(4.024 E+03\) \\
\hline CS-137 & \(3.1925 \mathrm{E}+04\) & \(3.2434 \mathrm{E}+04\) & \(7.4124 \mathrm{E}+02\) & \(1.6159 \mathrm{E}+03\) & 4.102E+02 \\
\hline CO-60 & \(3.5078 \mathrm{E}+04\) & \(3.8408 \mathrm{E}+04\) & 6.1754E+02 & \(1.7161 \mathrm{E}+03\) & \(3.583 \mathrm{E}+02\) \\
\hline Y -88 & \(1.4756 \mathrm{E}+04\) & \(7.5865 \mathrm{E}+04\) & \(3.0338 \mathrm{E}+03\) & \(5.4257 \mathrm{E}+03\) & \(9.480 \mathrm{E}+02\) \\
\hline
\end{tabular}
\# - All peaks for activity calculation had bad shape.
* - Activity omitted from total
\& - Activity omitted from total and all peaks had bad shape.
< - MDA value printed.
A - Activity printed, but activity < MDA.
B - Activity < MDA and failed test.
C - Area < Critical level.
F - Failed fraction or key line test.
H - Halflife limit exceeded

\section*{Gamma Spectroscopy Log Book Detector Serial Number 38TN31063A}

Date of \(208-74-17\) CE-04

\section*{Gamma Spectroscopy Log Book Detector Serial Number 50-TN22856A}

Page 111 of 200 CE-18

Reviewed By: Initials

Date: \(2-24-17\)

\section*{Gamma Spectroscopy Log Book Detector Serial Number 35TN30943A}

\title{
Radiological Analysis EPA 905.0/SRW-01
}

SDG\# ARS1-17-00216
COC SOLID SAMPLES
Printed: 1/30/2017 10:32 AM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{12}{|l|}{Analysis Batch ID ARS1-B17-00157} \\
\hline & \multicolumn{3}{|l|}{Method} & \multicolumn{2}{|l|}{ARS-032} & Analysis G & \multicolumn{2}{|l|}{GPC-A-012} & Matrix & so & & \\
\hline & \multicolumn{3}{|l|}{Description} & \multicolumn{9}{|l|}{Strontium-90 (Soil, Sludge, Biota, Sediment)} \\
\hline ABatch Sample ID & Type & Blind Isol & Bind & & Blind Iso 3 & SDG & FR & Run & Prep Code & Client ID & Group Name & Lab Deadline \\
\hline ARS1-B17-00157-01 & LCS & B-23127 & & & & & & & & & & \\
\hline ARS1-B17-00157-02 & LCSD & B-23128 & & & & & & & & & & \\
\hline ARS1-B17-00157-03 & MBL & & & & & & & & & & & \\
\hline ARS1-B17-00157-04 & TRG & & & & & ARS1-17-00216 & 001 & 1 & & BB-16L & STD & 02/11/17 \\
\hline ARS1-B17-00157-05 & TRG & & & & & ARS1-17-00216 & 002 & 1 & & BB-18 & STD & 02/11/17 \\
\hline ARS1-B17-00157-06 & TRG & & & & & ARS1-17-00216 & 004 & 1 & & BB-19M & STD & 02/11/17 \\
\hline ARS1-B17-00157-07 & TRG & & & & & ARS1-17-00216 & 008 & 1 & & BB-17 Mud/Sludge & STD & 02/11/17 \\
\hline
\end{tabular}

Calculatious
SCh 2-2-17
Oata Euther
SOR 2-2-17

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 点 & & & & & & & 砍 \\
\hline
\end{tabular}
 Disk Wt 2 （g） H1H g
3
3
菏

\(\frac{y}{2}\)
\(\frac{2}{5}\)
\(\stackrel{\rightharpoonup}{0}\)
\(\frac{0}{0}\)
\(\frac{0}{4}\)

\begin{tabular}{|c|c|c|c|c|}
\hline 은 & \[
\begin{aligned}
& \underset{\sim}{N} \\
& \underset{\sim}{n}
\end{aligned}
\] & \(\stackrel{\sim}{n}\) & & N \\
\hline
\end{tabular}

ARS international
Baton Rouge Laboratory
\begin{tabular}{l}
Procedure Data \\
ABatch Sample ID Client ID \\
ARS1－B17－00157－01 \\
ARS1－B17－00157－02 \\
ARS1－B17－00157－03 \\
ARS1－B17－00157－04 \\
BB－16L \\
ARS1－B17－00157－05 \\
BB－18 \\
ARS1－B17－00157－06 \\
BB－19M \\
ARS1－B17－00157－07 \\
\hline
\end{tabular}

Sr Yield Calculation Sheet B17-00157
SJC

American Radiation Services
Baton Rouge Laboratory

\[
\begin{array}{ll}
n & n \\
0 & 0 \\
N & N \\
n & - \\
N & N \\
0 & 0
\end{array}
\]
\[
\begin{array}{l|l|l|l|l|l}
\hline \text { Blind ID } & \text { ABatch Sample ID } & \text { Blind Group } & \text { Std ID } & \text { Isotope } & \text { Exp Addition } \\
\hline \text { B-23127 } & \text { ARS1-B17-00157-01 } & \text { B-Sr90 } & \text { S-0313 } & \text { Sr-90 } & \text { (} \mathbf{g} \text {) } \\
\hline \text { B-23128 } & \text { ARS } 1-\mathrm{B} 17-00157-02 & \text { B-Sr90 } & \mathrm{S}-0313 & \mathrm{Sr}-90 & 1 \\
\hline
\end{array}
\]
\[
\begin{gathered}
\begin{array}{c}
\text { Expected Value } \\
\text { (pCi/g) } \\
19.41333 \\
19.41333
\end{array} \\
\hline
\end{gathered}
\]
\[
\begin{aligned}
& 1 / g) \\
& 19.39654 \\
& 19.39654
\end{aligned}
\]
\[
\begin{gathered}
\text { Known Value } \\
\text { (pCi) } \\
19.31895 \\
19.30537
\end{gathered}
\]
Printed: 2/2/2017 10:23 AM
Page 1 of 1
\begin{tabular}{|c|c|}
\hline User ID & Mod Date \\
\hline JBYRD & \(01 / 19 / 2017\) \\
\hline JBYRD & \(01 / 19 / 2017\) \\
\hline
\end{tabular}

\begin{tabular}{ccccccc}
Detector ID & Sample ID & Alpha & Beta & Count Time & Voltage & TOD \\
A1 & A1-01 & 58 & 774 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
A2 & A2-01 & 48 & 877 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
A3 & A3-01 & 50 & 784 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
A4 & A4-01 & 37 & 751 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
C1 & C1-01 & 56 & 1060 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
C2 & C2-01 & 39 & 749 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
C3 & C3-01 & 42 & 703 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
C4 & C4-01 & 47 & 771 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
D1 & D1-01 & 25 & 714 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
D2 & D2-01 & 26 & 678 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
D3 & D3-01 & 16 & 672 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
D4 & D4-01 & 20 & 707 & 900 & 1410 & \(1 / 28 / 175: 12\) \\
B1 & B1-01 & 29 & 620 & 900 & 1410 & \(1 / 28 / 175: 13\) \\
B2 & B2-01 & 28 & 644 & 900 & 1410 & \(1 / 28 / 175: 13\) \\
B3 & B3-01 & 21 & 3756 & 900 & 1410 & \(1 / 28 / 175: 13\) \\
B4 & B4-01 & 25 & 847 & 900 & 1410 & \(1 / 28 / 175: 13\)
\end{tabular}
Printed: 2/23/2017 10:38 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.2848 & CPM/DPM & 0.2828 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0019 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3 -sigma value & 0.2905 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.2791 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.2875 & CPM/DPM & 0.2884 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0019 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3-sigma value & 0.2933 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.2816 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services
LB4100-C - ALPHA EFFICIENCY
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.2707 & CPM/DPM & 0.2714 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0024 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.2777 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.2636 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:38 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. & OK \\
\hline & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.2822 & CPM/DPM & 0.2849 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0023 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3-sigma value & 0.2891 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.2753 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services
LB4100－C－ALPHA EFFICIENCY
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & 0 & & & Most recent point outside of the 3－sigma values． & OK \\
\hline Population Size & & Date & 02／01／17 & 8 consecutive most recent points on one side of the mean． & OK \\
\hline Average & 0.3209 & CPM／DPM & 0.3243 & 2 of 3 most recent points above 2 sigma． & OK \\
\hline Standard Deviation & 0.0028 & & & 4 of 5 most recents points beyond the 1 －sigma． & OK \\
\hline +3 －sigma value & 0.3294 & Date & & 7 trending most recent points in a row． & OK \\
\hline － 3 －sigma value & 0.3124 & CPM & & 15 most recent points inside 1 sigma． & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma． & OK \\
\hline
\end{tabular}
LB4100－C－ALPHA EFFICIENCY－DETECTOR D1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{LB4100－C－ALPHA EFFICIENCY－DETECTOR D1} \\
\hline \multicolumn{10}{|l|}{Process Date Range： \(12 / 19 / 16-02 / 01 / 17\)} \\
\hline \multicolumn{10}{|l|}{0.33} \\
\hline \multicolumn{10}{|l|}{0.33
\[
-=\mathrm{UCL}(3 \mathrm{~S})
\]} \\
\hline \multicolumn{10}{|l|}{0.33 － 0.33 ，} \\
\hline \multicolumn{10}{|l|}{0.33} \\
\hline \multicolumn{10}{|l|}{0.32} \\
\hline \multicolumn{10}{|l|}{\[
0.32
\]} \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{\[
0.32
\]} \\
\hline \multicolumn{10}{|l|}{0.31} \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{0.31} \\
\hline 12／18 & 12／23 & 12／28 & 01／02 & 01／07 & 01／12 & 01／17 & 01／22 & 01／27 & 02／01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
 \\
Statistical Process Control
\end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution（Histogram）} \\
\hline & Bin & Frequency & \multicolumn{2}{|l|}{\multirow[t]{9}{*}{}} & \multirow[t]{2}{*}{} & \multirow[t]{9}{*}{\(\frac{3}{3}\)} & \multirow[t]{9}{*}{\[
4
\]} & \multirow[t]{9}{*}{\[
5
\]} \\
\hline & 0.32 & 1 & & & & & & \\
\hline & 0.32 & 3 & & & \multirow[t]{7}{*}{} & & & \\
\hline & 0.32 & 14 & & & & & & \\
\hline & 0.32 & 3 & & & & & & \\
\hline & 0.32 & 4 & & & & & & \\
\hline & More & 5 & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & のつつ & 037 & nつ0 & n3n & non & anam \\
\hline
\end{tabular}
American Radiation Services
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3-sigma values. & OK \\
\hline Population Size & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.3228 & CPM/DPM & 0.3269 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0023 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3-sigma value & 0.3299 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.3158 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{LB4100-C - ALPHA EFFICIENCY - DETECTOR D2} \\
\hline \multicolumn{10}{|l|}{Process Date Range: \(12 / 20 / 16\) - 02/01/17} \\
\hline \multicolumn{10}{|l|}{0.33} \\
\hline \multicolumn{10}{|l|}{0.33 --- UCL (3} \\
\hline \multicolumn{10}{|l|}{0.33} \\
\hline \multicolumn{10}{|l|}{0.33} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\[
0.82
\]}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{0.32} \\
\hline 12/19 & 12/24 & 12/29 & 01/03 & 01/08 & 01/13 & 01/18 & 01/23 & 01/28 & 02/02 \\
\hline
\end{tabular}

\section*{LB4100-C - ALPHA EFFICIENCY}

\footnotetext{
American Radiation Services
Baton Rouge Laboratory
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3-sigma values. & OK \\
\hline Population Size & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.3240 & CPM/DPM & 0.3258 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0021 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.3304 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.3176 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
LB4100-C - ALPHA EFFICIENCY - DETECTOR D3
Process Date Range: \(12 / 20 / 16\) - 02/01/17
Printed: 2/23/2017 10:39 AM
Page 1 of 1

Printed: 2/23/2017 10:33 AM

LB4100-C - Alpha Daily BKG Check
American Radiation Services
Baton Rouge Laboratory
0.1600
0.1400
0.1200
0.1000
0.0800
管0600
0.0200
\(-0.0200^{12 / 19}\)
\(\mathbf{- 0 . 0 4 0 0}\)

Printed: 2/23/2017 10:34 AM
\begin{tabular}{|l|l|}
\hline & \(O K\) \\
& \(O K\) \\
& \(O K\) \\
& \(O K\) \\
\hline & \(O K\) \\
\hline & \(O K\) \\
\hline & \(O K\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
 \\
Statistical Process Control
\end{tabular}} & \multicolumn{7}{|l|}{Population Frequency Distribution (Histogram)} \\
\hline & Bin & Frequency & \multirow[t]{8}{*}{2} & \multirow[t]{8}{*}{\[
11
\]} & 11 & & \\
\hline & 0.00
0.03 & 1 & & & \multirow[t]{7}{*}{} & & \\
\hline & 0.05 & \(\begin{array}{r}11 \\ 1 \\ \hline\end{array}\) & & & & & \\
\hline & 0.08 & 11 & & & & & \\
\hline & 0.10 & 3 & & & & & \\
\hline & More & 2 & & & & & \\
\hline & & & & & & , & 2 \\
\hline & & & & & & & \\
\hline & & & non nos & nne & nno & \(n{ }^{1 n}\) & Manm \\
\hline
\end{tabular}

\footnotetext{
American Radiation Services
}
Baton Rouge Laboratory

\section*{LB4100-C - Alpha Daily BKG Check}
DER Analysis INVESTIGATE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & INVESTIGATE & Trending Analysis \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 6.2450 & Most recent point outside of the 3-sigma values. \\
\hline & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. \\
\hline Average & 0.0609 & Long B CPM & 0.0433 & 2 of 3 most recent points above 2 sigma. \\
\hline Standard Deviation & 0.0259 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. \\
\hline + 3-sigma value & 0.1386 & Date & 02/01/17 & 7 trending most recent points in a row. \\
\hline - 3 -sigma value & -0.0167 & CPM & 0.0000 & 15 most recent points inside 1 sigma. \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. \\
\hline
\end{tabular}
LB4100-C - ALPHA BACKGROUND - DETECTOR C2
Process Date Range: \(12 / 20 / 16\) - 02/01/17
Page 1 of
Printed: 2/23/2017 10:34 AM Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.7344 & Most recent point outside of the 3 -sigma values. & OK \\
\hline & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.0480 & Long B CPM & 0.0467 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0144 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.0911 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.0049 & CPM & 0.0333 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

\section*{LB4100-C - Alpha Daily BKG Check}
Baton Rouge Laboratory

\begin{tabular}{l|l|l|ll}
\hline \(\mathbf{O}\) & \(\mathbf{O}\) & \(\mathbf{O}\) & \(\mathbf{O}\) & \(\mathbf{0}\) \\
\(\mathbf{O}\) & \(\mathbf{0}\) \\
\(\mathbf{O}\) & 0 & 0 & 0 & 0
\end{tabular}
\(\frac{5}{9}\)
Statistical Process Control
Printed: 2/23/2017 10:34 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & 29 & DER & 0.5243 & Most recent point outside of the 3-sigma values. & OK \\
\hline Population Size & 9 & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.0457 & Long B CPM & 0.0522 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0210 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.1086 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & -0.0172 & CPM & 0.0417 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:34 AM
\begin{tabular}{|c|c|c|c|}
\hline DER Analysis & \multicolumn{1}{|c|}{ OK } & \multicolumn{2}{|c|}{ Trending Analysis } \\
\hline DER & 0.1796 & Most recent point outside of the 3 -sigma values. & \(\mathbf{O K}\) \\
\hline Long B Date & \(01 / 28 / 17\) & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
\hline Long B CPM & 0.0278 & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
\hline Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & \(\mathbf{O K}\) \\
\hline Date & \(02 / 01 / 17\) & 7 trending most recent points in a row. & \(\mathbf{O K}\) \\
\hline CPM & 0.0250 & 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
\hline Count Mins & 120.00 & 8 most recent points outside 1 sigma. & \(\mathbf{O K}\) \\
\hline
\end{tabular}

American Radiation Services
Baton Rouge Laboratory
LB4100-C - Alpha Daily BKG Check
Printed: 2/23/2017 10:34 AM

\begin{tabular}{llll}
\\
\hline
\end{tabular}

\footnotetext{
American Radiation Services
}

\section*{LB4100-C - Alpha Daily BKG Check}
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & INVESTIGATE & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & 9 & DER & 5.0990 & Most recent point outside of the 3-sigma values. & OK \\
\hline Population Size & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.0284 & Long B CPM & 0.0289 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0170 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.0796 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & -0.0227 & CPM & 0.0000 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
American Radiation Services
Baton Rouge Laboratory

\section*{LB4100-C - Alpha Daily BKG Check}
Printed: 2/23/2017 10:34 AM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & 29 & DER & 1.0000 & Most recent point outside of the 3-sigma values. & OK \\
\hline Population Size & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.0267 & Long B CPM & 0.0178 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0155 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.0732 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & -0.0197 & CPM & 0.0083 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services
Instrument Background Analysis
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline & 3 & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & 1 & & & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.0597 & & & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0137 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.1010 & & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.0185 & & & 15 most recent points inside 1 sigma. & OK \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3 －sigma values． & OK \\
\hline Pulation Size & & & & 8 consecutive most recent points on one side of the mean． & OK \\
\hline Average & 0.0547 & & & 2 of 3 most recent points above 2 sigma． & OK \\
\hline Standard Deviation & 0.0153 & & & 4 of 5 most recents points beyond the 1 －sigma． & OK \\
\hline ＋3－sigma value & 0.1007 & & & 7 trending most recent points in a row． & OK \\
\hline － 3 －sigma value & 0.0087 & & & 15 most recent points inside 1 sigma． & OK \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma． & OK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{LB4100－C－ALPHA LONG BACKGROUND－DETECTOR C2} \\
\hline \multicolumn{3}{|l|}{Process Date Range： \(07 / 17 / 16\)－02／04／17} \\
\hline 0.14 & & \\
\hline \(0.12 * \square+\square\) & & \\
\hline 0.10 －－－UCL（3 5）・ーーーーーーーー－ & & －－－－ \\
\hline 0.08 Un－（2S）\(\cdots\) & & ．．．．．．．．． \\
\hline 0.86 & & \\
\hline & & \(\bullet \quad\) \\
\hline & & －－－－－－ \\
\hline 0.00 & & \\
\hline 07／17 09／05 & 10／25 12／14 & 02／02 \\
\hline
\end{tabular}

Printed: 2/23/2017 10:28 AM
\begin{tabular}{|l|l|l|l|}
& & \multicolumn{2}{|c|}{ Trending Analysis } \\
& & Most recent point outside of the 3-sigma values. & \(\mathbf{O K}\) \\
\hline & & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
\hline & & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
\hline & \begin{tabular}{ll}
4 of 5 most recents points beyond the 1 -sigma. & \(\mathbf{O K}\) \\
\hline & 7 trending most recent points in a row. \\
\hline 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
\hline & 8 most recent points outside 1 sigma.
\end{tabular} & \(\mathbf{O K}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{LB4100-C - ALPHA LONG BACKGROUND - DETECTOR C3} \\
\hline \multicolumn{5}{|l|}{Process Date Range: 07/09/16-02/04/17} \\
\hline \multicolumn{5}{|l|}{0.10} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{} \\
\hline 0.07 & & & & \\
\hline 0.06 & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.75 \\
& 0.3 \\
& 0.04
\end{aligned}
\]} & & & & \(\bullet \quad \bullet\) \\
\hline & & & & \\
\hline 0.03 & & & & \\
\hline 0.02 & & & & \\
\hline 0.01 & & & & \\
\hline \multirow[t]{2}{*}{0.00} & & & & \\
\hline & 08/28 & 10/17 & 12/06 & 01/25 \\
\hline
\end{tabular}

\footnotetext{
American Radiation Services
}
Baton Rouge Laboratory

\section*{Instrument Background Analysis}
Printed: 2/23/2017 10:28 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline pulation Siz & & & & Most recent point outside of the 3-sigma values. & OK \\
\hline ulation Siz & & & & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.0521 & & & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0108 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.0844 & & & 7 trending most recent points in a row. & OK \\
\hline - 3-sigma value & 0.0197 & & & 15 most recent points inside 1 sigma. & OK \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services Baton Rouge Laboratory

\section*{Instrument Background Analysis}
Printed: 2/23/2017 10:28 AM

LB4100-C - ALPHA LONG BACKGROUND - DETECTOR D1
LB4100-C - ALPHA LONG BACKGROUND - DETECTOR DI

\section*{Instrument Background Analysis}
American Radiation Services
Baton Rouge Laboratory

Printed: 2/23/2017 10:28 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3-sigma values. & OK \\
\hline & & & & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.0297 & & & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0078 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3-sigma value & 0.0531 & & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.0063 & & & 15 most recent points inside 1 sigma. & OK \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:28 AM

-C - ALPHA LONG BACKGROUND - DETECTOR D3
Process Date Range: \(07 / 17 / 16-02 / 04 / 17\)

\section*{Instrument Background Analysis}
American Radiation Services
Baton Rouge Laboratory
Population Statistics
Most recent point outside of the 3-sigma values.
8 consecutive most recent points on one side of the mean. 2 of 3 most recent points above 2 sigma.
4 of 5 most recents points beyond the 1 -sigma.
7 trending most recent points in a row.
15 most recent points inside 1 sigma.
8 most recent points outside 1 sigma

American Radiation Services
LB4100-C - BETA EFFICIENCY
Printed: 2/23/2017 10:39 AM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.4628 & CPM/DPM & 0.4623 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0016 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3-sigma value & 0.4675 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.4581 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:39 AM
Page 1 of 1

\section*{LB4100-C - BETA EFFICIENCY}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & 30 & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & 30 & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.4560 & CPM/DPM & 0.4545 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0025 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline +3 -sigma value & 0.4636 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.4484 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

\footnotetext{
American Radiation Services
}
Baton Rouge Laboratory
Printed: 2/23/2017 10:39 AM Page 1 of 1

\section*{LB4100-C - BETA EFFICIENCY}
American Radiation Services
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline lation Size & & & & Most recent point outside of the 3-sigma values. & OK \\
\hline lation Size & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.4626 & CPM/DPM & 0.4606 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0023 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3 -sigma value & 0.4695 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.4557 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:39 AM
Page 1 of 1

\section*{LB4100-C - BETA EFFICIENCY}

American Radiation Services
Baton Rouge Laboratory

Printed: 2/23/2017 10:39 AM Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. & OK \\
\hline & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.4556 & CPM/DPM & 0.4549 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0025 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3 -sigma value & 0.4632 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.4480 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

듬

Baton Rouge Laboratory

\section*{LB4100-C - BETA EFFICIENCY}
Printed: 2/23/2017 10:39 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & & Date & 02/01/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.4597 & CPM/DPM & 0.4548 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0032 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3 -sigma value & 0.4695 & Date & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.4500 & CPM & & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 1.1814 & Most recent point outside of the 3 -sigma values. & OK \\
\hline & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 1.1957 & Long B CPM & 1.1778 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.1086 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3-sigma value & 1.5213 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3-sigma value & 0.8700 & CPM & 1.3083 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:34 AM

American Radiation Services
Baton Rouge Laboratory

\section*{LB4100-C - Beta Daily BKG Check}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{\[
29
\]} & DER & 1.7437 & Most recent point outside of the 3-sigma values. & OK \\
\hline & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.8983 & Long B CPM & 0.8322 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0762 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 1.1269 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.6697 & CPM & 1.0000 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
LB4100-C - BETA BACKGROUND - DETECTOR C2
Process Date Range: \(12 / 20 / 16\) - \(02 / 01 / 1\)
Printed: 2/23/2017 10:34 AM Page 1 of 1

\section*{LB4100-C - Beta Daily BKG Check \\ American Radiation Services \\ Baton Rouge Laboratory}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline & 20 & DER & 0.6750 & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.8428 & Long B CPM & 0.7811 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0747 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline +3 -sigma value & 1.0669 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.6187 & CPM & 0.7250 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:34 AM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.2019 & Most recent point outside of the 3 -sigma values. & OK \\
\hline & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.8767 & Long B CPM & 0.8567 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0737 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3 -sigma value & 1.0979 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.6556 & CPM & 0.8750 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{LB4100-C - BETA BACKGROUND - DETECTOR C4} \\
\hline \multicolumn{9}{|l|}{Process Date Range: \(12 / 20 / 16\) - 02/01/17} \\
\hline \multicolumn{9}{|l|}{1.2000} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
\[
0.8000
\] \\
-. LWL 12 S
\(\qquad\)
\end{tabular}} \\
\hline \multicolumn{9}{|l|}{0.5000} \\
\hline \multicolumn{9}{|l|}{0.4000} \\
\hline \multicolumn{9}{|l|}{0.2000} \\
\hline \multicolumn{9}{|l|}{0.0000} \\
\hline 12/19 & 12/24 12/29 & 01/03 & 01/08 & 01/13 & 01/18 & 01/23 & 01/28 & 02/02 \\
\hline
\end{tabular}

Printed: 2/23/2017 10:34 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & 9 & DER & 0.1719 & Most recent point outside of the 3-sigma values. & OK \\
\hline Population Size & 0 & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.7761 & Long B CPM & 0.7933 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0662 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
\hline + 3 -sigma value & 0.9748 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.5775 & CPM & 0.8083 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{LB4100-C - BETA BACKGROUND - DETECTOR D1} \\
\hline \multicolumn{10}{|l|}{Process Date Range: \(12 / 20 / 16\) - 02/01/17} \\
\hline \multicolumn{10}{|l|}{1.2000} \\
\hline \multicolumn{10}{|l|}{1.0000} \\
\hline \multicolumn{10}{|l|}{0.8000} \\
\hline \multicolumn{10}{|l|}{0.8000} \\
\hline \multicolumn{10}{|l|}{0.4000} \\
\hline \multicolumn{10}{|l|}{0.2000} \\
\hline \multicolumn{10}{|l|}{0.0000} \\
\hline 12/19 & 12/24 & 12/29 & 01/03 & 01/08 & 01/13 & 01/18 & 01/23 & 01/28 & 02/02 \\
\hline
\end{tabular}

American Radiation Services Baton Rouge Laboratory

\section*{LB4100-C - Beta Daily BKG Check}

Printed: 2/23/2017 10:35 AM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.9069 & Most recent point outside of the 3 -sigma values. & OK \\
\hline & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.7543 & Long B CPM & 0.7533 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0616 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.9391 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.5696 & CPM & 0.8333 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
INTERNATIONAL \\
Statistical Process Control
\end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
\hline & Bin & Frequency & \multirow[t]{8}{*}{\(\square\)} & \multirow[t]{4}{*}{7} & \multirow[t]{7}{*}{11} & & & \\
\hline & 0.66
0.71 & 1 & & & & & & \\
\hline & 0.77 & 11 & & & & & & \\
\hline & 0.82 & 6 & & & & 6 & & \\
\hline & 0.87 & 4 & & \multirow[t]{3}{*}{} & & 6 & & \\
\hline & More & 1 & & & & - \(2 \times\) & 4 & \\
\hline & & & & & & & & \[
1
\] \\
\hline & & & & n7t & กワ7 & non & n07 & \\
\hline
\end{tabular}
American Radiation Services
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.1380 & Most recent point outside of the 3-sigma values. & OK \\
\hline & & Long B Date & 01/28/17 & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.7566 & Long B CPM & 0.7467 & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0941 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 1.0388 & Date & 02/01/17 & 7 trending most recent points in a row. & OK \\
\hline - 3-sigma value & 0.4744 & CPM & 0.7583 & 15 most recent points inside 1 sigma. & OK \\
\hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

Printed: 2/23/2017 10:28 AM

American Radiation Services
Baton Rouge Laboratory

\section*{Instrument Background Analysis}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
\hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3 -sigma values. \\
\hline & & & & 8 consecutive most recent points on one side of the mean. \\
\hline Average & 1.1667 & & & 2 of 3 most recent points above 2 sigma. \\
\hline Standard Deviation & 0.0774 & & & 4 of 5 most recents points beyond the 1 -sigma. \\
\hline + 3-sigma value & 1.3988 & & & 7 trending most recent points in a row. \\
\hline - 3 -sigma value & 0.9346 & & & 15 most recent points inside 1 sigma. \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma. \\
\hline
\end{tabular}
LB4100-C - BETA LONG BACKGROUND - DETECTOR C1
10/25

Printed: 2/23/2017 10:28 AM

American Radiation Services
Baton Rouge Laboratory

\section*{Instrument Background Analysis}

LB4100-C - BETA LONG BACKGROUND - DETECTOR C2
Printed: 2/23/2017 10:28 AM
\begin{tabular}{|l|l|l|l|}
\hline & & \multicolumn{2}{|c|}{ Trending Analysis } \\
\hline & & Most recent point outside of the 3-sigma values. & \(\mathbf{O K}\) \\
\hline & & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
\hline & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
\hline & \begin{tabular}{ll}
4 of 5 most recents points beyond the 1-sigma. & \(\mathbf{O K}\) \\
\hline & 7 trending most recent points in a row. \\
\hline & 8 most recent points inside 1 sigma.
\end{tabular} & \(\mathbf{O K}\) \\
\hline
\end{tabular}

\begin{tabular}{llll}
\\
\hline
\end{tabular}

\footnotetext{
American Radiation Services
}
Baton Rouge Laboratory

\section*{Instrument Background Analysis}
American Radiation Services
Instrument Background Analysis

American Radiation Services
Instrument Background Analysis
Printed: 2/23/2017 10:28 AM
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline & & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & 1 & & & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.7727 & & & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0264 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3 -sigma value & 0.8518 & & & 7 trending most recent points in a row. & OK \\
\hline - 3-sigma value & 0.6937 & & & 15 most recent points inside 1 sigma. & OK \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{LB4100-C - BETA LONG BACKGROUND - DETECTOR D1} \\
\hline \multicolumn{5}{|l|}{Process Date Range: \(07 / 17 / 16-02 / 04 / 17\)} \\
\hline \multicolumn{5}{|l|}{0.90} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{0.60} \\
\hline \multicolumn{5}{|l|}{\[
\int_{0.50}^{\sum_{0}^{3}} 0
\]} \\
\hline \multicolumn{5}{|l|}{0.30} \\
\hline \multicolumn{5}{|l|}{0.20} \\
\hline \multicolumn{5}{|l|}{0.10} \\
\hline \multicolumn{5}{|l|}{0.00} \\
\hline 07/17 & 09/05 & 10/25 & 12/14 & 02/02 \\
\hline
\end{tabular}

American Radiation Services
Baton Rouge Laboratory

\section*{Instrument Background Analysis}
Printed: 2/23/2017 10:29 AM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
\hline Population Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.7729 & & & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0370 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3-sigma value & 0.8840 & & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.6618 & & & 15 most recent points inside 1 sigma. & OK \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}

American Radiation Services
Instrument Background Analysis
Printed: 2/23/2017 10:29 AM
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
\hline Population Size & & & & Most recent point outside of the 3-sigma values. & OK \\
\hline Population Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
\hline Average & 0.7674 & & & 2 of 3 most recent points above 2 sigma. & OK \\
\hline Standard Deviation & 0.0324 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
\hline + 3 -sigma value & 0.8647 & & & 7 trending most recent points in a row. & OK \\
\hline - 3 -sigma value & 0.6701 & & & 15 most recent points inside 1 sigma. & OK \\
\hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{LB4100-C - BETA LONG BACKGROUND - DETECTOR D3} \\
\hline \multicolumn{5}{|l|}{Process Date Range: 07/17/16-02/04/17} \\
\hline \multicolumn{5}{|l|}{1.00} \\
\hline \multicolumn{5}{|l|}{0.90} \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{0.70 ¢} \\
\hline \multicolumn{5}{|l|}{0.60} \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& 0.30 \\
& 0.40
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{0.30} \\
\hline \multicolumn{5}{|l|}{0.20} \\
\hline \multicolumn{5}{|l|}{0.10} \\
\hline \multicolumn{5}{|l|}{0.00} \\
\hline 07/17 & 09/05 & 10/25 & 12/14 & 02/02 \\
\hline
\end{tabular}

\section*{c 11160}

Sr-90/Y90 Efficiency Calibrations 12/8/14
\begin{tabular}{ll}
Tech: & B Steffens \\
Pipet \# & FJ40469 \\
Scale ID & H113112173560P \\
Standard \# & S-0121
\end{tabular}

Approved

\(12-10-14\)

GEN 686
C 11160
Sr
BZF
\(\begin{array}{cccccccc}\text { Detector ID } & \text { Sample ID } & \text { Alpha } & \text { Beta } & \text { Count Time Voltage } & \text { TOD } \\ \text { A1 } & \text { SR_CAL_1B } & 2 & 17097 & 5 & 1410 & 12 / 8 / 1414: 02 \\ \text { A2 } & \text { SR_CAL_2B } & 3 & 16054 & 5 & 1410 & 12 / 8 / 1414: 02 \\ \text { A3 } & \text { SR_CAL_4B } & 4 & 17234 & 5 & 1410 & 12 / 8 / 1414: 02 \\ \text { A4 } & \text { SR_CAL_5B } & 6 & 15979 & 5 & 1410 & 12 / 8 / 1414: 02\end{array}\)

\begin{tabular}{cccccccc}
Detector ID & Sample ID & Alpha & Beta & \multicolumn{2}{c}{ Count Time Voltage } & TOD \\
D1 & SR_CAL_1B & 4 & 17050 & 5 & 1410 & \(12 / 8 / 1414: 25\) \\
D2 & SR_CAL_2B & 8 & 16113 & 5 & 1410 & \(12 / 811414: 25\) \\
D3 & SR_CAL_4B & 5 & 17322 & 5 & 1410 & \(12 / 8 / 1414: 25\) \\
D4 & SR_CAL_5B & 8 & 15810 & 5 & 1410 & \(12 / 8 / 14\) & \(14: 25\)
\end{tabular}

Sr-90/Y90 Efficiency Calibrations
\begin{tabular}{ll}
Tech: & B Steffens \\
Pipet \# & FJ40469 \\
Scale ID & H113112173560P \\
Standard \# & S-0121
\end{tabular}
\begin{tabular}{ll}
Sample 1D & Std weight g. Sep. Date: \(12-8-14\) \\
\hline \(\operatorname{Sr} Y \mathrm{Cal} 1 \mathrm{~B}\) & 12
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Sr_Y_Cal 1B & i.0114 & 12:12 \\
\hline Sr Y Cal 2B & 1.0121 & 12: \\
\hline Sr_Y_Cal_3B & 1.0063 & 12:17 \\
\hline \(\left.\mathrm{Sr}_{-} Y_{\text {_ }} \mathrm{Ca}\right]_{-} 4 \mathrm{~B}\) & 1,0122 & 12:12 \\
\hline Sr_Y_Cal_5B & 1.0127 & \(12: 1\) \\
\hline
\end{tabular}

Performed By: B Steffens
\begin{tabular}{|c|c|c|}
\hline Sr Planchetf Weigts & Empty & Full \\
\hline Sr_Cal_1B & 7.5918 & 7.433 \\
\hline Sr Cal_ 2 B & 7.59 Zg & 7.694 \\
\hline Sr_Cal_3B & 7.5949 & 7.606 \\
\hline Sr_Cal_4B & \(1.6030 r\) & 7.615 \\
\hline Sr_Cal_5B & 7.5948 & 7.615 \\
\hline
\end{tabular}
Sr-90 Verification 1/5/2016
\begin{tabular}{ll}
& JPB \\
Tech: & OSA \\
Pipet \# & MU02055- \\
Scale ID & \multicolumn{1}{c}{12332539}
\end{tabular}

Standard \# S-0300
Sample ID Std weight g.
S-0300-V1A 1.02348
S-0300-V2A \(\quad 0.9938 \mathrm{~g}\)
S-0300-V3A 1.0008 g
S-0300-V4A 1.0046 g
S-0300-V5A 1.0117 g
Performed By: B-Steffen
\[
\begin{aligned}
& \text { J, Byrd } \\
& \qquad \begin{array}{l}
A B \\
1-5-16
\end{array}
\end{aligned}
\]

ARS-042-002
Revision Date: 09/11/14

\section*{QUAEITY CONTRRQL RROGRAM}

\section*{ANILRTCANRREDHALIONSERNLCESS \\ REDMOCHINE RETERENEE SOLHTLONS ANNUAL ACTIVITY VERUEICATION}
\begin{tabular}{l}
VERIFICATION DATE \(\quad 1 / 5 / 201616: 31\) date counted \\
STANDARD REFERENCE \(+5-0300\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Principal Radionuclide & \multirow{3}{*}{ENTER -->} & Half Life, Years & \multirow{3}{*}{OR -.>>} & Half Life, Days \\
\hline Sr. 90 & & \(2.880 \mathrm{E}+01\) & & \(1.0520 \mathrm{E}+04\) \\
\hline & & \(2.880 \mathrm{E}+01\) & & \(1.0520 E+04\) \\
\hline
\end{tabular}
Radionuclide \(\qquad\)
Dilution Reference Date 12/11/2014 12:05
\begin{tabular}{|c|c|c|c|}
\hline Dilution Activity & 21.7 & pCi per gram \(===>\mathrm{dpm} / \mathrm{g}\) & 48.23 \\
\hline Verif. Date Decay Corrected & 21.18 & pCl per gram \(==\mathrm{m}\) dpm/g & 47.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Minimum of 3 Required} \\
\hline Trial ID & Sample Counts & Count Time [min & & Efflciency & Bkg. (cpm) & Net Weight & \[
\begin{gathered}
\text { Decay Correctod } \\
\text { Activity Result } \\
(\mathrm{dpm} / \mathrm{g})
\end{gathered}
\] & Decay Corrected Activity Result (\(\mathrm{pCl} / \mathrm{g}\)) \\
\hline 5-0300-V1A & 2534.50 & 120 & B1 & 0.4103 & 0.68 & 1.023 & 48.68 & 21.93 \\
\hline S-0300-V2A & 2411.50 & 120 & B2 & 0.4015 & 0.78 & 0.994 & 48.41 & 21.81 \\
\hline S-0300-V3A & 2451.00 & 120 & B4 & 0.4004 & 0.79 & 1.001 & 49.00 & 22.07 \\
\hline S-0300-V4A & 2469.50 & 120 & C1 & 0.4068 & 0.87 & 1.005 & 48.23 & 21.72 \\
\hline \multirow[t]{6}{*}{S-0300-V5A} & 244200 & 120 & C2 & 0.4025 & 1.32 & 1.012 & 46.73 & 21.05 \\
\hline & & \multirow{5}{*}{10\% Max} & \multirow{5}{*}{PASS} & & & Average & 48.21 & 21.72 \\
\hline & & & & & & ma Uncertainty & 1.72 & 0.77 \\
\hline & & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Standard Deviation percent of known concentration Target Activity}} & 1.86\% & 1.86\% \\
\hline & & & & & & & 47.01 & 21.18 \\
\hline & & & & 5\% Max & PASS & \% Diff & 2.55\% & 2.55\% \\
\hline
\end{tabular}
Verification Expiration Date: January 4, 2017

\begin{tabular}{ll}
Tech: & J Byrd \\
Pipet \# & MU02055 \\
Scale ID & 12332539 \\
Standard \# & S-0300 \\
& \\
\hline & \\
\hline Sample ID & Std weight g. \\
\hline S-0300-V1A & 1.0234 \\
S-0300-V2A & 0.9938 \\
S-0300-V3A & 1.0008 \\
S-0300-V4A & 1.0046 \\
S-0300-V5A & 1.0117
\end{tabular}

Performed By: J Byrd

\section*{Sr-90 Verification 1/5/2016}
\begin{tabular}{ll}
& TPB \\
Tech: & QSteffens is \\
Pipet \# & MU02055 \\
Scale ID & 12332539
\end{tabular}

Standard\# S-0300
Sample ID Std weight g .
S-0300-V1A \(\quad 1.0234 \mathrm{~g}\) S-0300-V2A 0.9938 y
S-0300-V3A 1.0008 g
S-0300-V4A 10046 g
S-0300-V5A 1.0117 g
Performed By: B-Steffen-
J, Byrd
28
\[
1-5-16
\]
GEN 710
C 11160
Sr
WJS
\begin{tabular}{lllllccc}
& Detector ID & Sample ID & Alpha & Beta & Count Time & Voltage & TOD \\
2469.5 & C1 & S-0300-V4A & 9 & 4939 & 120 & 1410 & \(1 / 5 / 1616: 31\) \\
2442 & C2 & S-0300-V5A & 13 & 4884 & 120 & 1410 & \(1 / 5 / 1616: 31\) \\
3534 & B1 & S-0300-V1A & 8 & 5069 & 120 & 1410 & \(1 / 5 / 1616: 34\) \\
2411.5 & B2 & S-0300-V2A & 12 & 4823 & 120 & 1410 & \(1 / 5 / 1616: 34\) \\
245 1 & B4 & S-0300-V3A & 9 & 4902 & 120 & 1410 & \(1 / 5 / 1616: 34\)
\end{tabular}

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

\begin{tabular}{l}
Optimum alpha only operating voltage: 4380 \\
\hline
\end{tabular}

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

se:60 LLOZ/0E/ZL pełulud

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

\[
\begin{aligned}
& \text { Optimum alpha beta simultaneous operating voltage: } 1410 \\
& \qquad \begin{aligned}
& \square \\
& \text { Optimum alpha only operating voltage: } \\
& \hline \mathrm{D} 1 \\
& \text { Beta slope at beta voltage } 1.59 \% \\
& \text { Alpha slope at beta voltage } 0.37 \% \\
& \text { Alpha slope at alpha voltage } 1.35 \%
\end{aligned}
\end{aligned}
\]

Printed 12/30/2011 09:35

Printed 12/30/2011 09:35

\title{
Tennelec LB41-PF4 Low Background \(\boldsymbol{\alpha} / \boldsymbol{\beta}\) Counter (Instrument C)
}

\section*{Revision: 1}

Revision Date: 031115

2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

\section*{Semivolatile Organics Analysis SW 846 8270D PAH's}

SDG\# ARS1-17-00216
COC SOLID Samples
\begin{tabular}{r|l}
Analytical Batch ID & ARS1－B17－00170 \\
Analysis code & GCMS－82700－so
\end{tabular}
\begin{tabular}{r|l}
nalytical Batch ID & ARS1－B17－00170 \\
Analysis Code & GCMS－8270D－SO
\end{tabular}
ARS－160

\begin{tabular}{|c|}
\hline \(\bigcirc\) & \％ & － & \％ & － & \％ & O & \％ & \％ & － & \％ & 边 & \％ & & － & \％ & － & － & \％ & \％ & O & \％ & ¢ & B & － & \[
8
\] & \[
\pm
\] & & ¢ & & \％ \\
\hline & & ¢ & oid & ： & O & ！ & 皆 & － & 菅 & \(\bigcirc\) & ¢ & 馬 & －0．000 & Nig & & － & 䁉 & 岴 & － & \(\bigcirc\) & S & I & ¢ & \％ & 号 & ¢ & & & & \\
\hline
\end{tabular}
巨

\section*{O}
s0G／Fraction \(\begin{gathered}\text { Analysis } \\ \text { Dote／TIme }\end{gathered}\)

Baton Rouge Laboratory

\begin{tabular}{c|c|c|}
\(\begin{array}{c}\text { Expected } \\
\text { Result }\end{array}\) & \% Rec & RPD \\
\((\mathrm{mg} / \mathrm{kg})\) & & \\
\hline 0.667 & \(98.4 \%\) & \(1.5 \%\)
\end{tabular}
\(\stackrel{\circ}{\circ}\)
?
,
\(\square|\quad| \quad \mid\)

Whe
ใ11

\begin{tabular}{|c|}
\hline & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
0
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
0
\] & \[
\stackrel{\square}{\circ}
\] & & & & © & \[
8
\] & \[
\stackrel{\rightharpoonup}{0}
\] & \[
\begin{aligned}
& 8 \\
& \hline \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8.8 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & & & \[
8
\] & \[
8
\] & & & & b & \[
\underset{\sim}{N}
\] & \[
\underset{i}{\mathrm{E}}
\] & \% \\
\hline \[
\therefore \frac{\mathrm{v}}{\frac{v}{i}} \stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \text { Ò } \\
& \hline 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\stackrel{\circ}{\circ}
\] & \[
8
\] & \[
\stackrel{\circ}{\circ}
\] & Oí & \[
\stackrel{\circ}{\circ}
\] & 合 & ઠ̊잉 & Oí & ol & \[
8
\] & our & ఫ & & \[
\begin{aligned}
& \stackrel{\circ}{\circ} \\
& \stackrel{\infty}{\infty}
\end{aligned}
\] & \[
\stackrel{\circ}{\infty}
\] & \[
\stackrel{\circ}{\infty}
\] & \[
\stackrel{0}{6}
\] & ¢ & ¢ & \[
\stackrel{0}{\infty}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& \dot{心}
\end{aligned}
\] & & \(\stackrel{.}{\infty}\) & \[
\begin{aligned}
& \text { ®o } \\
& \stackrel{\infty}{0} \\
& \stackrel{1}{0}
\end{aligned}
\] & ¢ & S & & & \[
0
\] & \[
\stackrel{0}{\infty}
\] & ¢ \\
\hline & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\stackrel{8}{0}
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
0
\] & \[
0
\] & \[
0
\] & \[
8
\] & O & & & \[
8
\] & 8 & & & 8 & \[
\begin{aligned}
& 8 \\
& \hline 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8 . \\
& \hline 0 .
\end{aligned}
\] & & & \[
8
\] & & & & & \[
\stackrel{0}{\circ}
\] & \[
0
\] & \[
\begin{aligned}
& N \\
&
\end{aligned}
\] \\
\hline
\end{tabular}

Printed: 2/16/2017 3:35 PM \(\begin{array}{r}\text { Page } 3 \text { of } 6\end{array}\)
RPD

\begin{tabular}{|c|}
\hline & \[
\begin{aligned}
& \text { to } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\underset{\sim}{\infty}
\] & \[
8
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \hline 0
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
0
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& \hline
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
\underset{-}{\mathrm{m}}
\] & \[
\stackrel{9}{-}
\] & \[
\stackrel{\breve{U}}{\omega}
\] & \[
\stackrel{\infty}{2}
\] & \[
\overline{2}
\] & & \[
8
\] & \[
8
\] & \[
8
\] & & & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& \hline 0 \\
& \hline
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& \hline
\end{aligned}
\] & - \\
\hline \[
80
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\infty} \\
& \dot{\infty}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & 这 & \(\stackrel{\circ}{\circ}\) & \[
\begin{aligned}
& \circ \circ \\
& \dot{\circ} \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \dot{\circ} \\
& \dot{\infty}
\end{aligned}
\] & \[
\begin{aligned}
& \dot{\circ} \\
& \dot{\circ} \\
& \dot{\infty} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \dot{C} \\
& \dot{\infty}
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \circ \\
& \dot{\circ} \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 4 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \stackrel{0}{8} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8_{0}^{\circ} \\
& 80 \\
& \infty
\end{aligned}
\] & & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ} \\
& \text { ó }
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \hline 0 \\
& \infty \\
& \hline
\end{aligned}
\] & & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \circ \circ \\
& \stackrel{\circ}{\infty}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\circ}{\dot{C}} \\
& \dot{\infty}
\end{aligned}
\] & & & \[
\begin{aligned}
& \dot{9} \\
& \dot{\infty} \\
& \hline
\end{aligned}
\] & \[
\stackrel{+}{\infty}
\] & \[
\underset{\infty}{7}
\] & \[
\underset{\sim}{4}
\] & \[
\begin{aligned}
& \circ \stackrel{0}{4} \\
& \underset{\infty}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ} \\
& \stackrel{1}{1}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ} \\
& \stackrel{1}{2}
\end{aligned}
\] & & ¢ & & N & ᄎ & \[
\begin{aligned}
& N \\
& i
\end{aligned}
\] & \[
\begin{aligned}
& \circ 0^{\circ} \\
& \stackrel{1}{2}
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{0}{2}
\] & \\
\hline & & \[
\begin{aligned}
& \text { m } \\
& \hline 0 \\
& 0
\end{aligned}
\] & \[
0
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \hline 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\stackrel{8}{6}
\] & \[
\stackrel{\circ}{0}
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \hline 0
\end{aligned}
\] & \(\stackrel{\circ}{0}\) & \[
0
\] & \[
\stackrel{8}{0}
\] & \(\bigcirc\) & \(\stackrel{\text { N }}{-}\) & \[
\stackrel{4}{\mathrm{C}}
\] & & \[
\stackrel{8}{9}
\] & \[
\dot{o}_{0}^{\infty}
\] & \[
\begin{aligned}
& \text { 잉 } \\
& \hline-1
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
0
\] & . & & O & & & \[
\begin{aligned}
& \circ \\
& \hline 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
0
\] & \[
8
\] \\
\hline
\end{tabular}
EENG

\begin{tabular}{|c|}
\hline & & O & \[
9
\] & \[
1
\] & \(\bigcirc\) & \(\bigcirc\) & \(\stackrel{\bigcirc}{-1}\) & \(\stackrel{\circ}{+}\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & - & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\stackrel{\circ}{-}\) & - & \(\stackrel{\circ}{-}\) & \(\bigcirc\) & \(\bigcirc\) & & & & & & & & & & & & & & & & & \\
\hline & & \[
\stackrel{\square}{\underset{\sim}{a}}
\] & \[
\begin{aligned}
& \dot{2} \\
& \dot{\sim}
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{8}{0}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{O}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \hline 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
0
\] & \[
\stackrel{\square}{0}
\] & \[
8
\] & \[
\stackrel{\circ}{0}
\] & \[
\begin{gathered}
\circ \\
\stackrel{\circ}{m} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \stackrel{g}{\dot{n}} \\
& \stackrel{i}{\dot{\prime}}
\end{aligned}
\] & \[
\stackrel{8}{8}
\] & \[
\begin{aligned}
& \text { 일 } \\
& \dot{\mathrm{p}}
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \text { 을 } \\
& \underset{\sim}{2}
\end{aligned}
\] & & & & & & & & & & & & \\
\hline & \[
\begin{gathered}
n \\
\infty \\
\vdots \\
\vdots \\
0 \\
\vdots \\
0
\end{gathered}
\] & & & & & & \[
\begin{aligned}
& \underset{\sim}{2} \\
& \underset{\sim}{x} \\
& \dot{\alpha} \\
& \underset{\alpha}{2}
\end{aligned}
\] & & & & \[
\begin{aligned}
& \vec{~} \\
& \dot{N} \\
& \stackrel{\rightharpoonup}{0} \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& \stackrel{1}{2} \\
& \stackrel{1}{0} \\
& \stackrel{8}{8}
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& \dot{N} \\
& \stackrel{1}{0} \\
& 2 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
9 \\
\dot{N} \\
\stackrel{1}{0} \\
\mathbf{0} \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 9 \\
& \stackrel{y}{2} \\
& \stackrel{1}{2} \\
& \mathbf{0} \\
& \dot{0}
\end{aligned}
\] & & \[
\begin{aligned}
& \dot{\rightharpoonup} \\
& \dot{n} \\
& \dot{W} \\
& \dot{0} \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& \stackrel{\rightharpoonup}{n} \\
& \stackrel{1}{\omega} \\
& \stackrel{\rightharpoonup}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{1}{n} \\
& \stackrel{\rightharpoonup}{\omega} \\
& \stackrel{0}{0}
\end{aligned}
\] & & & \[
\begin{aligned}
& \overrightarrow{7} \\
& \stackrel{1}{n} \\
& \stackrel{1}{2} \\
& \dot{0}
\end{aligned}
\] & & \[
\begin{aligned}
& \stackrel{9}{\ddot{a}} \\
& \stackrel{1}{n} \\
& \stackrel{\rightharpoonup}{0} \\
& \dot{\Delta}
\end{aligned}
\] & & & \[
\begin{gathered}
\text { ? } \\
\stackrel{\sim}{3} \\
\stackrel{\rightharpoonup}{0} \\
\hline
\end{gathered}
\] & & & & & & & & & & A & & \\
\hline & & \[
\begin{aligned}
& 2 \\
& 0 \\
& 01 \\
& 0 \\
& 0 . \\
& \frac{1}{2} \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& \dot{0} \\
& 0 \\
& \dot{1} \\
& \frac{1}{2} \\
& \frac{1}{2}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots \\
& \frac{1}{3} \\
& \frac{1}{4}
\end{aligned}
\] & & & \(N\)
0
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
4
4 & & \(N\)
0
\(\vdots\)
0
0
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\) & & & & \(N\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
0
\(\vdots\)
\(\vdots\)
\(\vdots\) & & & \begin{tabular}{c}
N \\
0 \\
\(\vdots\) \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& \dot{0} \\
& \underset{0}{0} \\
& \dot{1} \\
& \dot{0}
\end{aligned}
\] & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
Analyte
 Phenol-d5 (Surr) \begin{tabular}{l}
1-Methylnaphthalene \\
2-Methylnaphthalene \\
Acenaphthene \\
Acenaphthylene \\
\hline Anthracene \\
\hline Benzo(a)anthracene \\
Benzo(a)pyrene \\
\hline Benzo(b)fluoranthene \\
\hline
\end{tabular} Benzo(b)fluoranthene
Benzo(g,h,i)perylene Benzo(k)fluoranthene
 \(\stackrel{0}{2}\)
\(\stackrel{y}{4}\)
\(\stackrel{1}{2}\)
\(\frac{0}{2}\)
\(\frac{0}{4}\) Indeno(1,2,3-cd)pyrene
Naphthalene Phenanthrene 2,4,6-Tribromophenol (Surr) 2-Fluorobiphenyl (Surr) 2-Fluorophenol (Surr)
 Terphenyl-d14 (Surr)

 Acenaphthene Acenaphthylene Anthracene
 Benzo(b)fluoranthene Benzo(\((, h, i\) i) oerylene Benzo(k)fluoranthene \begin{tabular}{c}
\(\stackrel{y}{4}\) \\
\(\stackrel{u}{4}\) \\
\(\vdots\) \\
\hline
\end{tabular}

nNNNNN

\begin{tabular}{|c|c|}
\hline ABatch Sample ID & Analyte \\
\hline \multirow[t]{11}{*}{06-TRG} & Fluorene \\
\hline & Indeno(\(1,2,3\)-cd) pyrene \\
\hline & Naphthalene \\
\hline & Phenanthrene \\
\hline & Pyrene \\
\hline & 2,4,6-Tribromophenol (Surr) \\
\hline & 2-Fluorobiphenyl (Surr) \\
\hline & 2-fluorophenol (Surr) \\
\hline & Nitrobenzene-d5 (Surr) \\
\hline & Phenol-d5 (Surr) \\
\hline & Terphenyl-d14 (Surr) \\
\hline \multirow[t]{24}{*}{07-TRG} & 1-Methylmaphthalene \\
\hline & 2-Methylnaphthalene \\
\hline & Acenaphthene \\
\hline & Acenaphthylene \\
\hline & Anthracene \\
\hline & Benzo(a)anthracene \\
\hline & Benzo(a)pyrene \\
\hline & Benzo(b)fluoranthene \\
\hline & Benzo(\(9, \mathrm{~h}, \mathrm{i}\)) perylene \\
\hline & Benzo(k)fluoranthene \\
\hline & Chrysene \\
\hline & Dibenz(a,h)anthracene \\
\hline & Fluoranthene \\
\hline & Fluorene \\
\hline & Indeno(1,2,3-cd)pyrene \\
\hline & Naphthalene \\
\hline & Phenanthrene \\
\hline & Pyrene \\
\hline & 2,4,6-Tribromophenol (Surr) \\
\hline & 2-Fluorobiphenyl (Surr) \\
\hline & 2-Fluorophenol (Surr) \\
\hline & Nitrobenzene-d5 (Surr) \\
\hline & Phenol-d5 (Surr) \\
\hline & Terphenyl-d14 (Surr) \\
\hline \multirow[t]{5}{*}{08-TRG} & 1-Methyinaphthalene \\
\hline & 2-Methylnaphthalene \\
\hline & Acenaphthere \\
\hline & Acenaphthylene \\
\hline & Anthracene \\
\hline
\end{tabular}
nol (Surr) 2-Fluorobiphenyl (Surr) . Terphenyl-d14 (Surr) 07-TRG 1-Methylinaphthalene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene
\begin{tabular}{|c|}
\hline \(\frac{\square}{4}\) & \\
\hline \[
\frac{8}{8}
\] & & & & & & & & & & & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& \text { N } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\circ}{2} \\
& \stackrel{y}{n} \\
& \stackrel{y}{n}
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}_{\operatorname{in}}^{n}
\] & \[
\begin{aligned}
& 8 \\
& \infty \\
& \text { io }
\end{aligned}
\] & \[
\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\infty}{\infty}}
\] & & & & & & & & & & & & & & & & & & & \％ & 先 & \(\frac{\square}{\square}\) \\
\hline & & & & & & & & & & & & \[
\begin{aligned}
& 8 \\
& 0 \\
&
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \underset{\sim}{n}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \\
&
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \\
& \hline
\end{aligned}
\] & \[
\stackrel{8}{2}
\] & \[
8
\] & & & & & & & & & & & & & & & & & & & \(\stackrel{\infty}{\sim}\) & \[
\stackrel{N}{n}_{\substack{n}}
\] & － \\
\hline & & & & & & & & & & & & \[
\begin{aligned}
& 8 \\
& 9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{O} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline
\end{tabular} & \[
\begin{aligned}
& 8 \\
& 0 \\
& 9 \\
& \hline
\end{aligned}
\] & & 8 & & & & & & & & & & & & & & & & & & & ¢ & \[
8
\] & ¢ \\
\hline वे & \[
\stackrel{n}{7}
\] & \[
\begin{aligned}
& \infty \\
& \frac{1}{0} \\
& 0
\end{aligned}
\] & \[
\stackrel{\text { N}}{\stackrel{-}{1}}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\frac{\infty}{2}
\] & \[
\begin{gathered}
0 \\
\\
0
\end{gathered}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { O }
\end{aligned}
\] & \[
\stackrel{n}{7}
\] & 7
\(\overrightarrow{-1}\)
0 & \[
\begin{array}{ll}
0 \\
0 \\
0 & 7 \\
0
\end{array}
\] & \[
\leqslant
\] & \[
\frac{1}{2}
\] & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \[
\frac{1}{2}
\] & \[
\frac{\leqslant}{\Sigma}
\] & \[
\begin{aligned}
& 0 \\
& \hline 0 \\
& \hline-1
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{1}{2}
\] & \[
\frac{12}{5}
\] & \[
\frac{\infty}{\infty}
\] & \[
\frac{9}{5}
\] & \[
\frac{0}{0}
\] & \[
\frac{\infty}{\infty}
\] & \[
\frac{\infty}{7}
\] & \[
\frac{0}{0}
\] & \[
\underset{O}{7}
\] & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& 2 \\
& 0 \\
& 0
\end{aligned}
\] & 豆 & \[
{ }_{\circ}^{\mathrm{M}}
\] & \[
\begin{aligned}
& 7 \\
& 0 \\
& 0
\end{aligned}
\] & \(\stackrel{\leftrightarrow}{2}\) & \(\frac{5}{2}\) & \(\frac{1}{2}\) \\
\hline \[
\frac{\square}{2} \frac{\sigma^{9}}{5}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & N & \[
\begin{aligned}
& \text { O} \\
& \text { O } \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hat{0} \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{array}{cc}
\hat{n} \\
0 \\
0 & 0
\end{array}
\] & \[
\begin{gathered}
\tilde{\sim} \\
\underset{O}{0} \\
0 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{O} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 . \\
& \hline
\end{aligned}
\] & O & \[
\begin{array}{lll}
0 \\
0 \\
0 \\
0 & 0 \\
0
\end{array}
\] & \[
\leqslant
\] & \[
\stackrel{\star}{\Sigma}
\] & \[
\frac{1}{2}
\] & \[
\frac{1}{2}
\] & \[
\frac{\pi}{2}
\] & \[
\frac{1}{2}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
{ }^{2}
\] & \[
\begin{aligned}
& \underset{\sim}{0} \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& n \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& n \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{\rightharpoonup}{\hat{0}}
\] & \[
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{N}{0}
\] & \[
\begin{aligned}
& \text { O. } \\
& \text { O- }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}, \\
& \mathrm{O}
\end{aligned}
\] & B & \[
\begin{gathered}
0 \\
0 \\
0 \\
0
\end{gathered}
\] & No & \(\frac{\leqslant}{2}\) & ＜ & \(\frac{1}{2}\) \\
\hline \(\bigcirc\) & \(\checkmark\) & \(\nu\) & \(\checkmark\) & \(\nu\) & \(\checkmark\) & ว & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & & & & & & & \(\bigcirc\) & \(\checkmark\) & O & J & כ & \(\checkmark\) & \(\bigcirc\) & \(\checkmark\) & \(\bigcirc\) & & & \\
\hline \[
\begin{aligned}
& 38 \% \\
& 38 \% \\
& 2 \% \\
& 085
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
\circ
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{array}{ll}
8 \\
\hline 0 \\
0 & 0 \\
0
\end{array}
\] & \[
8
\] & \[
8
\] & \[
\begin{array}{ll}
8 \\
0 \\
0
\end{array}
\] & \[
\begin{array}{ll}
\hline 0 \\
\hline 8 \\
0 \\
0
\end{array}
\] & \[
\stackrel{0}{0}
\] & \[
\begin{aligned}
& \infty \\
& \hline-1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { n } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{N}_{0} \\
& 0 \\
& 0
\end{aligned}
\] & \[
{ }^{N}
\] & \[
\underset{\sim}{\mathrm{o}}
\] & \[
\begin{aligned}
& 8 \\
& 8 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 80 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 8 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\stackrel{N}{N}
\] & \[
\begin{aligned}
& \underset{0}{2} \\
& \rightarrow-1
\end{aligned}
\] & \\
\hline \[
\therefore \frac{n}{0}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
8
\] & \(\circ\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\infty\) & \[
\begin{aligned}
& \circ \\
& 8 \\
& \infty \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
\] & \begin{tabular}{c|c}
\(\circ\) \\
0 & \(\circ\) \\
\(\infty\) \\
\(\infty\) \\
\(\infty\) \\
\(\infty\) \\
\(\infty\)
\end{tabular} & － & \[
\begin{aligned}
& \circ \\
& \text { on } \\
& \infty \\
& \infty
\end{aligned}
\] & \begin{tabular}{c}
\(\circ\) \\
\(\vdots\) \\
\(\infty\) \\
\(\infty\) \\
\hline
\end{tabular} & & oi & \[
\begin{gathered}
\infty \\
\infty \\
\infty \\
\infty
\end{gathered}
\] & \[
\begin{gathered}
\circ \\
\circ \\
\infty \\
\infty \\
\infty
\end{gathered}
\] & \[
\begin{aligned}
& \circ \\
& \infty \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& \infty \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \hline 8 \\
& \hline \infty
\end{aligned}
\] & \[
\stackrel{\circ}{0}
\] & \[
\begin{aligned}
& \text { co } \\
& \hline \infty \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \text { ñ } \\
& \text { n } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \underset{\infty}{\circ} \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 6 \\
& 0 \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \infty \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{0}{2} \\
& 0 \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \infty \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{gathered}
\circ \\
\hline 8 \\
\hline
\end{gathered}
\] & \[
\stackrel{8}{\circ}^{\circ}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& \infty
\end{aligned}
\] & \[
\stackrel{0}{2}
\] & \[
\begin{aligned}
& 8_{0}^{\circ} \\
& 50 \\
& \hline
\end{aligned}
\] & กi \\
\hline \[
\begin{aligned}
& \frac{9}{6} \div \frac{9}{y} \\
& \frac{9}{y} \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& \hline 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
\begin{array}{ll}
8 \\
\hline 8 \\
0 \\
0 \\
0
\end{array}
\] & \[
8
\] & \[
18
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
{ }_{0}^{n}
\] & \[
\begin{aligned}
& \text { प } \\
& \text { O} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{6}{6}
\] & \[
\underset{0}{i n}
\] & \[
\stackrel{\text { g }}{\substack{1 \\ \hline}}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
18
\] & \[
\begin{aligned}
& 8 \\
& \hline 0 \\
& \hline
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \begin{tabular}{l}
8 \\
\hline \\
0 \\
\hline
\end{tabular} & \[
8
\] & \[
18
\] & \[
\stackrel{\infty}{n}
\] & \[
\underset{\sim}{\mathrm{N}}
\] & － \\
\hline 플을 둘 & \[
\begin{aligned}
& \mathrm{O} \\
& \stackrel{0}{0}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{O} \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { O} \\
& \stackrel{O}{O}
\end{aligned}
\] & \[
\underset{0}{\circ}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{array}{ll}
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{array}{ll}
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\] & \[
\begin{aligned}
& \text { O} \\
& \stackrel{e}{0}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{array}{r}
0 \\
0 \\
0 \\
0
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \hline 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { 毕 } \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & o & OO. & \[
\begin{aligned}
& 1 \\
& 0 \\
& 0 \\
& \hline 1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & － & ¢ & O \\
\hline & O & \[
\stackrel{3}{8}
\] & \[
\stackrel{\rightharpoonup}{\circ}
\] & \[
\stackrel{B}{8}
\] & \[
8
\] & \[
8
\] & \[
\begin{array}{ll}
-0 \\
0 \\
0 \\
0
\end{array}
\] & \[
\begin{aligned}
& \mathrm{O} \\
& 0 \\
& 0
\end{aligned}
\] & 응 & \[
8
\] & \[
\begin{array}{c|c}
-\overrightarrow{8} \\
0 \\
0 \\
\hline
\end{array}
\] & \(\stackrel{\rightharpoonup}{\circ}\) & \[
\begin{aligned}
& -1 \\
& 0 \\
& 0
\end{aligned}
\] & O & 合 & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
10
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
0
\] & \[
8
\] & O & O & \[
\stackrel{7}{8}
\] & \[
8
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \underline{8} \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { B } \\
& 0 \\
& 0
\end{aligned}
\] & O & \[
8
\] & O & \[
\stackrel{\rightharpoonup}{8}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & ö & \[
\begin{aligned}
& 8 \\
& \hline 0 \\
& \hline
\end{aligned}
\] & － & 믕 & O \\
\hline 4 & \[
\bigcirc
\] & － & －1 & \({ }_{-}\) & \(\stackrel{+}{0}\) & － & O & \(\stackrel{+}{0}\) & \[
10
\] & \[
0
\] & － & \(\bigcirc\) & － & 안 & \(\bigcirc\) & 악 & O & \(\bigcirc\) & － & O & 안 & － & － & \(\bigcirc\) & 악 & O & 안 & Oi & － & － & \(\stackrel{-}{-}\) & － & 악 & \(\stackrel{0}{-1}\) & \(\bigcirc\) & 안 & － & \(\bigcirc\) \\
\hline & \[
\begin{aligned}
& 8 \\
& 80 \\
& \hline 8
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & & & \[
\begin{aligned}
& 9 \\
& \infty \\
& \infty
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& \infty
\end{aligned}
\] & O & \[
\begin{aligned}
& \text { 옷 } \\
& \text { Ni }
\end{aligned}
\] & \[
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & O & \[
8
\] & \[
18
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{n} \\
& \mathrm{~m}
\end{aligned}
\] & io & ¢ \\
\hline \[
\frac{y_{2}^{2}}{5}
\] & \[
\underset{\stackrel{N}{N}}{\stackrel{\sim}{N}}
\] & \[
\begin{aligned}
& D^{\prime} \\
& \underset{N}{N} \\
& \dot{D} \\
& \dot{N} \\
& 0
\end{aligned}
\] & & & & & & \[
02 / 08 / 1721: 48
\] & \[
\begin{gathered}
\stackrel{\infty}{N} \\
\stackrel{N}{N} \\
\frac{N}{\infty} \\
\underset{o}{\circ}
\end{gathered}
\] & & & & \[
8 t: I \tau<I / 80 / 20
\] & & \[
\begin{aligned}
& \infty \\
& \dot{1} \\
& \underset{N}{2} \\
& \underset{\sim}{2} \\
& 0 \\
& \underset{y}{2}
\end{aligned}
\] & & \[
\begin{aligned}
& \infty \\
& \dot{N} \\
& \stackrel{1}{2} \\
& \dot{N} \\
& \infty \\
& \underset{N}{2}
\end{aligned}
\] & N
N
N
N
N
N
－ & \[
\begin{aligned}
& N \\
& \tilde{N} \\
& \tilde{N} \\
& \dot{x} \\
& \underset{\sim}{2}
\end{aligned}
\] & N
N
N
N
N
N
N & N
N
N
N
N
N
O & N
N
N
N
N
N & & & N
N
N
N
D
N & N
N
N
N
ì
N
－ & N
N
N
N
N
N
N & \[
\begin{aligned}
& \text { n } \\
& \text { ñ } \\
& \text { n } \\
& \text { m } \\
& \text { N }
\end{aligned}
\] & N
N
N
号
N
N & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & & N
N
N
N
م
N & \[
\begin{aligned}
& \underset{\sim}{n} \\
& \text { N } \\
& \text { N } \\
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \frac{0}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \text { N } \\
& \text { D } \\
& \text { N }
\end{aligned}
\] & N
N
N
N
D
N
O & & N
N
N
\％
N
No \\
\hline 5
8
4
0
0
6 & & & ARS 1－17－00216－005 & & s00－9TZ00－LI－TS४V & \begin{tabular}{c}
1 \\
0 \\
1 \\
0 \\
\(n_{1}\) \\
0 \\
1 \\
\hline \\
\hline 1 \\
\hline 1 \\
\hline
\end{tabular} & & ARS1－17－00216－005 & & \[
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 1 \\
& 0 \\
& 0 \\
& 1 \\
& \frac{1}{1} \\
& 0 \\
& 4
\end{aligned}
\] & & & & & & & & & & & & 900－9TZ00－くI－TS甘も & & 900－9TZ00－ It －IS甘甘 & & 900－9IZ00－ムI－TS४甘 & & & & & & 900－9IZ00－くI－IS甘も & & ARS1-17-00216-006 & & & & 发 \\
\hline \[
\frac{5}{5}
\] & & \[
\begin{gathered}
\frac{9}{0} \\
\frac{1}{2} \\
\frac{1}{0} \\
0 \\
0 \\
0 \\
0
\end{gathered}
\] & & & әบачлиелопи（y）оzuәa & & & \(\stackrel{\nu}{\nu}\)
\(\stackrel{\rightharpoonup}{4}\)
\(\frac{3}{1}\) & Indeno（1，2，3－cd）pyrene & Naphthalene & & 2，4，6－Tribromophenol（Surr） & & & & & & & & & & \[
\begin{aligned}
& \stackrel{y}{4} \\
& \stackrel{y}{0} \\
& \frac{1}{4} \\
& \frac{1}{c}
\end{aligned}
\] & & & & & & & & & － & Indeno（1，2，3－cd）pyrene & \[
\begin{aligned}
& \mathbf{v} \\
& \frac{\mathbf{v}}{0} \\
& \mathbf{N} \\
& \frac{1}{5} \\
& \frac{0}{0}
\end{aligned}
\] & & \(\stackrel{\nu}{\nu}\) & 2，4，6－Tribromophenol（Surr） & & \\
\hline & ¢
\(\stackrel{y}{\sim}\)
\(\vdots\)
\(\infty\) & & & & & & & & & & & & & & & & & O
\(\stackrel{y}{\square}\)
\(\vdots\)
0 & \\
\hline
\end{tabular}
Printed：2／16／2017 3：35 PM
\begin{tabular}{|c|}
\hline Q & \[
\begin{aligned}
& \stackrel{\circ}{\circ} \\
& \stackrel{\rightharpoonup}{\mathrm{H}}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{0}{0} \\
& \stackrel{y}{\mathrm{~N}} \\
& \text { N }
\end{aligned}
\] & \[
\frac{\circ}{\stackrel{\circ}{\mathrm{N}}}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{0} \\
& \dot{J}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\circ}{\stackrel{\circ}{+}} \\
& \stackrel{\rightharpoonup}{0}
\end{aligned}
\] & \[
\stackrel{\circ}{9}
\] & \[
\stackrel{\stackrel{\circ}{2}}{\stackrel{1}{N}}
\] & & \[
\stackrel{\circ}{\stackrel{\circ}{\theta}}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{8}{\circ} \\
& \stackrel{0}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 웅 } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\circ}{0} \\
& \stackrel{\sim}{N}
\end{aligned}
\] & \[
\stackrel{0}{0}
\] & \[
\stackrel{\stackrel{\rightharpoonup}{m}}{\stackrel{\rightharpoonup}{n}}
\] & & \[
0
\] & \[
\stackrel{\circ}{9}
\] & ¢ \\
\hline \[
\frac{y}{8}
\] & \[
\stackrel{\circ}{\stackrel{\circ}{\infty}}
\] & \[
\begin{aligned}
& \circ \\
& \text { oi } \\
& \text { o }
\end{aligned}
\] & \[
\begin{gathered}
\circ \\
\stackrel{\circ}{4} \\
\hline
\end{gathered}
\] & \[
\stackrel{\stackrel{\circ}{\mathrm{m}}}{\mathrm{~m}}
\] & \[
\stackrel{\stackrel{\circ}{\mathrm{N}}}{\mathrm{~N}}
\] & No in & \[
\begin{aligned}
& 0.0 \\
& 0 . \\
& 0
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \text { 80} \\
& \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 9 \\
& 9
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& i \\
& i
\end{aligned}
\] & \[
\stackrel{\circ}{2}
\] & \[
\begin{aligned}
& \stackrel{\circ}{0} \\
& \stackrel{0}{0}
\end{aligned}
\] & \[
\stackrel{\stackrel{\circ}{\mathrm{N}}}{\mathrm{~N}}
\] & \[
\begin{aligned}
& \stackrel{\circ}{户 口} \\
& \underset{\sim}{\infty}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 80 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{9} \\
& \stackrel{1}{2}
\end{aligned}
\] & \[
\stackrel{9}{9}
\] & \[
\begin{aligned}
& \circ \\
& \circ \\
& \\
& \hline
\end{aligned}
\] & \[
\infty
\] & \[
\stackrel{\stackrel{\circ}{\dot{\circ}}}{\stackrel{+}{\dot{m}}}
\] & \[
\begin{aligned}
& \circ 0 \\
& \text { ó } \\
& \text { N }
\end{aligned}
\] & \[
\] & \[
\stackrel{o}{\infty}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\dot{~}} \\
& \hline 1
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \infty \\
& 0 \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ} \\
& \text { مin }
\end{aligned}
\] & io & \[
\stackrel{\circ}{\mathrm{N}}
\] & ㅗㅜㅇ & \[
\begin{aligned}
& \stackrel{\circ}{\grave{0}} \\
& \dot{6}
\end{aligned}
\] & \[
\stackrel{\text { Nे }}{\text { Nin }}
\] & \[
\stackrel{\circ}{i}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{2} \\
& \underset{N}{2}
\end{aligned}
\] & \[
\stackrel{\stackrel{\circ}{\mathrm{N}}}{\mathrm{i}}
\] & 合 \\
\hline
\end{tabular}

 \(Q\)
 \begin{tabular}{c|c}
\(\circ\) \\
0 & 0 \\
0 & 0 \\
\(\infty\) & \(\infty\) \\
0 & \(\infty\) \\
0 & 0 \\
0 & 0
\end{tabular} \(\qquad\) \begin{tabular}{c|c}
0 \\
0 & 0 \\
0 & 0 \\
0 \\
0 & \(N\) \\
0 & N \\
0 & 0
\end{tabular} 0
0
\(\infty\)
\(\infty\)
\(\infty\)
0
0
0 \begin{tabular}{l|l|l}
\(\circ\) & 0 \\
0 & 0 & 0 \\
0 & 0 \\
\(\infty\) & 0 \\
\(\infty\) & \(\infty\) \\
\(n\) & \(\infty\) & \(\infty\) \\
& 0 & \(m\) \\
0 & 0 & 0
\end{tabular}
 \begin{tabular}{ll}
8 \\
0 & 0 \\
0 \\
0 & 0 \\
\(\infty\) \\
\hline
\end{tabular} \(\circ\)
0
0
0
\(\infty\)
\(\dot{\infty}\)
\(\dot{\circ}\)
\(\dot{\circ}\)
\(\dot{\circ}\)
0
0
\begin{tabular}{c}
\(\frac{\pi}{2}\) \\
5 \\
5 \\
5 \\
5 \\
\hline
\end{tabular} \(1{ }^{\text {B }}\)

 4

\section*{ABatch
Sample ID}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{14}{|l|}{Analysis Batch ID ARS1-B17-00170} \\
\hline & \multicolumn{3}{|l|}{Method} & \multicolumn{2}{|l|}{ARS-160} & Analysis & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { GCMS-8270D- } \\
& \text { SO }
\end{aligned}
\]} & Matrix & \multicolumn{4}{|l|}{SO} \\
\hline & \multicolumn{14}{|l|}{Description SVOs base, neutral, \& acid in SO} \\
\hline ABatch Sample ID & Type & Blind Isol & \multicolumn{2}{|l|}{Blind Iso2} & Blind Iso3 & SDG & \multirow[t]{2}{*}{} & FR & Run & Prep Code & & Client ID & 1). Groun Name & Lab Deadline \\
\hline ARS1-E17-00170-01 & LCS & \[
\begin{gathered}
\mathrm{m} 29 \mathrm{~h} \\
01182017-1
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{mz} \\
0125
\end{array}
\] & \[
\begin{aligned}
& 29 \mathrm{~h}- \\
& 2017-1
\end{aligned}
\] & & & & & & & & & & \\
\hline ARS1-B17-00170-02 & LCSD & \[
\begin{gathered}
\mathrm{m} 29 \mathrm{~h}- \\
01182017-1
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{mz} \\
01252
\end{array}
\] & \[
\begin{aligned}
& 29 h-"=" \\
& 2017-1
\end{aligned}
\] & & & & & & & & & & \\
\hline ARS1-B17-00170-03 & MBL & & \[
\begin{array}{r}
\mathrm{m}_{2} \\
0125
\end{array}
\] & \[
\begin{aligned}
& 29 \mathrm{~h}- \\
& 2017-1
\end{aligned}
\] & & & & & & & & & & \\
\hline ARS1-B17-00170-04 & TRG & & & & & ARS1-17-00 & 216 & 001 & 1 & 3550 C & BB-16L & & Semi Volatiles & 02/11/17 \\
\hline ARS1-B17-00170-10 & MS & \[
\left\lvert\, \begin{gathered}
\text { m29h- } \\
01182017-1
\end{gathered}\right.
\] & & & & Parent: ARS1 & 17-00 & 0216- & & & & & & \\
\hline ARS1-B17-00170-11 & MSD & \[
\begin{gathered}
\text { m29h- } \\
01182017-1
\end{gathered}
\] & & & & Parent: ARS1 & 17-00 & 0216-0010 & & & & & & \\
\hline ARS1-B17-00170-05 & TRG & & & & & ARS1-17-00 & & 002 & 1 & 3550 C & BB-18 & & Semi Volatiles & 02/11/17 \\
\hline ARS 1-B17-00170-06 & TRG & & & & & ARS1-17-00 & & 003 & 1 & 3550C & OS-2 & & Semi Volatiles & 02/11/17 \\
\hline ARS1-B17-00170-07 & TRG & & & & & ARS1-17-00 & & 004 & 1 & 3550 C & BB-19M & & Semi Volatiles & 02/11/17 \\
\hline ARS1-B17-00170-08 & TRG & & & & & ARS1-17-00 & 216 & 005 & 1 & 3550 C & BB-16B & & Semi Volatiles & 02/11/17 \\
\hline ARS1-B17-00170-09 & TRG & & & & & ARS1-17-00 & 16 & 006 & 1. & 3550 C & BB-16A & & Semi Volatiles & 02/11/17 \\
\hline
\end{tabular}
Evan Date＿ \(1-31-10(?\)
Prep Date＿1－30－2017

Semi－Volatiles／PCB Sample Preparation Worksheet
\begin{tabular}{c|c|c|}
\hline \(\begin{array}{c}\text { arrogate } \\
\text { Amount } / \\
\text { Conc }\end{array}\) & \(\begin{array}{c}\text { Spike } \\
\text { Amount } / \\
\text { Conc }\end{array}\) & \(\begin{array}{c}\text { Final } \\
\text { Volume，} \\
\mathrm{mL}\end{array}\) \\
\hline mL & m & m
\end{tabular}
合
\(1 m\)
1 m.
\(1 m-\)
\(\leq\)
？
\(\square\) 皘
\begin{tabular}{ll|l|l|l|l|l|l|l|l}
\hline \(\boldsymbol{0} \boldsymbol{l}\) & & & & & & & & & \\
\hline
\end{tabular}
\(\qquad\)

\(\square\)
C
1.

111

\＆
\(\int \frac{1}{3}\)
\(1 t\)
1.

工 흥
1811.

No reagents were used for this procedure.
No reagents were scanned

Response \(=2.162 \mathrm{e}+000\) * Amt

Response \(=2.617 \mathrm{e}+000\) * Amt

Response Ratio

Response \(=5.200 \mathrm{e}-001^{*}\) Amt
RF Rel Std Dev = 2.836\% Curve Fit: Avg RF

Response \(=1.954 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 8.477\% Curve Fit: Avg RF

Response \(=1.275 \mathrm{e}+000\) * Amt
RF Rel Std Dev \(=3.894 \% \quad\) Curve Fit: Avg RF

\section*{Response Ratio}

1-MethyInaphthalene

Response \(=1.170 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 3.876\% Curve Fit: Avg RF

Response \(=2.666 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 7.037\% Curve Fit: Avg RF

Response \(=3.639 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 4.688\% Curve Fit: Avg RF
Method Name: D:IMassHunter\GCMSI1ImethodsIcole_8270_PAH.M

Response \(=2.729 \mathrm{e}+000\) * Amt
RF Rel Std Dev \(=4.488 \% \quad\) Curve Fit: Avg RF
Method Name: D:IMassHunterIGCMSI1Imethodsicole_8270_PAH.M

Response \(=2.527 \mathrm{e}-001^{*}\) Amt \(-1.859 \mathrm{e}-002\)
Coef of Det \(\left(r^{\wedge} 2\right)=0.999717\) Curve Fit: Linear
Method Name: D:IMassHunterIGCMSI11methodsIcole_8270_PAH.M

Response \(=2.070 \mathrm{e}+000\) * Amt

Response \(=2.272 \mathrm{e}+000\) * Amt

\section*{Fluoranthene}

Response Ratio

Response \(=2.327 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 4.162\% Curve Fit: Avg RF
Method Name: D:IMassHunterIGCMSI1Imethodslcole_8270_PAH.M

Response Ratio

Response \(=1.436 \mathrm{e}+000 * \mathrm{Amt}\)
RF Rel Std Dev \(=2.908 \% \quad\) Curve Fit: Avg RF
Method Name: D:IMassHunterIGCMSI1Imethodsicole_8270_PAH.M

Response Ratio
Benzo(a)anthracene

Response Ratio

Response \(=2.002 \mathrm{e}+000\) * Amt

Response \(=2.187 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 2.630\% Curve Fit: Avg RF
Method Name: D:IMassHunterIGCMSIIImethodslcole_8270_PAH.M

Response \(=2.223 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 2.989\% Curve Fit: Avg RF

Response \(=2.139 \mathrm{e}+000\) * Amt
RF Rel Std Dev \(=4.562 \% \quad\) Curve Fit: Avg RF
Method Name: D:IMassHunterIGCMSI1ImethodsIcole_8270_PAH.M

Response \(=2.679 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 4.325\% Curve Fit: Avg RF
Method Name: D:IMassHunterIGCMSI1Imethodsicole_8270_PAH.M

Response Ratio

Response \(=2.231 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 4.701\% Curve Fit: Avg RF

Response \(=2.264 \mathrm{e}+000\) * Amt
RF Rel Std Dev = 4.154\% Curve Fit: Avg RF
Method Name: D:IMassHunterIGCMSI11methodsicole_8270_PAH.M
Method Path : D: \MassHunter \(\backslash G C M S \backslash 1 \backslash\) methods \(\backslash\) Method File : cole_8270_PAH.M
Title : 8270D
Last Update : Wed Feb 08 10:30:56 2017 Response Via : Initial Calibration
Calibration Files
=IC02011706 40ppm 02-01-17.D \(=I C 02011702\) 2ppm 02-01-17.D
\(\%\) 2 C02011703 5ppm 02-01-17.D
\(\begin{array}{lllllllllll}100 & 80 & 60 & 40 & 20 & 10 & 5 & 2 & 1 & \text { Avg } & \text { \%RSD }\end{array}\)

2) S 2-Fluorophenol \(2.4432 .403 \quad 2.475 \quad 2.322 \quad 2.233 \quad 2.028 \quad 1.877 \quad 1.867 \quad 1.812 \quad 2.162 \quad 12.39\)
3) S Phenol-d5 \(\quad 2.7862 .6902 .7902 .825 \quad 2.845 \quad 2.661 \quad 2.329 \quad 2.323 \quad 2.304 \quad 2.617 \quad 8.84\)
4) I Naphthalene-d8 ----------------ISTD-------------------------1
 \(\begin{array}{llllllllllllllllllllll}\text { 7) CPM } 2 \text {-Methylnaphth... } & 1.198 & 1.206 & 1.273 & 1.302 & 1.309 & 1.300 & 1.237 & 1.318 & 1.332 & 1.275 & 3.89\end{array}\) 8) CPM 1-Methylnaphth... 1.1041 .1131 .1661 .1821 .1941 .2121 .1301 .1901 .2351 .17013 .88

10) S \(\quad\) 2-Fluorobiphenyl \(\quad 2.420 \quad 2.452 \quad 2.609 \quad 2.617 \quad 2.736 \quad 2.612 \quad 2.649 \quad 2.929 \quad 2.970 \quad 2.666 \quad 7.04\) 11) CPM Acenaphthylene \(\begin{array}{llllllllllllllllllllllllllll}3.387 & 3.425 & 3.594 & 3.693 & 3.781 & 3.599 & 3.568 & 3.865 & 3.841 & 3.639 & 4.69\end{array}\)
 13) CPM Fluorene

16) CPM Phenanthrene \(\quad \begin{array}{lllllllllllllllllllllllllll}1.870 & 1.948 & 2.013 & 2.070 & 2.136 & 2.112 & 2.020 & 2.221 & 2.241 & 2.070 & 5.89\end{array}\)

\(\begin{array}{llllllllll}1.379 & 1.414 & 1.436 & 1.459 & 1.494 & 1.432 & 1.382 & 1.433 & 1.494 & 1.436\end{array}\)
 1.9311 .9921 .9772 .0342 .0621 .9821 .8972 .0392 .1012 .002
\(\begin{array}{lllll}2.164 & 2.153 & 2.271 & 2.219 & 2.232 \\ 2.156 & 2.079 & 2.175\end{array}\)

cole_8270_PAH.M Fri Feb 10 10:09:27 2017 ARS-HP
```

Data Path : D:\Agilent_Onsite\02-08-17\
Data File : DFTPP2 02-08-17.D
Acq On: 08 Feb 2017 04:23 pm
Operator
Sample : DFTPP2
Misc :
ALS Vial : 1 Sample Multiplier: 1
Integration File: autointl.e
Method : D:\MassHunter\GCMS\I\methods\Agilent_onsite_DFTPP.M
Title :
Last Update : Tue Dec 06 15:44:44 2016

```

AutoFind: Scans 2501, 2502, 2503; Background Corrected with Scan 2489

Agilent_onsite_DFTPP.M Fri Feb 10 09:51:35 2017 ARS-HP

File :D:\Agilent_Onsite\02-08-17\DFTPP2 02-08-17.D
Operator :
Acquired : 08 Feb 2017 04:23 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: DFTPP2
Misc Info :
Vial Number: 1

```

File :D:\Agilent_Onsite\02-08-17\DFTPP2 02-08-17.D
Operator :
Acquired : 08 Feb 2017 04:23 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: DFTPP2
Misc Info :
Vial Number: 1

```

Abundance Ion 184.10 (183.80 to 184.80): DFTPP2 02-08-17. Didata.ms

File :D:\Agilent_Onsite\02-08-17\DFTPP2 02-08-17.D
Operator :
Acquired : 08 Feb 2017 04:23 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: DFTPP2
Misc Info :
Vial Number: 1

Data Path : D: \Agilent_Onsite\02-01-17\}
Data File : ICV 40ppm 02-01-17.D
Acq On : 01 Feb 2017 04:20 pm
Operator :
Sample : ICV 40ppm
Misc
ALS Vial : 11 Sample Multiplier: 1
Quant Time: Feb 16 13:44:29 2017
Quant Method : D: \MassHunter\GCMS \(\backslash 1 \backslash m e t h o d s \backslash c o l e _8270 _P A H . M ~\)
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration

Min. RRF : 0.000
Max. RRF Dev : \(20 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Compound} & \multicolumn{2}{|l|}{Amount} & \multicolumn{3}{|l|}{\%Dev Area\% Dev(min)} \\
\hline 1 & I & 1,4-Dichlorobenzene-d4 & 20.000 & 20.000 & 0.0 & 91 & 0.00 \\
\hline 2 & S & 2-Fluorophenol & 40.000 & 40.630 & -1.6 & 86 & 0.00 \\
\hline 3 & S & Phenol-d5 & 40.000 & 40.714 & -1.8 & 86 & 0.00 \\
\hline 4 & I & Naphthalene-d8 & 20.000 & 20.000 & 0.0 & 94 & 0.00 \\
\hline 5 & S & Nitrobenzene-d5 & 40.000 & 41.642 & -4.1 & 95 & 0.00 \\
\hline 6 & CPM & Naphthalene & 40.000 & 40.171 & -0.4 & 93 & 0.00 \\
\hline 7 & CPM & 2-Methylnaphthalene & 40.000 & 40.017 & -0.0 & 92 & 0.00 \\
\hline 8 & CPM & 1-Methylnaphthalene & 40.000 & 39.903 & 0.2 & 92 & 0.00 \\
\hline 9 & I & Acenaphthene-d10 & 20.000 & 20.000 & 0.0 & 93 & 0.00 \\
\hline 10 & S & 2-Fluorobiphenyl & 40.000 & 40.317 & -0.8 & 95 & 0.00 \\
\hline 11 & CPM & Acenaphthylene & 40.000 & 40.675 & -1.7 & 93 & 0.00 \\
\hline 12 & CPM & Acenaphthene & 40.000 & 39.468 & 1.3 & 93 & 0.00 \\
\hline 13 & CPM & Fluorene & 40.000 & 40.335 & -0.8 & 92 & 0.00 \\
\hline 14 & I & Phenanthrene-d10 & 20.000 & 20.000 & 0.0 & 92 & 0.00 \\
\hline 15 & S & 2,4,6-Tribromophenol & 40.000 & 36.483 & 8.8 & 85 & 0.00 \\
\hline 16 & CPM & Phenanthrene & 40.000 & 40.069 & -0.2 & 92 & 0.00 \\
\hline 17 & CPM & Anthracene & 40.000 & 40.496 & -1.2 & 91 & 0.00 \\
\hline 18 & CPM & Pyrene & 40.000 & 40.736 & -1.8 & 92 & 0.00 \\
\hline 19 & CPM & Fluoranthene & 40.000 & 40.660 & -1.6 & 92 & 0.00 \\
\hline 20 & I & Chrysene-d12 & 20.000 & 20.000 & 0.0 & 92 & 0.00 \\
\hline 21 & S & Terphenyl-d14 & 40.000 & 41.945 & -4.9 & 95 & 0.00 \\
\hline 22 & CPM & Benzo(a)anthracene & 40.000 & 41.025 & -2.6 & 92 & 0.00 \\
\hline 23 & CPM & Chrysene & 40.000 & 40.828 & -2.1 & 92 & 0.00 \\
\hline 24 & I & Perylene-d12 & 20.000 & 20.000 & 0.0 & 91 & 0.00 \\
\hline 25 & CPM & Benzo(b)fluoranthene & 40.000 & 40.718 & -1.8 & 91 & 0.00 \\
\hline 26 & CPM & Benzo(k)fluoranthene & 40.000 & 41.966 & -4.9 & 94 & -0.01 \\
\hline 27 & CPM & Benzo(a)pyrene & 40.000 & 41.676 & -4.2 & 92 & -0.01 \\
\hline 28 & CPM & Indeno(1,2,3-cd)pyrene & 40.000 & 42.110 & -5.3 & 92 & -0.03 \\
\hline 29 & CPM & Dibenz(a,h)anthracene & 40.000 & 42.362 & -5.9 & 91 & -0.04 \\
\hline 30 & CPM & Benzo(g, h,i)perylene & 40.000 & 40.859 & -2.1 & 91 & -0.03 \\
\hline
\end{tabular}
(\#) = Out of Range
SPCC's out \(=0 \quad\) CCC's out \(=0\)

Data Path : D: \Agilent_Onsite\02-01-17\
Data File : ICV 40ppm \({ }^{\text {e2-01-17.D }}\)
Acq On : 01 Feb 2017 04:20 pm
Operator
Sample: ICV 40ppm
Misc
ALS Vial : 11 Sample Multiplier: 1
Quant Time: Feb 16 13:44:29 2017
Quant Method : D: \MassHunter\GCMS \(\backslash 1 \backslash m e t h o d s \backslash c o l e _8270 _P A H . M\)
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
Compound R.T. QIon Response Conc Units Dev(Min)
Internal Standards
\begin{tabular}{rrrrrr}
1) 1,4-Dichlorobenzene-d4 & 6.462 & 152 & 171995 & 20.00 ng & 0.00 \\
4) Naphthalene-d8 & 7.494 & 136 & 658119 & 20.00 ng & 0.00 \\
9) Acenaphthene-d10 & 8.930 & 164 & 298209 & 20.00 ng & 0.00 \\
14) Phenanthrene-d10 & 10.248 & 188 & 568473 & 20.00 ng & 0.00 \\
20) Chrysene-d12 & 13.097 & 240 & 595908 & 20.00 ng & 0.00 \\
24) Perylene-d12 & 15.572 & 264 & 581484 & 20.00 ng & 0.00
\end{tabular}

System Monitoring Compounds
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2) 2-Fluorophenol & 5.409 & 112 & 755473 & 40.63 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 19 & - 119 & Recovery & & 101.58\% & \\
\hline 3) Phenol-d5 & 6.090 & 99 & 916238 & 40.71 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & 101.77\% & \\
\hline 5) Nitrobenzene-d5 & 6.892 & 82 & 712511 & 41.64 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 120 & Recovery & & 104.10\% & \\
\hline 10) 2-Fluorobiphenyl & 8.333 & 172 & 1602656 & 40.32 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 119 & Recovery & & 100.80\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.599 & 330 & 251455 & 36.48 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 43 & - 140 & Recovery & & 91.20\% & \\
\hline 21) Terphenyl-d14 & 11.797 & 244 & 1794511 & 41.95 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 50 & - 134 & Recovery & = & 104.88\% & \\
\hline
\end{tabular}
\begin{tabular}{lrlllr}
Target Compounds \\
6) Naphthalene & & & & Qvalue \\
7) 2-Methylnaphthalene & 7.511 & 128 & 2582886 & 40.17 ng & 98 \\
8) 1-Methylnaphthalene & 8.061 & 142 & 1678819 & 40.02 ng & 98 \\
11) Acenaphthylene & 8.149 & 142 & 1535707 & 39.90 ng & 98 \\
12) Acenaphthene & 8.820 & 152 & 2207155 & 40.68 ng & 96 \\
13) Fluorene & 8.960 & 154 & 1430491 & 39.47 ng & 100 \\
16) Phenanthrene & 9.392 & 166 & 1641235 & 40.34 ng & 100 \\
17) Anthracene & 10.272 & 178 & 2357885 & 40.07 ng & 99 \\
18) Pyrene & 10.321 & 178 & 2523216 & 40.50 ng & 99 \\
19) Fluoranthene & 11.460 & 202 & 2630812 & 40.74 ng & 96 \\
22) Benzo(a)anthracene & 11.718 & 202 & 2689464 & 40.66 ng & 95 \\
23) Chrysene & 13.079 & 228 & 2529478 & 41.02 ng & 96 \\
25) Benzo(b)fluoranthene & 13.132 & 228 & 2435031 & 40.83 ng & 96 \\
26) Benzo(k)fluoranthene & 14.791 & 252 & 2588597 & 40.72 ng & 100 \\
27) Benzo(a)pyrene & 14.838 & 252 & 2711813 & 41.97 ng & 96 \\
28) Indeno(1,2,3-cd)pyrene & 15.463 & 252 & 2591263 & 41.68 ng & 93 \\
29) Dibenz(a,h)anthracene & 18.331 & 276 & 3279744 & 42.11 ng & 94 \\
30) Benzo(g,h,i)perylene & 18.342 & 278 & 2748371 & 42.36 ng & 100 \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed

File :D:\Agilent_Onsite\02-01-17\ICV 40ppm 02-01-17.D
Operator :
Acquired : 01 Feb 2017 04:20 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ICV 40ppm
Misc Info :
Vial Number: 11

Abundance
TIC: ICV 40ppm 02-01-17.Didata.ms

\begin{tabular}{|c|c|}
\hline Data Path : & D:\Agilent Onsite\02-08-17
CCV1 40ppm 02-08-17.D \\
\hline Acq On & 08 Feb 2017 04:53 pm \\
\hline Operator & \\
\hline Sample & CCV1 40ppm \\
\hline Misc & \\
\hline ALS Vial & 2 Sample Multiplier: 1 \\
\hline Quant Time: & Feb 08 17:15:12 2017 \\
\hline Quant Method & : D:\MassHunter\GCMS \1\methods\cole_8270_PAH.M \\
\hline Quant Title & : 8270D \\
\hline QLast Update & : Wed Feb 08 10:30:56 2017 \\
\hline Response via & : Initial Calibration \\
\hline
\end{tabular}
\begin{tabular}{llclll}
Min. RRF & 0.000 & Min. Rel. Area : & \(50 \%\) & Max. R.T. Dev 0.50 min
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Compound & AvgRF & CCRF & \multicolumn{3}{|l|}{\%Dev Area\% Dev(min)} \\
\hline 1 & I & 1,4-Dichlorobenzene-d4 & 1.000 & 1.000 & 0.0 & 103 & 0.00 \\
\hline 2 & S & 2-Fluorophenol & 2.162 & 2.457 & -13.6 & 109 & 0.00 \\
\hline 3 & S & Phenol-d5 & 2.617 & 2.933 & -12.1 & 107 & 0.00 \\
\hline 4 & I & Naphthalene-d8 & 1.000 & 1.000 & 0.0 & 105 & 0.00 \\
\hline 5 & S & Nitrobenzene-d5 & 0.520 & 0.535 & -2.9 & 106 & 0.00 \\
\hline 6 & CPM & Naphthalene & 1.954 & 1.943 & 0.6 & 104 & 0.00 \\
\hline 7 & CPM & 2-Methylnaphthalene & 1.275 & 1.265 & 0.8 & 102 & 0.00 \\
\hline 8 & CPM & 1-Methylnaphthalene & 1.170 & 1.141 & 2.5 & 102 & 0.00 \\
\hline 9 & I & Acenaphthene-d10 & 1.000 & 1.000 & 0.0 & 96 & 0.00 \\
\hline 10 & S & 2-Fluorobiphenyl & 2.666 & 2.718 & -2.0 & 100 & 0.00 \\
\hline 11 & CPM & Acenaphthylene & 3.639 & 3.753 & -3.1 & 98 & 0.00 \\
\hline 12 & CPM & Acenaphthene & 2.431 & 2.421 & 0.4 & 97 & 0.00 \\
\hline 13 & CPM & Fluorene & 2.729 & 2.778 & -1.8 & 97 & 0.00 \\
\hline 14 & I & Phenanthrene-d10 & 1.000 & 1.000 & 0.0 & 99 & 0.00 \\
\hline 15 & S & 2,4,6-Tribromophenol & 0.207 & 0.242 & -16.9 & 100 & 0.00 \\
\hline 16 & CPM & Phenanthrene & 2.070 & 2.057 & 0.6 & 98 & 0.00 \\
\hline 17 & CPM & Anthracene & 2.192 & 2.229 & -1.7 & 98 & 0.00 \\
\hline 18 & CPM & Pyrene & 2.272 & 2.339 & -2.9 & 100 & 0.00 \\
\hline 19 & CPM & Fluoranthene & 2.327 & 2.364 & -1.6 & 99 & 0.00 \\
\hline 20 & I & Chrysene-d12 & 1.000 & 1.000 & 0.0 & 99 & 0.00 \\
\hline 21 & S & Terphenyl-d14 & 1.436 & 1.447 & -0.8 & 98 & 0.00 \\
\hline 22 & CPM & Benzo(a)anthracene & 2.069 & 2.115 & -2.2 & 99 & 0.00 \\
\hline 23 & CPM & Chrysene & 2.002 & 2.048 & -2.3 & 100 & 0.00 \\
\hline 24 & I & Perylene-d12 & 1.000 & 1.000 & 0.0 & 100 & 0.00 \\
\hline 25 & CPM & Benzo(b)fluoranthene & 2.187 & 2.173 & 0.6 & 98 & -0.01 \\
\hline 26 & CPM & Benzo(k)fluoranthene & 2.223 & 2.250 & -1.2 & 100 & -0.01 \\
\hline 27 & CPM & Benzo(a)pyrene & 2.139 & 2.223 & -3.9 & 101 & -0.01 \\
\hline 28 & CPM & Indeno(1, 2, 3-cd)pyrene & 2.679 & 2.744 & -2.4 & 99 & -0.03 \\
\hline 29 & CPM & Dibenz(a,h)anthracene & 2.231 & 2.284 & -2.4 & 98 & -0.03 \\
\hline 30 & CPM & Benzo(g, h, i) perylene & 2.264 & 2.309 & -2.0 & 100 & -0.03 \\
\hline
\end{tabular}

\footnotetext{
(\#) = Out of Range
SPCC's out \(=0 \quad\) CCC's out \(=0\)
}

Compound
R.T. QIon Response Conc Units Dev(Min)

Internal Standards
\begin{tabular}{rrrlll}
1) 1,4 -Dichlorobenzene-d4 & 6.459 & 152 & 194134 & 20.00 ng & 0.00 \\
4) Naphthalene-d8 & 7.491 & 136 & 741384 & 20.00 ng & 0.00 \\
9) Acenaphthene-d10 & 8.929 & 164 & 309466 & 20.00 ng & 0.00 \\
14) Phenanthrene-d10 & 10.248 & 188 & 608885 & 20.00 ng & 0.00 \\
20) Chrysene-d12 & 13.093 & 240 & 643091 & 20.00 ng & 0.00 \\
24) Perylene-d12 & 15.571 & 264 & 641932 & 20.00 ng & 0.00
\end{tabular}

System Monitoring Compounds
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2) 2-Fluorophenol & 5.406 & 112 & 953892 & 45.45 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 19 & - 119 & Recovery & = & 113.63\% & \\
\hline 3) Phenol-d5 & 6.090 & 99 & 1138695 & 44.83 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & 112.07\% & \\
\hline 5) Nitrobenzene-d5 & 6.892 & 82 & 793199 & 41.15 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 120 & Recovery & = & 102.88\% & \\
\hline 10) 2-Fluorobiphenyl & 8.331 & 172 & 1682101 & 40.78 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 119 & Recovery & = & 101.95\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.598 & 330 & 294479 & 39.75 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 43 & - 140 & Recovery & & 99.38\% & \\
\hline 21) Terphenyl-d14 & 11.795 & 244 & 1861704 & 40.32 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 50 & - 134 & Recovery & = & 100.80\% & \\
\hline
\end{tabular}

Target Compounds
6) Naphthalene
7) 2-Methylnaphthalene
8) 1-Methylnaphthalene
11) Acenaphthylene
12) Acenaphthene
13) Fluorene
16) Phenanthrene
17) Anthracene
18) Pyrene
19) Fluoranthene
22) Benzo(a)anthracene
23) Chrysene
25) Benzo(b)fluoranthene
26) Benzo(k)fluoranthene
27) Benzo(a)pyrene
28) Indeno(1,2,3-cd)pyrene
29) Dibenz (a,h)anthracene
30) Benzo(g,h,i)perylene
\begin{tabular}{rrrrr}
& & & Qvalue \\
7.509 & 128 & 2881168 & 39.78 ng & 96 \\
8.062 & 142 & 1875129 & 39.68 ng & 99 \\
8.147 & 142 & 1692008 & 39.03 ng & 98 \\
8.821 & 152 & 2322695 & 41.25 ng & 96 \\
8.958 & 154 & 1498160 & 39.83 ng & 98 \\
9.390 & 166 & 1719173 & 40.71 ng & 99 \\
10.271 & 178 & 2504668 & 39.74 ng & 99 \\
10.321 & 178 & 2714769 & 40.68 ng & 99 \\
11.461 & 202 & 2848794 & 41.18 ng & 96 \\
11.716 & 202 & 2878778 & 40.63 ng & 96 \\
13.078 & 228 & 2720416 & 40.88 ng & 96 \\
13.131 & 228 & 2633684 & 40.92 ng & 96 \\
14.789 & 252 & 2790192 & 39.76 ng & 100 \\
14.839 & 252 & 2888955 & 40.50 ng & 96 \\
15.462 & 252 & 2853829 & 41.58 ng & 94 \\
18.331 & 276 & 3522549 & 40.97 ng & 95 \\
18.346 & 278 & 2932018 & 40.94 ng & 100 \\
19.189 & 276 & 2963968 & 40.80 ng & 100
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\CCV1 40ppm 02-08-17.D
Operator :
Acquired : 08 Feb 2017 04:53 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: CCV1 40ppm
Misc Info :
Vial Number: 2

```

```

Data Path : D:\Agilent Onsite\02-08-17\
Data File : ClosingCCV1 40ppm 02-08-17.D
Acq On : 09 Feb 2017 12:15 am
Operator :
Sample : ClosingCCV1 40ppm
Misc
ALS Vial : 2 Sample Multiplier: 1
Quant Time: Feb 09 08:28:42 2017
Quant Method : D: \MassHunter $\backslash G C M S \backslash 1 \backslash m e t h o d s \backslash c o l e \_8270 \_P A H . M$
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration

```

Min. RRF : 0.000 Min. Rel. Area : \(50 \%\) Max. R.T. Dev 0.50min
Max. RRF Dev : 20\% Max. Rel. Area : \(150 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Compound & AvgRF & CCRF & \multicolumn{3}{|l|}{\%Dev Area\% Dev(min)} \\
\hline 1 & I & 1,4-Dichlorobenzene-d4 & 1.000 & 1.000 & 0.0 & 103 & 0.00 \\
\hline 2 & S & 2-Fluorophenol & 2.162 & 2.437 & -12.7 & 109 & 0.00 \\
\hline 3 & S & Phenol-d5 & 2.617 & 2.707 & -3.4 & 99 & 0.00 \\
\hline 4 & I & Naphthalene-d8 & 1.000 & 1.000 & 0.0 & 97 & 0.00 \\
\hline 5 & S & Nitrobenzene-d5 & 0.520 & 0.557 & -7.1 & 101 & 0.00 \\
\hline 6 & CPM & Naphthalene & 1.954 & 1.984 & -1.5 & 98 & 0.00 \\
\hline 7 & CPM & 2-Methylnaphthalene & 1.275 & 1.313 & -3.0 & 97 & 0.00 \\
\hline 8 & CPM & 1-Methylnaphthalene & 1.170 & 1.200 & -2.6 & 98 & 0.00 \\
\hline 9 & I & Acenaphthene-d10 & 1.000 & 1.000 & 0.0 & 100 & 0.00 \\
\hline 10 & S & 2-Fluorobiphenyl & 2.666 & 2.603 & 2.4 & 99 & 0.00 \\
\hline 11 & CPM & Acenaphthylene & 3.639 & 3.752 & -3.1 & 101 & 0.00 \\
\hline 12 & CPM & Acenaphthene & 2.431 & 2.431 & 0.0 & 101 & 0.00 \\
\hline 13 & CPM & Fluorene & 2.729 & 2.890 & -5.9 & 104 & 0.00 \\
\hline 14 & I & Phenanthrene-d10 & 1.000 & 1.000 & 0.0 & 103 & 0.00 \\
\hline 15 & S & 2,4,6-Tribromophenol & 0.207 & 0.247 & -19.3 & 107 & 0.00 \\
\hline 16 & CPM & Phenanthrene & 2.070 & 2.062 & 0.4 & 103 & 0.00 \\
\hline 17 & CPM & Anthracene & 2.192 & 2.232 & -1.8 & 103 & 0.00 \\
\hline 18 & CPM & Pyrene & 2.272 & 2.367 & -4.2 & 106 & 0.00 \\
\hline 19 & CPM & Fluoranthene & 2,327 & 2.402 & -3.2 & 105 & 0.00 \\
\hline 20 & I & Chrysene-d12 & 1.000 & 1.000 & 0.0 & 103 & 0.00 \\
\hline 21 & S & Terphenyl-d14 & 1.436 & 1.468 & -2.2 & 103 & 0.00 \\
\hline 22 & CPM & Benzo(a)anthracene & 2.069 & 2.150 & -3.9 & 104 & 0.00 \\
\hline 23 & CPM & Chrysene & 2.002 & 2.079 & -3.8 & 105 & 0.00 \\
\hline 24 & I & Perylene-d12 & 1.000 & 1.000 & 0.0 & 107 & 0.00 \\
\hline 25 & CPM & Benzo(b)fluoranthene & 2.187 & 2.233 & -2.1 & 108 & 0.00 \\
\hline 26 & CPM & Benzo(k)fluoranthene & 2.223 & 2.232 & -0.4 & 106 & 0.00 \\
\hline 27 & CPM & Benzo(a)pyrene & 2.139 & 2.232 & -4.3 & 108 & -0.01 \\
\hline 28 & CPM & Indeno(1,2,3-cd)pyrene & 2.679 & 2.845 & -6.2 & 110 & -0.02 \\
\hline 29 & CPM & Dibenz(a,h)anthracene & 2.231 & 2.383 & -6.8 & 109 & -0.03 \\
\hline 30 & CPM & Benzo(\(\mathrm{g}, \mathrm{h}, \mathrm{i}\)) perylene & 2.264 & 2.429 & -7.3 & 113 & -0.03 \\
\hline
\end{tabular}
(\#) = Out of Range
SPCC's out \(=0\) CCC's out \(=0\)

Data Path : D: \Agilent_Onsite\02-08-17\}
Data File : ClosingCCV1 40ppm 02-08-17.D
Acq On : 09 Feb 2017 12:15 am
Operator :
Sample : ClosingCCV1 40ppm
Misc
ALS Vial : 2 Sample Multiplier: 1
Quant Time: Feb 09 08:28:42 2017
Quant Method : D: \MassHunter\GCMS \I\methods\cole_ 8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.459 & 152 & 194882 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.493 & 136 & 679791 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.929 & 164 & 320320 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.249 & 188 & 638309 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.096 & 240 & 667167 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.574 & 264 & 687203 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.410 & 112 & 949806 & 45.08 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 19 & - 119 & \multicolumn{4}{|l|}{Recovery \(=112.70 \%\)} \\
\hline 3) Phenol-d5 & 6.096 & 99 & 1055114 & 41.38 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & \multicolumn{4}{|l|}{Recovery \(=103.45 \%\)} \\
\hline 5) Nitrobenzene-d5 & 6.893 & 82 & 756995 & 42.83 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 120 & \multicolumn{4}{|l|}{Recovery \(=107.07 \%\)} \\
\hline 10) 2-Fluorobiphenyl & 8.330 & 172 & 1667633 & 39.06 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 119 & \multicolumn{4}{|l|}{Recovery \(=97.65 \%\)} \\
\hline 15) 2,4,6-Tribromophenol & 9.598 & 330 & 315491 & 40.59 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 43 & - 140 & \multicolumn{4}{|l|}{Recovery \(=101.48 \%\)} \\
\hline 21) Terphenyl-d14 & 11.797 & 244 & 1958729 & 40.89 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 50 & - 134 & \multicolumn{4}{|l|}{Recovery \(=102.23 \%\)} \\
\hline Target Compounds & & & & & & lue \\
\hline 6) Naphthalene & 7.510 & 128 & 2697408 & 40.61 & ng & 99 \\
\hline 7) 2-Methylnaphthalene & 8.061 & 142 & 1784991 & 41.19 & ng & 98 \\
\hline 8) 1-Methylnaphthalene & 8.149 & 142 & 1630945 & 41.03 & ng & 99 \\
\hline 11) Acenaphthylene & 8.820 & 152 & 2403628 & 41.24 & ng & 97 \\
\hline 12) Acenaphthene & 8.958 & 154 & 1557384 & 40.00 & ng & 100 \\
\hline 13) Fluorene & 9.394 & 166 & 1851293 & 42.36 & ng & 99 \\
\hline 16) Phenanthrene & 10.272 & 178 & 2632793 & 39.85 & ng & 99 \\
\hline 17) Anthracene & 10.322 & 178 & 2849049 & 40.72 & ng & 99 \\
\hline 18) Pyrene & 11.462 & 202 & 3021281 & 41.66 & ng & 96 \\
\hline 19) Fluoranthene & 11.718 & 202 & 3066606 & 41.29 & ng & 96 \\
\hline 22) Benzo(a)anthracene & 13.079 & 228 & 2868618 & 41.56 & ng & 96 \\
\hline 23) Chrysene & 13.132 & 228 & 2773578 & 41.54 & ng & 96 \\
\hline 25) Benzo(b)fluoranthene & 14.792 & 252 & 3069613 & 40.86 & ng & 100 \\
\hline 26) Benzo(k)fluoranthene & 14.842 & 252 & 3068357 & 40.18 & ng & 96 \\
\hline 27) Benzo(a)pyrene & 15.465 & 252 & 3067386 & 41.74 & ng & 93 \\
\hline 28) Indeno(1,2,3-cd)pyrene & 18.340 & 276 & 3910763 & 42.49 & ng & 93 \\
\hline 29) Dibenz (a,h)anthracene & 18.352 & 278 & 3274966 & 42.71 & ng & 100 \\
\hline 30) Benzo(g,h,i)perylene & 19.195 & 276 & 3338192 & 42.92 & ng & 100 \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range (m) = manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\ClosingCCV1 40ppm 02-08-17.D
Operator
Acquired : 09 Feb 2017 12:15 am using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ClosingCCV1 40ppm
Misc Info :
Vial Number: 2

```


Tune File : D: \Agilent Onsite \(102-08-17 \backslash\) DFTPP2 02-08-17.D
Tune Time : 08 Feb \(201 \overline{7} 04: 23 \mathrm{pm}\)
Daily Calibration File : D: \Agilent_Onsite\02-01-17\IC02011706 40ppm 02-01-17.D
\begin{tabular}{lrrr}
C6H5FC6HD5C6D5NC12H9 & C6Cl2 & C10D8 & C12D1 \\
& 188327 & 703390 & 321370 \\
C6H3BC18D1 & & & \\
& C14D1 & C18D1 & C20D1 \\
& 617076 & 650290 & 639389
\end{tabular}

File Sample Surrogate Recovery \% Internal Standard Responses
 ARS1-B17-00170-01 LCS 02-08-17.D
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ARS1-B17-0 & \[
\begin{aligned}
& 85 \\
& 91
\end{aligned}
\] & \[
\begin{array}{r}
89 \\
101
\end{array}
\] & 86 & 90 & \[
\begin{aligned}
& 206105 \\
& 623555
\end{aligned}
\] & \[
\begin{aligned}
& 783191 \\
& 665435
\end{aligned}
\] & \[
\begin{aligned}
& 320838 \\
& 649967
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-02 LCSD 02-08-17.D} \\
\hline ARS1-B17-0 & 58 & 65 & 66 & 73 & 179306 & 718752 & 311471 \\
\hline & 82 & 103 & & & 604689 & 640333 & 627105 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-03 MBLK 02-08-17.D} \\
\hline ARS1-B17-0 & 53 & 56 & 55 & 58 & 196385 & 777806 & 322986 \\
\hline & 54 & 105 & & & 600512 & 629799 & 607076 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-04 02-08-17.D} \\
\hline ARS1-B17-0 & 18* & 33* & \(24 *\) & 47 & 202974 & 719864 & 328305 \\
\hline & 74 & 75 & & & 641545 & 690272 & 689262 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-05 02-08-17.D} \\
\hline ARS1-B17-0 & 55 & 63 & 75 & 75 & 207978 & 716159 & 342676 \\
\hline & 85 & 80 & & & 676407 & 711393 & 746076 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-07 02-08-17.D} \\
\hline ARS1-B17-0 & 58 & 63 & 55 & 53 & 172709 & 636454 & 305625 \\
\hline & 80 & 60 & & & 599727 & 611934 & 637850 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-08 02-08-17.D} \\
\hline ARS 1-B17-0 & 46 & 57 & 58 & 72 & 184236 & 669657 & 327955 \\
\hline & 81 & 87 & & & 628325 & 650461 & 666285 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-09 02-08-17.D} \\
\hline ARS 1-B17-0 & 81 & 82 & 81 & 76 & 200420 & 703087 & 341395 \\
\hline & 94 & 82 & & & 670381 & 706981 & 744379 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-10 MS 02-08-17.D} \\
\hline ARS1-B17-0 & 15* & 33* & 20* & \(38 *\) & 199266 & 718972 & 332207 \\
\hline & 79 & 78 & & & 659976 & 708493 & 731587 \\
\hline \multicolumn{8}{|l|}{ARS1-B17-00170-11 MSD 02-08-17.D} \\
\hline ARS1-B17-0 & 11* & 29* & 18* & \(34 *\) & 207959 & 756265 & 358453 \\
\hline & 71 & 68 & & & 693928 & 732148 & 753037 \\
\hline \multicolumn{8}{|l|}{CCV1 40ppm 02-08-17. D} \\
\hline CCV1 40ppm & 114 & 112 & 103 & 102 & 194134 & 741384 & 309466 \\
\hline & 99 & 101 & & & 608885 & 643091 & 641932 \\
\hline \multicolumn{8}{|l|}{ClosingCCV1 40ppm 02-08-17.D} \\
\hline \multirow[t]{2}{*}{ClosingCCV} & 113 & 103 & 107 & 98 & 194882 & 679791 & 320320 \\
\hline & 101 & 102 & & & 638309 & 667167 & 687203 \\
\hline
\end{tabular}
(fails) - fails l2hr time check * - fails criteria
Created: Fri Feb 10 09:58:37 2017 GCMS \#1
```

Data Path : D:\Agilent_Onsite\02-08-17\
Data File : ARS1-B17-00170-01 LCS 02-08-17.D
Acq On : 08 Feb 2017 05:52 pm
Operator :
Sample : ARS1-B17-00170-01
Misc : Soil
ALS Vial : 4 Sample Multiplier: 1
Quant Time: Feb 09 08:27:51 2017
Quant Method : D:\MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration

```
 Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.458 & 152 & 206105 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.489 & 136 & 783191 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.927 & 164 & 320838 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.249 & 188 & 623555 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.092 & 240 & 665435 & 20.00 & ng & -0.01 \\
\hline 24) Perylene-d12 & 15.568 & 264 & 649967 & 20.00 & ng & -0.01 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.410 & 112 & 756969 & 33.97 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & & 84.92\% & \\
\hline 3) Phenol-d5 & 6.089 & 99 & 956261 & 35.46 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & 88.65\% & \\
\hline 5) Nitrobenzene-d5 & 6.889 & 82 & 699666 & 34.36 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery & & 85.90\% & \\
\hline 10) 2-Fluorobiphenyl & 8.328 & 172 & 1535046 & 35.89 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & & 89.72\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.599 & 330 & 275587 & 36.45 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & & 91.13\% & \\
\hline 21) Terphenyl-d14 & 11.795 & 244 & 1930034 & 40.40 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & ¢ & 101.00\% & \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrr}
Target Compounds \\
6) Naphthalene & & & & Qvalue \\
7) 2-Methylnaphthalene & 7.509 & 128 & 1309507 & 17.11 ng & 86 \\
8) 1-Methylnaphthalene & 8.060 & 142 & 844284 & 16.91 ng & 98 \\
11) Acenaphthylene & 8.147 & 142 & 767403 & 16.76 ng & 98 \\
12) Acenaphthene & 8.819 & 152 & 1060594 & 18.17 ng & 96 \\
13) Fluorene & 8.956 & 154 & 698649 & 17.92 ng & 99 \\
16) Phenanthrene & 9.391 & 166 & 816140 & 18.64 ng & 98 \\
17) Anthracene & 10.269 & 178 & 1247838 & 19.33 ng & 98 \\
18) Pyrene & 10.319 & 178 & 1308855 & 19.15 ng & 99 \\
19) Fluoranthene & 11.461 & 202 & 1415084 & 19.98 ng & 96 \\
22) Benzo(a)anthracene & 11.713 & 202 & 1461561 & 20.14 ng & 95 \\
23) Chrysene & 13.077 & 228 & 1377983 & 20.01 ng & 95 \\
25) Benzo(b)fluoranthene & 13.130 & 228 & 1328724 & 19.95 ng & 96 \\
26) Benzo(k)fluoranthene & 14.786 & 252 & 1418792 & 19.97 ng & 100 \\
27) Benzo(a)pyrene & 14.836 & 252 & 1440868 & 19.95 ng & 96 \\
28) Indeno(1,2,3-cd)pyrene & 15.459 & 252 & 1362674 & 19.61 ng & 93 \\
29) Dibenz(a,h)anthracene & 18.321 & 276 & 1719671 & 19.75 ng & 95 \\
30) Benzo(g,h,i)perylene & 18.339 & 278 & 1421835 & 19.61 ng & 100 \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range (m) = manual integration (+) = signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-01 LCS 02-08-17.D
Operator :
Acquired : 08 Feb 2017 05:52 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-01
Misc Info : Soil
Vial Number: 4

```


Data Path : D:\Agilent_Onsite\02-08-17\}
Data File : ARS1-B17-00170-02 LCSD 02-08-17.D
Acq On : 08 Feb 2017 06:21 pm
Operator :
Sample : ARS1-B17-00170-02
Misc : Soil
ALS Vial : 5 Sample Multiplier: 1
Quant Time: Feb 09 08:28:06 2017
Quant Method : D:\MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
Compound R.T. QIon Response Conc Units Dev(Min)
Internal Standards
\begin{tabular}{rrrrrr}
1) 1,4 -Dichlorobenzene-d4 & 6.458 & 152 & 179306 & 20.00 ng & 0.00 \\
4) Naphthalene-d8 & 7.490 & 136 & 718752 & 20.00 ng & 0.00 \\
9) Acenaphthene-d10 & 8.928 & 164 & 311471 & 20.00 ng & 0.00 \\
14) Phenanthrene-d10 & 10.247 & 188 & 604689 & 20.00 ng & 0.00 \\
20) Chrysene-d12 & 13.093 & 240 & 640333 & 20.00 ng & 0.00 \\
24) Perylene-d12 & 15.569 & 264 & 627105 & 20.00 ng & 0.00
\end{tabular}

System Monitoring Compounds
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2) 2-Fluorophenol & 5.406 & 112 & 450180 & 23.22 & ng & . 00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & & 58.05\% & \\
\hline 3) Phenol-d5 & 6.089 & 99 & 610875 & 26.04 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & 65.10\% & \\
\hline 5) Nitrobenzene-d5 & 6.888 & 82 & 492429 & 26.35 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & 122 & Recovery & = & 65.88\% & \\
\hline 10) 2-Fluorobiphenyl & 8.330 & 172 & 1212692 & 29.21 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & 115 & Recovery & & 73.03\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.597 & 330 & 239858 & 32.87 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & 132 & Recovery & & 82.17\% & \\
\hline 21) Terphenyl-d14 & 11.797 & 244 & 1895359 & 41.23 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & & 103.07\% & \\
\hline
\end{tabular}
\begin{tabular}{lrlllr}
Target Compounds \\
6) Naphthalene & & & & Qvalue \\
7) 2 -Methylnaphthalene & 7.508 & 128 & 935868 & 13.33 ng & 81 \\
8) 1-Methylnaphthalene & 8.058 & 142 & 628447 & 13.72 ng & 99 \\
11) Acenaphthylene & 8.146 & 142 & 585927 & 13.94 ng & 99 \\
12) Acenaphthene & 8.817 & 152 & 880606 & 15.54 ng & 96 \\
13) Fluorene & 8.957 & 154 & 576284 & 15.22 ng & 100 \\
16) Phenanthrene & 9.390 & 166 & 734208 & 17.28 ng & 98 \\
17) Anthracene & 10.270 & 178 & 1169684 & 18.69 ng & 98 \\
18) Pyrene & 10.320 & 178 & 1220025 & 18.41 ng & 98 \\
19) Fluoranthene & 11.460 & 202 & 1351657 & 19.68 ng & 96 \\
22) Benzo(a)anthracene & 11.715 & 202 & 1355459 & 19.26 ng & 95 \\
23) Chrysene & 13.076 & 228 & 1300532 & 19.63 ng & 95 \\
25) Benzo(b)fluoranthene & 13.129 & 228 & 1261982 & 19.69 ng & 96 \\
26) Benzo(k)fluoranthene & 14.787 & 252 & 1331311 & 19.42 ng & 100 \\
27) Benzo(a)pyrene & 14.837 & 252 & 1378439 & 19.78 ng & 96 \\
28) Indeno(1,2,3-cd)pyrene & 15.457 & 252 & 1276645 & 19.04 ng & 93 \\
29) Dibenz(a,h)anthracene & 18.323 & 276 & 1651780 & 19.67 ng & 94 \\
30) Benzo(g,h,i)perylene & 19.340 & 278 & 1384628 & 19.79 ng & 100 \\
& 19.174 & 276 & 1381523 & 19.47 ng & 100
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-02 LCSD 02-08-17.D
Operator :
Acquired : 08 Feb 2017 06:21 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-02
Misc Info : Soil
Vial Number: 5

```

```

Data Path : D:\Agilent_Onsite\02-08-17\
Data File : ARS1-B17-00170-03 MBLK 02-08-17.D
Acq On : 08 Feb 2017 05:22 pm
Operator
Sample : ARS1-B17-00170-03
Misc : Soil
ALS Vial : 3 Sample Multiplier: 1
Quant Time: Feb 09 08:28:27 2017
Quant Method : D:\MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration

```
 Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.460 & 152 & 196385 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.489 & 136 & 777806 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.928 & 164 & 322986 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.248 & 188 & 600512 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.091 & 240 & 629799 & 20.00 & ng & -0.01 \\
\hline 24) Perylene-d12 & 15.570 & 264 & 607076 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.406 & 112 & 452471 & 21.31 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & = & 53.27\% & \\
\hline 3) Phenol-d5 & 6.088 & 99 & 580042 & 22.57 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & 56.43\% & \\
\hline 5) Nitrobenzene-d5 & 6.890 & 82 & 447060 & 22.11 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery & & 55.27\% & \\
\hline 10) 2-Fluorobiphenyl & 8.329 & 172 & 1002342 & 23.28 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & & 58.20\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.598 & 330 & 153873 & 21.75 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & & 54.37\% & \\
\hline 21) Terphenyl-d14 & 11.797 & 244 & 1896695 & 41.95 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & = & 104.88\% & \\
\hline
\end{tabular}
\begin{tabular}{llll}
Target Compounds & & \\
6) Naphthalene & 0.000 & N.D. d \\
7) 2-Methylnaphthalene & 0.000 & 0 & N.D. \\
8) 1-Methylnaphthalene & 0.000 & 0 & N.D. \\
11) Acenaphthylene & 0.000 & 0 & N.D. \\
12) Acenaphthene & 0.000 & 0 & N.D.d \\
13) Fluorene & 0.000 & 0 & N.D.d \\
16) Phenanthrene & 0.000 & 0 & N.D. \\
17) Anthracene & 0.000 & 0 & N.D. \\
18) Pyrene & 0.000 & 0 & N.D. \\
19) Fluoranthene & 0.000 & 0 & N.D. d \\
22) Benzo(a)anthracene & 0.000 & 0 & N.D. d \\
23) Chrysene & 0.000 & 0 & N.D. d \\
25) Benzo(b)fluoranthene & 0.000 & 0 & N.D. \\
26) Benzo(k)fluoranthene & 0.000 & 0 & N.D. \\
27) Benzo(a)pyrene & 0.000 & 0 & N.D.d \\
28) Indeno(1,2,3-cd)pyrene & 0.000 & 0 & N.D. d \\
29) Dibenz(a,h)anthracene & 0.000 & 0 & N.D. \\
30) Benzo(g,h,i)perylene & 0.000 & 0 & N.D.
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-03 MBLK 02-08-17.D
Operator :
Acquired : 08 Feb 2017 05:22 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-03
Misc Info : Soil
Vial Number: 3

```

\section*{Abundance}

Time-->

Data Path : D: \Agilent_Onsite\02-08-17
Data File : ARS1-B17-00170-04 02-08-17.D
Acq On : 08 Feb 2017 06:51 pm
Operator
Sample: ARS1-B17-00170-04
Misc : Soil
ALS Vial : 6 Sample Multiplier: 1
Quant Time: Feb 09 08:29:54 2017
Quant Method : D: \MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|r|}{QIon} & Response & \multicolumn{3}{|l|}{Conc Units Dev(Min)} \\
\hline Internal Standards & & & & & & \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.459 & 152 & 202974 & 20.00 & & 0.00 \\
\hline 4) Naphthalene-d8 & 7.490 & 136 & 719864 & 20.00 & & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.928 & 164 & 328305 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.246 & 188 & 641545 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.092 & 240 & 690272 & 20.00 & ng & -0.01 \\
\hline 24) Perylene-d12 & 15.571 & 264 & 689262 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.408 & 112 & 159018 & 7.25 & & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & = & & \\
\hline 3) Phenol-d5 & 6.090 & 99 & 350109 & 13.18 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & = & & \\
\hline 5) Nitrobenzene-d5 & 6.890 & 82 & 182927 & 9.77 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery &) \(=\) & & \\
\hline 10) 2-Fluorobiphenyl & 8.329 & 172 & 822196 & 18.79 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery &) \(=\) & & \\
\hline 15) 2,4,6-Tribromophenol & 9.598 & 330 & 229084 & 29.74 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & = & & \\
\hline 21) Terphenyl-d14 & 11.796 & 244 & 1482575 & 29.92 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & = & & \\
\hline \multicolumn{7}{|l|}{Target Compounds Qvalue} \\
\hline 6) Naphthalene & 0.000 & & 0 & N. D. & & \\
\hline 7) 2-Methylnaphthalene & 0.000 & & 0 & N. D & & \\
\hline 8) 1-Methylnaphthalene & 0.000 & & 0 & N. D & & \\
\hline 11) Acenaphthylene & 0.000 & & 0 & N. D. & & \\
\hline 12) Acenaphthene & 0.000 & & 0 & N. \({ }^{\text {d }}\) & d & \\
\hline 13) Fluorene & 0.000 & & 0 & N.D & d & \\
\hline 16) Phenanthrene & 0.000 & & 0 & N.D & d & \\
\hline 17) Anthracene & 0.000 & & 0 & N.D & d & \\
\hline 18) Pyrene & 0.000 & & 0 & N. D & . d & \\
\hline 19) Fluoranthene & 0.000 & & 0 & N.D & . d & \\
\hline 22) Benzo(a)anthracene & 0.000 & & 0 & N.D & d & \\
\hline 23) Chrysene & 0.000 & & 0 & N.D & . d & \\
\hline 25) Benzo(b)fluoranthene & 0.000 & & 0 & N. D & . d & \\
\hline 26) Benzo(k)fluoranthene & 0.000 & & 0 & N. D & . d & \\
\hline 27) Benzo(a)pyrene & 0.000 & & 0 & N. D & d & \\
\hline 28) Indeno(1,2,3-cd)pyrene & 0.000 & & 0 & N. D & . d & \\
\hline 29) Dibenz (a, h)anthracene & 0.000 & & 0 & N.D & . d & \\
\hline 30) Benzo(g,h,i)perylene & 0.000 & & 0 & N.D & d & \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-04 02-08-17.D
Operator :
Acquired : 08 Feb 2017 06:51 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-04
Misc Info : Soil
Vial Number: 6

```

```

Data Path : D: \Agilent_Onsite\02-08-17\}
Data File : ARS1-B17-00170-05 02-08-17.D
Acq On : 08 Feb 2017 08:19 pm
Operator :
Sample : ARS1-B17-00170-05
Misc : Soil
ALS Vial : 9 Sample Multiplier: 1

```

Quant Time: Feb 09 08:30:13 2017
Quant Method : D: \MassHunter \(\backslash G C M S \backslash 1 \backslash m e t h o d s \backslash c o l e _8270 _P A H . M\)
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{R.T. QIon} & Response & \multicolumn{3}{|l|}{Conc Units Dev(Min)} \\
\hline Internal Standards & & & & & & \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.459 & 152 & 207978 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.489 & 136 & 716159 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.928 & 164 & 342676 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.247 & 188 & 676407 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.092 & 240 & 711393 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.575 & 264 & 746076 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.410 & 112 & 492349 & 21.90 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & = & 54.75\% & \\
\hline 3) Phenol-d5 & 6.095 & 99 & 684869 & 25.17 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & = & 62.93\% & \\
\hline 5) Nitrobenzene-d5 & 6.891 & 82 & 558842 & 30.01 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery & = & 75.03\% & \\
\hline 10) 2-Fluorobiphenyl & 8.329 & 172 & 1376897 & 30.14 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & = & 75.35\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.596 & 330 & 277749 & 33.97 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & = & 84.92\% & \\
\hline 21) Terphenyl-d14 & 11.798 & 244 & 1639766 & 32.11 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & = & 80.27\% & \\
\hline \multicolumn{7}{|l|}{Target Compounds Qvalue} \\
\hline 6) Naphthalene & 0.000 & & 0 & N.D. & . d & \\
\hline 7) 2-Methylnaphthalene & 0.000 & & 0 & N.D. & , d & \\
\hline 8) 1-Methylnaphthalene & 0.000 & & 0 & N.D. & d & \\
\hline 11) Acenaphthylene & 0.000 & & 0 & N.D. & d & \\
\hline 12) Acenaphthene & 0.000 & & 0 & N.D. & d & \\
\hline 13) Fluorene & 0.000 & & 0 & N.D. & d & \\
\hline 16) Phenanthrene & 0.000 & & 0 & N.D. & . d & \\
\hline 17) Anthracene & 0.000 & & 0 & N.D. & . d & \\
\hline 18) Pyrene & 0.000 & & 0 & N.D. & . d & \\
\hline 19) Fluoranthene & 0.000 & & 0 & N.D. & . d & \\
\hline 22) Benzo(a)anthracene & 0.000 & & 0 & N.D. & . d & \\
\hline 23) Chrysene & 0.000 & & 0 & N.D. & . d & \\
\hline 25) Benzo(b)fluoranthene & 0.000 & & 0 & N.D. & . d & \\
\hline 26) Benzo(k)fluoranthene & 0.000 & & 0 & N.D. & . d & \\
\hline 27) Benzo(a)pyrene & 0.000 & & 0 & N.D. & . d & \\
\hline 28) Indeno(1,2,3-cd)pyrene & 0.000 & & 0 & N.D. & . d & \\
\hline 29) Dibenz (a,h)anthracene & 0.000 & & 0 & N.D. & . d & \\
\hline 30) Benzo(g,h,i)perylene & 0.000 & & 0 & N.D. & . d & \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration (+) = signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-05 02-08-17.D
Operator :
Acquired : 08 Feb 2017 08:19 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-05
Misc Info : Soil
Vial Number: 9

```

Abundance

```

Data Path : D: \Agilent_Onsite\02-08-17\}
Data File : ARS1-B17-00170-07 02-08-17.D
Acq On : 08 Feb 2017 09:18 pm
Operator
Sample : ARS1-B17-00170-07
Misc : Soil
ALS Vial : 11 Sample Multiplier: 1
Quant Time: Feb 09 08:30:39 2017
Quant Method : D: \MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration

```
Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.460 & 152 & 172709 & 20.00 n & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.492 & 136 & 636454 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.929 & 164 & 305625 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.249 & 188 & 599727 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.093 & 240 & 611934 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.574 & 264 & 637850 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.409 & 112 & 431287 & 23.10 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & = & 57.75\% & \\
\hline 3) Phenol-d5 & 6.093 & 99 & 572104 & 25.32 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & = & 63.30\% & \\
\hline 5) Nitrobenzene-d5 & 6.892 & 82 & 364832 & 22.05 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery & = & 55.13\% & \\
\hline 10) 2-Fluorobiphenyl & 8.330 & 172 & 866412 & 21.27 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & = & 53.17\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.598 & 330 & 231228 & 31.99 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & = & 79.97\% & \\
\hline 21) Terphenyl-d14 & 11.798 & 244 & 1053479 & 23.98 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & = & 59.95\% & \\
\hline \multicolumn{7}{|l|}{Target Compounds Qvalue} \\
\hline 6) Naphthalene & 0.000 & & 0 & N.D. & d & \\
\hline 7) 2-Methylnaphthalene & 0.000 & & 0 & N.D. & & \\
\hline 8) 1-Methylnaphthalene & 0.000 & & 0 & N.D. & & \\
\hline 11) Acenaphthylene & 0.000 & & 0 & N.D. & & \\
\hline 12) Acenaphthene & 0.000 & & 0 & N.D. & & \\
\hline 13) Fluorene & 0.000 & & 0 & N.D. & & \\
\hline 16) Phenanthrene & 0.000 & & 0 & N.D. & & \\
\hline 17) Anthracene & 0.000 & & 0 & N.D. & & \\
\hline 18) Pyrene & 0.000 & & 0 & N. D. & d & \\
\hline 19) Fluoranthene & 0.000 & & 0 & N.D. & & \\
\hline 22) Benzo(a)anthracene & 0.000 & & 0 & N.D. & & \\
\hline 23) Chrysene & 0.000 & & 0 & N.D. & d & \\
\hline 25) Benzo(b)fluoranthene & 0.000 & & 0 & N.D. & & \\
\hline 26) Benzo(k)fluoranthene & 0.000 & & 0 & N.D. & & \\
\hline 27) Benzo(a)pyrene & 0.000 & & 0 & N.D. & d & \\
\hline 28) Indeno(1,2,3-cd)pyrene & 0.000 & & 0 & N.D. & & \\
\hline 29) Dibenz(a,h)anthracene & 0.000 & & 0 & N.D. & d & \\
\hline 30) Benzo(g,h,i)perylene & 0.000 & & 0 & N.D. & d & \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-07 02-08-17.D
Operator :
Acquired : 08 Feb 2017 09:18 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-07
Misc Info : Soil
Vial Number: 11

```


Time-->
```

Data Path : D:\Agilent_Onsite\02-08-17\
Data File : ARS1-B17-00170-08 02-08-17.D
Acq On : 08 Feb 2017 09:48 pm
Operator :
Sample : ARS1-B17-00170-08
Misc : Soil
ALS Vial : 12 Sample Multiplier: 1

```
Quant Time: Feb 09 08:31:01 2017
Quant Method : D: \MassHunter\GCMS \(\backslash 1 \backslash m e t h o d s \backslash c o l e _8270 _P A H . M ~\)
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.460 & 152 & 184236 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.489 & 136 & 669657 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.929 & 164 & 327955 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.246 & 188 & 628325 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.094 & 240 & 650461 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.571 & 264 & 666285 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.412 & 112 & 363742 & 18.26 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & & 45.65\% & \\
\hline 3) Phenol-d5 & 6.093 & 99 & 547413 & 22.71 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & 56.77\% & \\
\hline 5) Nitrobenzene-d5 & 6.892 & 82 & 400535 & 23.01 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery & & 57.53\% & \\
\hline 10) 2-Fluorobiphenyl & 8.331 & 172 & 1263746 & 28.91 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & = & 72.28\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.599 & 330 & 244236 & 32.24 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & & 80.60\% & \\
\hline 21) Terphenyl-d14 & 11.796 & 244 & 1630478 & 34.91 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & = & 87.27\% & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Target Compounds & & & & Qvalue \\
\hline 6) Naphthalene & 0.000 & 0 & N.D. d & \\
\hline 7) 2-Methylnaphthalene & 0.000 & 0 & N.D. & \\
\hline 8) 1-Methylnaphthalene & 0.000 & 0 & N.D. & \\
\hline 11) Acenaphthylene & 0.000 & 0 & N.D. & \\
\hline 12) Acenaphthene & 0.000 & 0 & N.D. d & \\
\hline 13) Fluorene & 0.000 & 0 & N.D. d & \\
\hline 16) Phenanthrene & 0.000 & 0 & N.D. d & \\
\hline 17) Anthracene & 0.000 & 0 & N.D. d & \\
\hline 18) Pyrene & 0.000 & 0 & N.D. d & \\
\hline 19) Fluoranthene & 0.000 & 0 & N.D. d & \\
\hline 22) Benzo(a)anthracene & 0.000 & 0 & N.D. d & \\
\hline 23) Chrysene & 0.000 & 0 & N.D. d & \\
\hline 25) Benzo(b)fluoranthene & 0.000 & 0 & N.D. d & \\
\hline 26) Benzo(k)fluoranthene & 0.000 & 0 & N.D. d & \\
\hline 27) Benzo(a)pyrene & 0.000 & 0 & N.D. d & \\
\hline 28) Indeno(1,2,3-cd)pyrene & 0.000 & 0 & N.D. d & \\
\hline 29) Dibenz(a, h)anthracene & 0.000 & 0 & N.D. & \\
\hline 30) Benzo(g,h,i)perylene & 0.000 & 0 & N.D. d & \\
\hline
\end{tabular}
(\#) = qualifier out of range (m) = manual integration (+) = signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-08 02-08-17.D
Operator :
Acquired : 08 Feb 2017 09:48 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-08
Misc Info : Soil
Vial Number: 12

```


Data Path : D: \Agilent_Onsite\02-08-17\}
Data File : ARS1-B17-00170-09 02-08-17.D
Acq On : 08 Feb 2017 10:17 pm
Operator :
Sample : ARS1-B17-00170-09
Misc : Soil
ALS Vial : 13 Sample Multiplier: 1
Quant Time: Feb 09 08:31:13 2017
Quant Method : D: \MassHunter \(\backslash G C M S \backslash 1 \backslash m e t h o d s \backslash c o l e _8270 _P A H . M\)
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{R.t. QIon} & Response Con & \multicolumn{3}{|l|}{Conc Units Dev(Min)} \\
\hline Internal Standards & & & & & & \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.461 & 152 & 200420 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.490 & 136 & 703087 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.927 & 164 & 341395 & 20.00 & & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.247 & 188 & 670381 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.093 & 240 & 706981 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.576 & 264 & 744379 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.412 & 112 & 702957 & 32.44 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & = & 81.10\% & \\
\hline 3) Phenol-d5 & 6.094 & 99 & 860047 & 32.80 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & = & 82.00\% & \\
\hline 5) Nitrobenzene-d5 & 6.889 & 82 & 595610 & 32.58 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery & & 81.45\% & \\
\hline 10) 2-Fluorobiphenyl & 8.330 & 172 & 1381239 & 30.35 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & \(=\) & 75.88\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.597 & 330 & 307283 & 37.75 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & = & 94.38\% & \\
\hline 21) Terphenyl-d14 & 11.796 & 244 & 1672393 & 32.95 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & = & 82.38\% & \\
\hline \multicolumn{6}{|l|}{Target Compounds} & lue \\
\hline 6) Naphthalene & 0.000 & & 0 & N.D. & d & \\
\hline 7) 2-Methylnaphthalene & 0.000 & & 0 & N.D. & & \\
\hline 8) 1-Methylnaphthalene & 0.000 & & 0 & N.D. & & \\
\hline 11) Acenaphthylene & 0.000 & & 0 & N.D. & & \\
\hline 12) Acenaphthene & 0.000 & & 0 & N.D. & & \\
\hline 13) Fluorene & 0.000 & & 0 & N.D. & & \\
\hline 16) Phenanthrene & 0.000 & & 0 & N.D. & & \\
\hline 17) Anthracene & 0.000 & & 0 & N.D. & d & \\
\hline 18) Pyrene & 0.000 & & 0 & N.D. & d & \\
\hline 19) Fluoranthene & 0.000 & & 0 & N.D. & . d & \\
\hline 22) Benzo(a)anthracene & 0.000 & & 0 & N.D. & . d & \\
\hline 23) Chrysene & 0.000 & & 0 & N.D. & d & \\
\hline 25) Benzo(b)fluoranthene & 0.000 & & 0 & N.D. & d & \\
\hline 26) Benzo(k)fluoranthene & 0.000 & & 0 & N.D. & d & \\
\hline 27) Benzo(a)pyrene & 0.000 & & 0 & N.D. & d & \\
\hline 28) Indeno(1,2,3-cd)pyrene & 0.000 & & 0 & N. \({ }^{\text {d }}\) & . d & \\
\hline 29) Dibenz (a,h)anthracene & 0.000 & & 0 & N.D. & d & \\
\hline 30) Benzo(g,h,i)perylene & 0.000 & & 0 & N.D. & d & \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration (+) = signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-09 02-08-17.D
Operator :
Acquired : 08 Feb 2017 10:17 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-09
Misc Info : Soil
Vial Number: 13

```


Data Path : D: \Agilent_Onsite\02-08-17\}
Data File : ARS1-B17-00170-10 MS 02-08-17.D
Acq On : 08 Feb 2017 07:20 pm
Operator :
Sample : ARS1-B17-00170-10
Misc : Soil
ALS Vial : 7 Sample Multiplier: 1
Quant Time: Feb 09 08:31:23 2017
Quant Method : D: \MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.461 & 152 & 199266 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.490 & 136 & 718972 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.928 & 164 & 332207 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.249 & 188 & 659976 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.093 & 240 & 708493 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.571 & 264 & 731587 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.410 & 112 & 128668 & 5.97 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & = & \multicolumn{2}{|r|}{14,92\%\#} \\
\hline 3) Phenol-d5 & 6.091 & 99 & 343670 & 13.18 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & 1 \(=\) & \multicolumn{2}{|l|}{32.95\%\#} \\
\hline 5) Nitrobenzene-d5 & 6.889 & 82 & 152441 & 8.16 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & 122 & Recovery &) \(=\) & \multicolumn{2}{|l|}{20.40\%\#} \\
\hline 10) 2-Fluorobiphenyl & 8.329 & 172 & 667339 & 15.07 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & 1 \(=\) & \multicolumn{2}{|l|}{37.68\%\#} \\
\hline 15) 2,4,6-Tribromophenol & 9.599 & 330 & 252610 & 31.77 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & & \multicolumn{2}{|l|}{79.42\%} \\
\hline 21) Terphenyl-d14 & 11.798 & 244 & 1584493 & 31.15 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & , & \multicolumn{2}{|l|}{77.88\%} \\
\hline Target Compounds & & & & & & Qvalue \\
\hline 6) Naphthalene & 7.507 & 128 & 356204 & 5.07 & ng & 99 \\
\hline 7) 2-Methylnaphthalene & 8.060 & 142 & 297650 & 6.49 & ng & 99 \\
\hline 8) 1-Methylnaphthalene & 8.147 & 142 & 330309 & 7.86 & ng & 99 \\
\hline 11) Acenaphthylene & 8.819 & 152 & 676972 & 11.20 & ng & 95 \\
\hline 12) Acenaphthene & 8.957 & 154 & 422718 & 10.47 & ng & 98 \\
\hline 13) Fluorene & 9.390 & 166 & 549632 & 12.13 & ng & 99 \\
\hline 16) Phenanthrene & 10.270 & 178 & 967202 & 14.16 & ng & 99 \\
\hline 17) Anthracene & 10.320 & 178 & 1035579 & 14.32 & ng & 98 \\
\hline 18) Pyrene & 11.460 & 202 & 1181175 & 15.75 & ng & 95 \\
\hline 19) Fluoranthene & 11.715 & 202 & 1202215 & 15.66 & ng & 95 \\
\hline 22) Benzo(a)anthracene & 13.078 & 228 & 1108004 & 15.11 & & 95 \\
\hline 23) Chrysene & 13.129 & 228 & 1081512 & 15.25 & & 95 \\
\hline 25) Benzo(b)fluoranthene & 14.788 & 252 & 1114830 & 13.94 & & 100 \\
\hline 26) Benzo(k)fluoranthene & 14.838 & 252 & 1139847 & 14.02 & & 96 \\
\hline 27) Benzo(a)pyrene & 15.461 & 252 & 1102007 & 14.09 & & 92 \\
\hline 28) Indeno(1,2,3-cd)pyrene & 18.335 & 276 & 1372184 & 14.00 & & 93 \\
\hline 29) Dibenz (a,h)anthracene & 18.347 & 278 & 1163850 & 14.26 & & 100 \\
\hline 30) Benzo(g, \(\mathrm{h}, \mathrm{i})\) perylene & 19.187 & 276 & 1121131 & 13.54 & & 100 \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-10 MS 02-08-17.D
Operator :
Acquired : 08 Feb 2017 07:20 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-10
Misc Info : Soil
Vial Number: 7

```

\section*{Abundance}

Data Path : D: \Agilent_Onsite\02-08-17
Data File : ARS1-B17-00170-11 MSD 02-08-17.D
Acq On : 08 Feb 2017 07:50 pm
Operator
Sample : ARS1-B17-00170-11
Misc : Soil
ALS Vial : 8 Sample Multiplier: 1
Quant Time: Feb 09 08:31:38 2017
Quant Method : D: \MassHunter \(\backslash G C M S \backslash 1 \backslash m e t h o d s \backslash c o l e _8270 _P A H . M ~\)
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{} & Response & \multicolumn{3}{|l|}{Conc Units Dev(Min)} \\
\hline Internal Standards & & & & & & \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.461 & 152 & 207959 & 20.00 & & 0.00 \\
\hline 4) Naphthalene-d8 & 7.490 & 136 & 756265 & 20.00 & & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.930 & 164 & 358453 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.247 & 188 & 693928 & 20.00 & & 0.00 \\
\hline 20) Chrysene-d12 & 13.093 & 240 & 732148 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.572 & 264 & 753037 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.410 & 112 & 102910 & 4.58 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 35 & - 115 & Recovery & & \multicolumn{2}{|r|}{11.45\%\#} \\
\hline 3) Phenol-d5 & 6.094 & 99 & 311246 & 11.44 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & \multicolumn{2}{|r|}{28.60\%\#} \\
\hline 5) Nitrobenzene-d5 & 6.889 & 82 & 140585 & 7.15 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 37 & - 122 & Recovery & & \multicolumn{2}{|r|}{17.88\%\#} \\
\hline 10) 2-Fluorobiphenyl & 8.328 & 172 & 656036 & 13.73 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 115 & Recovery & & \multicolumn{2}{|r|}{34.33\%\#} \\
\hline 15) 2,4,6-Tribromophenol & 9.598 & 330 & 234345 & 28.20 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 39 & - 132 & Recovery & & \multicolumn{2}{|c|}{70.50\%} \\
\hline 21) Terphenyl-d14 & 11.795 & 244 & 1425237 & 27.11 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 54 & - 127 & Recovery & = & \multicolumn{2}{|c|}{67.77\%} \\
\hline Target Compounds & & & & & & Qvalue \\
\hline 6) Naphthalene & 7.508 & 128 & 319309 & 4.32 & & 99 \\
\hline 7) 2-Methylnaphthalene & 8.061 & 142 & 275540 & 5.72 & & 98 \\
\hline 8) 1-Methylnaphthalene & 8.146 & 142 & 304039 & 6.87 & & 99 \\
\hline 11) Acenaphthylene & 8.818 & 152 & 630218 & 9.66 & & 96 \\
\hline 12) Acenaphthene & 8.956 & 154 & 404250 & 9.28 & ng & 99 \\
\hline 13) Fluorene & 9.390 & 166 & 520262 & 10.64 & & 99 \\
\hline 16) Phenanthrene & 10.271 & 178 & 892120 & 12.42 & ng & 99 \\
\hline 17) Anthracene & 10.321 & 178 & 924232 & 12.15 & & 98 \\
\hline 18) Pyrene & 11.460 & 202 & 1023612 & 12.98 & ng & 95 \\
\hline 19) Fluoranthene & 11.715 & 202 & 1043919 & 12.93 & & 95 \\
\hline 22) Benzo(a)anthracene & 13.078 & 228 & 944620 & 12.47 & & 95 \\
\hline 23) Chrysene & 13.128 & 228 & 912123 & 12.45 & & 95 \\
\hline 25) Benzo(b)fluoranthene & 14.789 & 252 & 935098 & 11.36 & & 100 \\
\hline 26) Benzo(k)fluoranthene & 14.839 & 252 & 953219 & 11.39 & & 96 \\
\hline 27) Benzo(a)pyrene & 15.460 & 252 & 912249 & 11.33 & & 92 \\
\hline 28) Indeno(1,2,3-cd)pyrene & 18.334 & 276 & 1150623 & 11.41 & & 93 \\
\hline 29) Dibenz (a,h)anthracene & 18.343 & 278 & 977447 & 11.63 & & 100 \\
\hline 30) Benzo(g,h,i)perylene & 19.184 & 276 & 950540 & 11.15 & & 100 \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-08-17\ARS1-B17-00170-11 MSD 02-08-17.D
Operator :
Acquired : 08 Feb 2017 07:50 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-11
Misc Info : Soil
Vial Number: 8

```

Abundance
TIC: ARS1-B17-00170-11 MSD 02-08-17.Dldata.ms

```

Data Path : D:\Agilent Onsite\02-09-17\
Data File : DFTPP3 02-\overline{09-17.D}
Acq On : 09 Feb 2017 11:57 am
Operator :
Sample : DFTPP3
Misc :
ALS Vial : 1 Sample Multiplier: 1

```
Integration File: autointl.e
Method : D:\MassHunter\GCMS \I\methods\Agilent_onsite_DFTPP.M
Title :
Last Update : Tue Dec 06 15:44:44 2016

AutoFind: Scans 2505, 2506, 2507; Background Corrected with Scan 2493
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & Target
Mass & 1 & Rel. to Mass & | & \begin{tabular}{l}
Lower \\
Limit\%
\end{tabular} & | & \begin{tabular}{l}
Upper \\
Limit훙
\end{tabular} & 1 & Rel. Abn\% & | & \begin{tabular}{l}
Raw \\
Abn
\end{tabular} & \[
\begin{gathered}
\text { Result } \\
\text { Pass/Fail }
\end{gathered}
\] \\
\hline | & 51 & & 198 & & 10 & | & 80 & | & 20.4 & | & 79247 & PASS \\
\hline | & 68 & | & 69 & | & 0.00 & 1 & 2 & | & 0.0 & | & 0 & PASS \\
\hline 1 & 69 & | & 198 &) & 0.00 & 1 & 100 & | & 21.6 & | & 83803 & PASS \\
\hline , & 70 & I & 69 & I & 0.00 & | & 2 & 1 & 0.5 & 1 & 436 & PASS \\
\hline | & 127 & | & 198 & I & 10 & | & 80 & 1 & 37.8 & | & 146632 & PASS \\
\hline I & 197 & & 198 & & 0.00 & । & 2 & | & 0.0 & , & 0 & PASS \\
\hline , & 198 & & 198 & & 50 & 1 & 100 & | & 100.0 & | & 387755 & PASS \\
\hline I & 199 & & 198 & & 5 & 1 & 9 & | & 6.8 & 1 & 26179 & PASS \\
\hline 1 & 275 & & 198 & 1 & 10 & | & 60 & 1 & 24.8 & 1 & 96115 & PASS \\
\hline 1 & 365 & I & 198 & | & 1 & I & 100 & 1 & 1.9 & | & 7273 & PASS \\
\hline , & 441 & & 442 & & 0.01 & , & 24 & , & 16.4 & | & 73965 & PASS \\
\hline | & 442 & & 198 & & 50 & 1 & 200 & , & 116.6 & | & 452096 & PASS \\
\hline 1 & 443 & | & 442 & & 17 & , & 23 & , & 19.0 & 1 & 85949 & PASS \\
\hline
\end{tabular}

Agilent_onsite_DFTPP.M Thu Feb 09 14:05:09 2017 ARS-HP
```

File :D:\Agilent_Onsite\02-09-17\DFTPP3 02-09-17.D
Operator
Acquired : 09 Feb 2017 11:57 am using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: DFTPP3
Misc Info :
Vial Number: 1

```
Abundance
Ion 265.90 (265.60 to 266.60): DFTPP3 02-09-17.Didata.ms

```

File :D:\Agilent_Onsite\02-09-17\DFTPP3 02-09-17.D
Operator :
Acquired : 09 Feb 2017 11:57 am using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: DFTPP3
Misc Info :
Vial Number: 1

```
Abundance

Ion 184.10 (183.80 to 184.80): DFTPP3 02-09-17.Didata.ms
3000000
2800000
2600000
2400000
2200000
2000000
1600000
1400000
120000
1000000
 60000
 4000

```

File :D:\Agilent_Onsite\02-09-17\DFTPP3 02-09-17.D
Operator :
Acquired : 09 Feb 2017 11:57 am using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: DFTPP3
Misc Info :
Vial Number: 1

```

```

Data Path : D:\Agilent_Onsite\02-09-17\}
Data File : CCV 40ppm 02-09-17.D
Acq On : 09 Feb 2017 12:26 pm
Operator :
Sample : CCV 40ppm
Misc
ALS Vial : 2 Sample Multiplier: 1
Quant Time: Feb 09 13:08:23 2017
Quant Method : D: \MassHunter\GCMS \1 \methods $\backslash c o l e \_8270 \_P A H . M$
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration

```

Min. RRF : 0.000 Min. Rel. Area : \(50 \%\) Max. R.T. Dev 0.50min
Max. RRF Dev : 20\% Max. Rel. Area : 150\%
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Compound} & AvgRF & CCRF & \multicolumn{3}{|l|}{\%Dev Area\% Dev(min)} \\
\hline 1 & I & 1,4-Dichlorobenzene-d4 & 1.000 & 1.000 & 0.0 & 108 & 0.00 \\
\hline 2 & S & 2-Fluorophenol & 2.162 & 2.521 & -16.6 & 118 & 0.00 \\
\hline 3 & S & Phenol-d5 & 2.617 & 2.789 & -6.6 & 107 & 0.00 \\
\hline 4 & I & Naphthalene-d8 & 1.000 & 1.000 & 0.0 & 100 & 0.00 \\
\hline 5 & S & Nitrobenzene-d5 & 0.520 & 0.556 & -6.9 & 104 & 0.00 \\
\hline 6 & CPM & Naphthalene & 1.954 & 1.985 & -1.6 & 101 & 0.00 \\
\hline 7 & CPM & 2-Methylnaphthalene & 1.275 & 1.280 & -0.4 & 98 & 0.00 \\
\hline 8 & CPM & 1-Methylnaphthalene & 1.170 & 1.171 & -0.1 & 99 & 0.00 \\
\hline 9 & I & Acenaphthene-d10 & 1.000 & 1.000 & 0.0 & 96 & 0.00 \\
\hline 10 & S & 2-Fluorobiphenyl & 2.666 & 2.650 & 0.6 & 97 & 0.00 \\
\hline 11 & CPM & Acenaphthylene & 3.639 & 3.761 & -3.4 & 98 & 0.00 \\
\hline 12 & CPM & Acenaphthene & 2.431 & 2.438 & -0.3 & 98 & 0.00 \\
\hline 13 & CPM & Fluorene & 2.729 & 2.847 & -4.3 & 99 & 0.00 \\
\hline 14 & I & Phenanthrene-d10 & 1.000 & 1.000 & 0.0 & 95 & 0.00 \\
\hline 15 & S & 2,4,6-Tribromophenol & 0.207 & 0.246 & -18.8 & 98 & 0.00 \\
\hline 16 & CPM & Phenanthrene & 2.070 & 2.140 & -3.4 & 98 & 0.00 \\
\hline 17 & CPM & Anthracene & 2.192 & 2.259 & -3.1 & 96 & 0.00 \\
\hline 18 & CPM & Pyrene & 2.272 & 2.361 & -3.9 & 97 & 0.00 \\
\hline 19 & CPM & Fluoranthene & 2.327 & 2.453 & -5.4 & 99 & 0.00 \\
\hline 20 & I & Chrysene-d12 & 1.000 & 1.000 & 0.0 & 95 & 0.00 \\
\hline 21 & S & Terphenyl-d14 & 1.436 & 1.498 & -4.3 & 98 & 0.00 \\
\hline 22 & CPM & Benzo(a)anthracene & 2.069 & 2.150 & -3.9 & 97 & 0.00 \\
\hline 23 & CPM & Chrysene & 2.002 & 2.076 & -3.7 & 97 & 0.00 \\
\hline 24 & I & Perylene-d12 & 1.000 & 1.000 & 0.0 & 95 & 0.00 \\
\hline 25 & CPM & Benzo(b)fluoranthene & 2.187 & 2.310 & -5.6 & 99 & 0.00 \\
\hline 26 & CPM & Benzo(k)fluoranthene & 2.223 & 2.306 & -3.7 & 97 & 0.00 \\
\hline 27 & CPM & Benzo(a)pyrene & 2.139 & 2.261 & -5.7 & 97 & 0.00 \\
\hline 28 & CPM & Indeno(1,2,3-cd)pyrene & 2.679 & 2.813 & -5.0 & 97 & -0.03 \\
\hline 29 & CPM & Dibenz(a,h)anthracene & 2.231 & 2.355 & -5.6 & 95 & -0.03 \\
\hline 30 & CPM & Benzo(\(\mathrm{g}, \mathrm{h}, \mathrm{i}\)) perylene & 2.264 & 2.357 & -4.1 & 97 & -0.03 \\
\hline
\end{tabular}
(\#) = Out of Range \(\quad\) SPCC's out \(=0\) CCC's out \(=0\)

Data Path : D:\Agilent_Onsite\02-09-17\}
Data File : CCV 40ppm \(\overline{0} 2-09-17 . \mathrm{D}\)
Acq On : 09 Feb 2017 12:26 pm
Operator :
Sample : CCV 40ppm
Misc
ALS Vial : 2 Sample Multiplier: 1
Quant Time: Feb 09 13:08:23 2017
Quant Method : D: \MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{R.T. QIon} & Response & \multicolumn{3}{|l|}{Onc Units Dev(Min)} \\
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.463 & 152 & 204119 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.493 & 136 & 703089 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.930 & 164 & 307982 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.249 & 188 & 587158 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.095 & 240 & 619696 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.574 & 264 & 608741 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.409 & 112 & 1029159 & 46.64 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 19 & - 119 & Recov & & 116 & \\
\hline 3) Phenol-d5 & 6.094 & 99 & 1138687 & 42.64 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recov & & 106 & \\
\hline 5) Nitrobenzene-d5 & 6.893 & 82 & 781933 & 42.78 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 120 & Recov & & 106 & \\
\hline 10) 2-Fluorobiphenyl & 8.332 & 172 & 1632555 & 39.77 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 119 & Recov & & & \\
\hline 15) 2,4,6-Tribromophenol & 9.600 & 330 & 289359 & 40.48 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 43 & - 140 & Recov & & 101 & \\
\hline 21) Terphenyl-d14 & 11.797 & 244 & 1856773 & 41.73 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 50 & - 134 & Recov & = & 104 & \\
\hline Target Compounds & & & & & & alue \\
\hline 6) Naphthalene & 7.510 & 128 & 2791095 & 40.63 & ng & 94 \\
\hline 7) 2-Methylnaphthalene & 8.061 & 142 & 1799820 & 40.16 & ng & 98 \\
\hline 8) 1-Methylnaphthalene & 8.148 & 142 & 1647118 & 40.06 & ng & 99 \\
\hline 11) Acenaphthylene & 8.822 & 152 & 2316891 & 41.34 & ng & 97 \\
\hline 12) Acenaphthene & 8.960 & 154 & 1501614 & 40.12 & ng & 99 \\
\hline 13) Fluorene & 9.392 & 166 & 1753576 & 41.73 & ng & 97 \\
\hline 16) Phenanthrene & 10.273 & 178 & 2512455 & 41.34 & ng & 98 \\
\hline 17) Anthracene & 10.322 & 178 & 2653114 & 41.23 & ng & 99 \\
\hline 18) Pyrene & 11.463 & 202 & 2772820 & 41.57 & ng & 97 \\
\hline 19) Fluoranthene & 11.718 & 202 & 2880157 & 42.16 & ng & 96 \\
\hline 22) Benzo(a)anthracene & 13.081 & 228 & 2664496 & 41.56 & ng & 96 \\
\hline 23) Chrysene & 13.131 & 228 & 2572985 & 41.49 & & 96 \\
\hline 25) Benzo(b)fluoranthene & 14.792 & 252 & 2811795 & 42.25 & & 100 \\
\hline 26) Benzo(k)fluoranthene & 14.842 & 252 & 2807619 & 41.50 & & 96 \\
\hline 27) Benzo(a)pyrene & 15.465 & 252 & 2752144 & 42.28 & & 93 \\
\hline 28) Indeno(1,2,3-cd)pyrene & 18.337 & 276 & 3424463 & 42.00 & & 94 \\
\hline 29) Dibenz (a,h)anthracene & 18.349 & 278 & 2867274 & 42.22 & & 100 \\
\hline 30) Benzo(g, h,i)perylene & 19.193 & 276 & 2869159 & 41.65 & & 100 \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-09-17\CCV 40ppm 02-09-17.D
Operator :
Acquired : 09 Feb 2017 12:26 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: CCV 40ppm
Misc Info :
Vial Number: 2

```

Abundance
TIC: CCV 40ppm 02-09-17.Didata.ms

```

Data Path : D: \Agilent_Onsite\02-09-17
Data File : ClosingCCV 40ppm 02-09-17.D
Acq On : 09 Feb 2017 01:25 pm
Operator :
Sample : ClosingCCV 40ppm
Misc
ALS Vial : 2 Sample Multiplier: 1

```

Quant Time: Feb 09 13:52:29 2017
Quant Method : D: \MassHunter \GCMS \1 \methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
\begin{tabular}{llcl}
Min. RRF & 0.000 & Min. Rel. Area : \(50 \%\) & Max. R.T. Dev 0.50 min \\
Max. RRF Dev : \(20 \%\) & Max. Rel. Area : \(150 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Compound} & AvgRF & CCRF & \multicolumn{3}{|l|}{\%Dev Area\% Dev(min)} \\
\hline 1 & I & 1,4-Dichlorobenzene-d4 & 1.000 & 1.000 & 0.0 & 115 & 0.00 \\
\hline 2 & S & 2-Fluorophenol & 2.162 & 2.493 & -15.3 & 124 & 0.00 \\
\hline 3 & S & Phenol-d5 & 2.617 & 2.722 & -4.0 & 111 & 0.00 \\
\hline 4 & I & Naphthalene-d8 & 1.000 & 1.000 & 0.0 & 101 & 0.00 \\
\hline 5 & S & Nitrobenzene-d5 & 0.520 & 0.557 & -7.1 & 106 & 0.00 \\
\hline 6 & CPM & Naphthalene & 1.954 & 1.983 & -1.5 & 102 & 0.00 \\
\hline 7 & CPM & 2-Methylnaphthalene & 1.275 & 1.280 & -0.4 & 99 & 0.00 \\
\hline 8 & CPM & 1-Methylnaphthalene & 1.170 & 1.168 & 0.2 & 100 & 0.00 \\
\hline 9 & I & Acenaphthene-d10 & 1.000 & 1.000 & 0.0 & 96 & 0.00 \\
\hline 10 & S & 2-Fluorobiphenyl & 2.666 & 2.642 & 0.9 & 97 & 0.00 \\
\hline 11 & CPM & Acenaphthylene & 3.639 & 3.741 & -2.8 & 98 & 0.00 \\
\hline 12 & CPM & Acenaphthene & 2.431 & 2.431 & 0.0 & 98 & 0.00 \\
\hline 13 & CPM & Fluorene & 2.729 & 2.771 & -1.5 & 96 & 0.00 \\
\hline 14 & I & Phenanthrene-d10 & 1.000 & 1.000 & 0.0 & 95 & 0.00 \\
\hline 15 & S & 2,4,6-Tribromophenol & 0.207 & 0.247 & -19.3 & 98 & 0.00 \\
\hline 16 & CPM & Phenanthrene & 2.070 & 2.131 & -2.9 & 98 & 0.00 \\
\hline 17 & CPM & Anthracene & 2.192 & 2.287 & -4.3 & 96 & 0.00 \\
\hline 18 & CPM & Pyrene & 2.272 & 2.392 & -5.3 & 98 & 0.00 \\
\hline 19 & CPM & Fluoranthene & 2.327 & 2.431 & -4.5 & 97 & 0.00 \\
\hline 20 & I & Chrysene-d12 & 1.000 & 1.000 & 0.0 & 95 & 0.00 \\
\hline 21 & S & Terphenyl-d14 & 1.436 & 1.463 & -1.9 & 95 & 0.00 \\
\hline 22 & CPM & Benzo(a)anthracene & 2.069 & 2.159 & -4.3 & 96 & 0.00 \\
\hline 23 & CPM & Chrysene & 2.002 & 2.059 & -2.8 & 96 & 0.00 \\
\hline 24 & I & Perylene-d12 & 1.000 & 1.000 & 0.0 & 94 & 0.00 \\
\hline 25 & CPM & Benzo(b)fluoranthene & 2.187 & 2.296 & -5.0 & 97 & 0.00 \\
\hline 26 & CPM & Benzo(k)fluoranthene & 2.223 & 2.311 & -4.0 & 96 & -0.01 \\
\hline 27 & CPM & Benzo(a)pyrene & 2.139 & 2.288 & -7.0 & 97 & 0.00 \\
\hline 28 & CPM & Indeno(1,2,3-cd)pyrene & 2.679 & 2.817 & -5.2 & 95 & -0.03 \\
\hline 29 & CPM & Dibenz(a,h)anthracene & 2.231 & 2.350 & -5.3 & 94 & -0.03 \\
\hline 30 & CPM & Benzo(g,h,i)perylene & 2.264 & 2.365 & -4.5 & 96 & -0.03 \\
\hline
\end{tabular}
```

Data Path : D:\Agilent_Onsite\02-09-17\
Data File : ClosingCCV 40ppm 02-09-17.D
Acq On : 09 Feb 2017 01:25 pm
Operator :
Sample : ClosingCCV 40ppm
Misc
ALS Vial : 2 Sample Multiplier: 1

```

Quant Time: Feb 09 13:52:29 2017
Quant Method : D: \MassHunter\GCMS\1\methods\cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
Compound
R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.462 & 152 & 217098 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.491 & 136 & 709932 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.929 & 164 & 309598 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.248 & 188 & 585299 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.096 & 240 & 615865 & 20.00 & ng & 0.00 \\
\hline 24) Perylene-d12 & 15.571 & 264 & 599669 & 20.00 & ng & 0.00 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.411 & 112 & 1082575 & 46.13 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 19 & - 119 & Recov & & 115.33\% & \\
\hline 3) Phenol-d5 & 6.092 & 99 & 1182043 & 41.61 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recov & & 104.02\% & \\
\hline 5) Nitrobenzene-d5 & 6.892 & 82 & 790604 & 42.83 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 120 & Recov & & 107.07\% & \\
\hline 10) 2-Fluorobiphenyl & 8.331 & 172 & 1635748 & 39.64 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 119 & Recov & & 99.10\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.601 & 330 & 288978 & 40.55 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 43 & - 140 & Recov & & 101.38\% & \\
\hline 21) Terphenyl-d14 & 11.797 & 244 & 1802443 & 40.77 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 50 & - 134 & Recov & & 101.93\% & \\
\hline
\end{tabular}
\begin{tabular}{lrlllr}
Target Compounds \\
6) Naphthalene & & & & Qvalue \\
7) 2 -Methylnaphthalene & 7.512 & 128 & 2815979 & 40.60 ng & 97 \\
8) 1-Methylnaphthalene & 8.062 & 142 & 1817370 & 40.16 ng & 97 \\
11) Acenaphthylene & 8.147 & 142 & 1657714 & 39.93 ng & 99 \\
12) Acenaphthene & 8.821 & 152 & 2316693 & 41.12 ng & 97 \\
13) Fluorene & 8.958 & 154 & 1505224 & 40.00 ng & 97 \\
16) Phenanthrene & 9.394 & 166 & 1715944 & 40.62 ng & 99 \\
17) Anthracene & 10.275 & 178 & 2494722 & 41.18 ng & 99 \\
18) Pyrene & 10.321 & 178 & 2676801 & 41.73 ng & 99 \\
19) Fluoranthene & 11.463 & 202 & 2799821 & 42.11 ng & 96 \\
22) Benzo(a)anthracene & 11.718 & 202 & 2845346 & 41.78 ng & 95 \\
23) Chrysene & 13.082 & 228 & 2658792 & 41.72 ng & 96 \\
25) Benzo(b)fluoranthene & 13.134 & 228 & 2536338 & 41.15 ng & 96 \\
26) Benzo(k)fluoranthene & 14.791 & 252 & 2753478 & 42.00 ng & 100 \\
27) Benzo(a)pyrene & 14.842 & 252 & 2771603 & 41.59 ng & 96 \\
28) Indeno(1, 2, 3-cd)pyrene & 15.465 & 252 & 2744534 & 42.80 ng & 93 \\
29) Dibenz(a,h)anthracene & 18.339 & 276 & 3378940 & 42.07 ng & 93 \\
30) Benzo(g,h,i)perylene & 18.348 & 278 & 2818955 & 42.13 ng & 100 \\
& 19.195 & 276 & 2836113 & 41.79 ng & 100
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed
```

File :D:\Agilent_Onsite\02-09-17\ClosingCCV 40ppm 02-09-17.D
Operator
Acquired : 09 Feb 2017 01:25 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ClosingCCV 40ppm
Misc Info :
Vial Number: 2

```


Tune File : D: \Agilent Onsite \(\backslash 02-09-17 \backslash\) DFTPP3 02-09-17.D
Tune Time : 09 Eeb \(201 \overline{7}\) 11:57 am
Daily Calibration File : D: \Agilent_Onsite\02-01-17\IC02011706 40ppm 02-01-17.D
\begin{tabular}{lrrr}
C6H5FC6HD5C6D5NC12H9 & C6C12 & C10D8 & C12D1 \\
& 188327 & 703390 & 321370 \\
C6H3BC18D1 & C14D1 & C18D1 & C20D1 \\
& 617076 & 650290 & 639389
\end{tabular}

File Sample Surrogate Recovery \% Internal Standard Responses
\(=============================m===\)
ARS1-B17-00170-06 02-06-17.D
\begin{tabular}{llllllll}
ARS1-B17-0 & 51 & 52 & 58 & 47 & 194901 & 693297 & 284936 \\
& 79 & 62 & & & 553109 & 583946 & 560790
\end{tabular}

CCV 40ppm 02-09-17.D
\begin{tabular}{llllllll}
\(C C V\) & \(40 p p m\) & 117 & 107 & 107 & 904119 & 703089 & 307982
\end{tabular}
\(101104 \quad 587158 \quad 619696608741\)

ClosingCCV 40ppm 02-09-17.D
\(\begin{array}{llllllll}\text { ClosingCCV } & 115 & 104 & 107 & 99 & 217098 & 709932 & 30959\end{array}\)
\(101102585299515865 \quad 599669\)
(fails) - fails l2hr time check * - fails criteria
Created: Thu Feb 09 14:15:11 2017 GCMS \#1
```

Data Path : D:\Agilent_Onsite\02-09-17\
Data File : ARS1-B17-00170-06 02-06-17.D
Acq On : 09 Feb 2017 12:56 pm
Operator :
Sample : ARS1-B17-00170-06
Misc
ALS Vial : 3 Sample Multiplier: 1

```
Quant Time: Feb 09 13:19:16 2017
Quant Method : D: \MassHunter \(\backslash \mathrm{GCMS} \backslash 1\) \methods \(\backslash\) cole_8270_PAH.M
Quant Title : 8270D
QLast Update : Wed Feb 08 10:30:56 2017
Response via : Initial Calibration
 Compound R.T. QIon Response Conc Units Dev(Min)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Internal Standards} \\
\hline 1) 1,4-Dichlorobenzene-d4 & 6.462 & 152 & 194901 & 20.00 & ng & 0.00 \\
\hline 4) Naphthalene-d8 & 7.491 & 136 & 693297 & 20.00 & ng & 0.00 \\
\hline 9) Acenaphthene-d10 & 8.931 & 164 & 284936 & 20.00 & ng & 0.00 \\
\hline 14) Phenanthrene-d10 & 10.249 & 188 & 553109 & 20.00 & ng & 0.00 \\
\hline 20) Chrysene-d12 & 13.092 & 240 & 583946 & 20.00 & ng & -0.01 \\
\hline 24) Perylene-d12 & 15.568 & 264 & 560790 & 20.00 & ng & -0.01 \\
\hline \multicolumn{7}{|l|}{System Monitoring Compounds} \\
\hline 2) 2-Fluorophenol & 5.411 & 112 & 427445 & 20.29 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 19 & - 119 & Recovery & & 50.72\% & \\
\hline 3) Phenol-d5 & 6.093 & 99 & 532937 & 20.90 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 33 & - 122 & Recovery & & 52.25\% & \\
\hline 5) Nitrobenzene-d5 & 6.892 & 82 & 421213 & 23.37 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 120 & Recovery & & 58.43\% & \\
\hline 10) 2-Fluorobiphenyl & 8.331 & 172 & 706497 & 18.60 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 44 & - 119 & Recovery & & 46.50\% & \\
\hline 15) 2,4,6-Tribromophenol & 9.601 & 330 & 209313 & 31.42 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 43 & - 140 & Recovery & & 78.55\% & \\
\hline 21) Terphenyl-d14 & 11.797 & 244 & 1034735 & 24.68 & ng & 0.00 \\
\hline Spiked Amount 40.000 & Range 50 & - 134 & Recovery & = & 61.70\% & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Target Compounds & & & & Qvalue \\
\hline 6) Naphthalene & 0.000 & 0 & N.D. d & \\
\hline 7) 2-Methylnaphthalene & 0.000 & 0 & N.D. d & \\
\hline 8) 1-Methylnaphthalene & 0.000 & 0 & N.D. d & \\
\hline 11) Acenaphthylene & 0.000 & 0 & N.D. & \\
\hline 12) Acenaphthene & 0.000 & 0 & N.D. & \\
\hline 13) Fluorene & 0.000 & 0 & N.D. d & \\
\hline 16) Phenanthrene & 0.000 & 0 & N.D. d & \\
\hline 17) Anthracene & 0.000 & 0 & N.D. d & \\
\hline 18) Pyrene & 0.000 & 0 & N.D. & \\
\hline 19) Fluoranthene & 0.000 & 0 & N.D. d & \\
\hline 22) Benzo(a)anthracene & 0.000 & 0 & N.D. d & \\
\hline 23) Chrysene & 0.000 & 0 & N.D. d & \\
\hline 25) Benzo(b)fluoranthene & 0.000 & 0 & N.D. d & \\
\hline 26) Benzo(k)fluoranthene & 0.000 & 0 & N.D. d & \\
\hline 27) Benzo(a)pyrene & 0.000 & 0 & N.D. d & \\
\hline 28) Indeno(1,2,3-cd)pyrene & 0.000 & 0 & N. D. & \\
\hline 29) Dibenz(a,h)anthracene & 0.000 & 0 & N.D. & \\
\hline 30) Benzo(\(\mathrm{g}, \mathrm{h}, \mathrm{i})\) perylene & 0.000 & 0 & N.D. d & \\
\hline
\end{tabular}
\((\#)=\) qualifier out of range \((m)=\) manual integration \((+)=\) signals summed

File \(\quad \mathrm{D}: \backslash\) Agilent_Onsite\02-09-17\ARS1-B17-00170-06 02-06-17.D
Operator :
Acquired : 09 Feb 2017 12:56 pm using AcqMethod agilent_onsite_8270.M
Instrument : GCMS \#1
Sample Name: ARS1-B17-00170-06
Misc Info :
Vial Number: 3

Starting sequence wed Feb 08 16:48:03 2017
Instrument Name: GCMS \#1
Sequence File: D: \MassHunter \(\backslash G C M S \backslash 1 \backslash\) sequence \(\backslash 02-08-17\). sequence. xm \(\rceil\)
Comment:
operator:
Data Path: D:\Agilent_Onsite\02-08-17\
\begin{tabular}{|c|c|c|c|c|}
\hline Line & Type & vials & Datafile & Sample Name \\
\hline \multicolumn{5}{|l|}{Acquisition Method Path: D: \MassHunter\GCMS \(\backslash 1 \backslash\) methods} \\
\hline \multirow[t]{4}{*}{Acqu 3) 4)} & sition Method & File: & agilent_onsite_8270.M & \\
\hline & CC & 2 & CCV1 40ppm 02-08-17 & CCV1 40ppm \\
\hline & Method BTank & 3 & ARS1-B17-00170-. . 8-17 & ARS1-B17-00170-03 \\
\hline & Comment: Soil & & & \\
\hline \multirow[t]{2}{*}{5)} & Sample & 4 & ARS1-B17-00170-. . 8-17 & ARS1-B17-00170-01 \\
\hline & Comment: Soil & & & \\
\hline \multirow[t]{2}{*}{6)} & Sample & 5 & ARS1-B17-00170-. . 8-17 & ARS1-B17-00170-02 \\
\hline & Comment: So & & & \\
\hline 7) & Sample & 6 & ARS1-B17-00170-. . 8-17 & ARS1-B17-00170-04 \\
\hline \multirow[t]{2}{*}{8)} & Sample & 7 & ARS1-B17-00170-. . 8-17 & ARS1-B17-00170-10 \\
\hline & Comment: Soil & & & \\
\hline 9) & Sample & 8 & ARS1-B17-00170-. . .8-17 & ARS1-B17-00170-11 \\
\hline & Comment: Soil
Sample & 9 & ARS1-B17-00170-. . .8-17 & ARS1-B17-00170-05 \\
\hline 10) & Comment: Soif & 9 & ARS1-B17-00170-...8-17 & ARS1-B17-00170-05 \\
\hline 11) & Sample & 10 & ARS1-B17-00170-. . 8-17 & ARSI-B17-00170-06 \\
\hline & Comment: Soil & & & \\
\hline 12) & Sample Comment: soi 1 & 11 & ARS1-B17-00170-. . 8-17 & ARS1-B17-00170-07 \\
\hline 13) & Sample & 12 & ARS1-B17-00170-. . 8-17 & ARS1-B17-00170-08 \\
\hline \multirow[t]{2}{*}{14)} & Comment: Soil
Sample & 13 & ARS1-B17-00170-. . .8-17 & ARS1-B17-00170-09 \\
\hline & Comment: Soil & 13 & ARS1-B17-00170-..8-17 & \\
\hline 15) & Sample & 142 & ISBLK1 02-08-17 & ISBLK1 \\
\hline 16) & Sample & 142 & ISBLK2 02-08-17 & ISBLK2 \\
\hline 17) & Sample & 142 & ISBLK3 02-08-17 & ISBLK3 \\
\hline 18) & CC & 2 & ClosingCCV1 40p...8-17 & ClosingCCV1 40ppm \\
\hline
\end{tabular}

Sequence completed Thu Feb 09 00:37:02 2017

\footnotetext{
D:\Agilent_onsite\02-08-17\2017 Feb 081648 Quality Log.LOG D: \agilent_Onsite\02-08-17\2017 Feb 081648 Sequence Log . LOG
}

2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

\title{
PCB Analysis
} SW 8468082

\author{
SDG\# ARS1-17-00215 \\ COC Solid Samples
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{12}{|l|}{Analysis Batch ID ARS1-B17-00184} \\
\hline & \multicolumn{3}{|l|}{Method} & \multicolumn{2}{|l|}{ARS-157} & \begin{tabular}{l|l}
Analysis & GC
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { GCSV-8082A- } \\
& \text { SO }
\end{aligned}
\]} & Matrix & So & \multicolumn{2}{|l|}{} \\
\hline & \multicolumn{12}{|l|}{Description PCB's (Soil, Sludge)} \\
\hline ABatch Sample ID & Type & Blind Isol & & 1 lso2 & Blind Iso3 & Ur SDG & FR & Run & Prep Code & Client ID & Group Name & Lab Deadline \\
\hline ARS1-B17-00184-01 & LCS & \[
\begin{gathered}
\mathrm{m} 29 \mathrm{~h} 12202 \\
016-1
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{m} 29 \mathrm{~h} \\
01
\end{array}
\] & \[
\begin{aligned}
& 12192 \\
& 6-4
\end{aligned}
\] & & & & & & & & \\
\hline ARS1-B17-00184-02 & LCSD & \[
\begin{gathered}
\mathrm{m} 29 \mathrm{~h} 12202 \\
016-1
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{m} 29 \mathrm{r} \\
01
\end{array}
\] & \[
12192
\] & & & & & & & & \\
\hline ARS1-B17-00184-03 & MBL & & \[
\begin{array}{r}
\mathrm{m} 291 \\
01
\end{array}
\] & \[
\begin{aligned}
& 12192 \\
& 6-4
\end{aligned}
\] & & & & & & & & \\
\hline ARS1-B17-00184-04 & TRG & & & & & ARS1-17-00216 & 002 & 1 & 3550 C & BB-18 & & 02/11/17 \\
\hline ARS1-B17-00184-08 & MS & \[
\begin{gathered}
\mathrm{m} 29 \mathrm{~h} 12202 \\
016-1
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{m} 29 \mathrm{r} \\
01
\end{array}
\] & \[
\begin{aligned}
& 12192 \\
& 6-4
\end{aligned}
\] & & Parent: ARS1-17-0 & 0216 & & & & & \\
\hline ARE1-B17-00184-09 & MSD & \[
\begin{gathered}
\mathrm{m} 29 \mathrm{~h} 12202 \\
016-1
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{m} 29 \mathrm{r} \\
01
\end{array}
\] & \[
\begin{aligned}
& 12192 \\
& 6-4
\end{aligned}
\] & & Parent: ARS1-17-0 & 0216 & & & & & \\
\hline ARS1-B17-00184-05 & TRG & & & & & ARS1-17-00216 & 003 & 1 & 3550C & OS-2 & & 02/11/17 \\
\hline ARS1-B17-00184-06 & TRG & & & & & ARS1-17-00216 & 004 & 1 & 3550 C & BB-19M & & 02/11/17 \\
\hline ARS1-B17-00184-07 & TRG & & & & & ARS1-17-00216 & 007 & 1 & 3550 C & BB-17 & & 02/11/17 \\
\hline
\end{tabular}

\section*{Analytical Batch ID ARS1－B17－00184} Analysis Code GCSV－8082A－SO Procedure No ARS－157

\section*{Matrix SO}

ABatch \(\quad\) Analyte
\begin{tabular}{c}
0 \\
\(\vdots\) \\
\(\vdots\) \\
\(\frac{1}{0}\) \\
\(\vdots\) \\
\hline \multicolumn{1}{c}{}
\end{tabular} \(\stackrel{1}{2}\) \begin{tabular}{l}
1 \\
\hline\(⿳ 亠 口 冋\)
\end{tabular} \begin{tabular}{c}
0 \\
\hline
\end{tabular}豪
 Aroclor－1232 I
\(\underset{\sim}{4}\)
\(\frac{0}{0}\)
\(\vdots\) \begin{tabular}{c}
9 \\
4 \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline
\end{tabular} \begin{tabular}{c}
4 \\
\(N\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline
\end{tabular} Aroclor－ 1260 04－TRG Aroclor－1016 wor－1221 Aroclor－122 Aroclor－ 1232
 \begin{tabular}{c}
9 \\
\(\underset{y}{9}\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline
\end{tabular}
 Aroclor－1260 DCBP（Surr） TCMX（Surr）

 N

 \begin{tabular}{c}
0 \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline
\end{tabular}
 TCMX（Surr）

 \begin{tabular}{c}
N \\
N \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline \multirow{2}{c}{}
\end{tabular} 9
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\frac{1}{4}\)
\(\frac{1}{4}\) Aroclor－1254
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{0}{2}\) & & & & & & & & & & & & & & & \(\stackrel{\text { \％}}{\stackrel{1}{2}}\) & － \\
\hline \[
\begin{aligned}
& \mathrm{y} \\
& \mathrm{c} \\
& \mathrm{~s}
\end{aligned}
\] & & \(\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\infty}{m}}\) & \[
\begin{aligned}
& 8 \cdot \\
& \stackrel{\circ}{\circ} \\
& \hline 8
\end{aligned}
\] & & & & & & & & \[
\stackrel{0}{0}_{0}^{8}
\] & oi & \[
\stackrel{8}{\circ}
\] & & & － \\
\hline \[
\begin{aligned}
& \text { \# } \\
& \frac{\pi}{4} \\
& \frac{1}{9} \\
& \hline
\end{aligned}
\] & & 岂 & \[
\begin{aligned}
& 0 \\
& \dot{C} \\
& \\
& \hline
\end{aligned}
\] & & & & & & & & N
\(\dot{山}\)
\(\dot{\omega}\)
\(\dot{\circ}\)
\(\dot{\circ}\) & 岗 & \[
\stackrel{\text { u }}{\stackrel{u}{山}}
\] & & \[
\begin{aligned}
& \stackrel{\sim}{山} \\
& \stackrel{\omega}{\omega} \\
& \stackrel{\sim}{2}
\end{aligned}
\] & － \\
\hline & & O & त & & & & & & & & \[
0
\] & O & \[
8
\] & － & － & － \\
\hline वें & \[
\stackrel{\stackrel{\rightharpoonup}{山}}{\stackrel{\rightharpoonup}{0}}
\] & \％ & z & \[
\begin{aligned}
& \text { o } \\
& \stackrel{山}{m} \\
& \text { m }
\end{aligned}
\] & 嵩 & u
岸
m & \[
\xrightarrow[\text { M }]{\substack{\dot{u} \\ \text { min }}}
\] & \[
\stackrel{ٌ}{\stackrel{u}{u}}
\] & 岂 & \[
\stackrel{\circ}{\dot{\sim}}
\] & \(\frac{1}{z}\) & \(\frac{1}{2}\) & 岂 & & & － \\
\hline 들 & \[
\stackrel{\stackrel{1}{0}}{\stackrel{\rightharpoonup}{m}}
\] & \(\stackrel{4}{2}\) & \(\frac{8}{z}\) & & 荷 & & \(\stackrel{\stackrel{4}{4}}{\stackrel{u}{4}}\) & \begin{tabular}{c}
岂 \\
m \\
m \\
mi \\
\hline
\end{tabular} & 岂 & \[
\begin{aligned}
& \text { P } \\
& \stackrel{W}{W} \\
& \text { m }
\end{aligned}
\] & K & \(\frac{1}{2}\) & 岂
m
m
m & & ¢ & 号 \\
\hline 0 & 2 & & & \(\stackrel{3}{3}\) & \(\nu\) & \(\bigcirc\) & \(=\) & \(\bigcirc\) & \(\bigcirc\) & \(\nu\) & & & & & & \\
\hline & & & \[
\begin{gathered}
\underset{i}{2} \\
\underset{\sim}{2} \\
\sigma_{0}
\end{gathered}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & & \[
\underset{\sim}{\underset{\sim}{\sim}}
\] & ＂ & & & へ \\
\hline \[
\therefore \frac{\pi}{i}
\] & \[
\stackrel{8}{8}
\] & \[
\begin{aligned}
& \text { in } \\
& \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \text { í } \\
& \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { í } \\
\text { Nid }
\end{gathered}
\] & ii & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\infty}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\dot{\infty}}
\] & \[
\stackrel{i}{\circ}
\] & \[
\stackrel{\circ}{\dot{\sim}}
\] & \[
\stackrel{\circ}{\circ}
\] & & & － \\
\hline & \[
8
\] & \[
\stackrel{\text { ì }}{\underset{\sim}{\sim}}
\] & \[
\begin{gathered}
\mathrm{y} \\
\mathrm{~L} \\
\mathrm{M} \\
\mathrm{n}
\end{gathered}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & & T & \(\stackrel{n}{u}\)
\(\underset{\sim}{w}\)
\(\underset{\sim}{n}\)
\(\dot{n}\) & \(\stackrel{\text { u }}{\text { U }}\) & \％ & 高 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
e_{i}^{e} \\
e_{0}^{4} \\
\hline
\end{gathered}
\] & 7 & － & & \(\cdots\) & － & 7 & 7 & 7 & \(\cdots\) & － & － & － & － & － & 7 & \\
\hline \[
\frac{5}{3} \cdot
\] & \[
\begin{aligned}
& \mathrm{O} \\
& \hline \mathrm{O}
\end{aligned}
\] & ه் & 80 & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & Oi & \[
\begin{aligned}
& \text { 8. } \\
& \text { Co }
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& 0
\end{aligned}
\] & O망 & O. & & ¢ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
8
\] & \(\bigcirc\) & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & 8 & 8 & \[
\begin{aligned}
& \circ \\
& \hline 0 \\
& \hline
\end{aligned}
\] & O & O & ก18 & \[
\begin{aligned}
& \text { G } \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{\mathbf{C}}{\mathbf{m}}
\] & \(\stackrel{\circ}{\circ}\) \\
\hline & & ․
등
त
त & & & & & \[
\begin{aligned}
& 9 \\
& 9 \\
& 2 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& \frac{9}{7} \\
& \frac{1}{2} \\
& \frac{0}{2}
\end{aligned}
\] & \begin{tabular}{c}
\(\frac{2}{\ddot{7}}\) \\
\(\frac{\lambda}{\lambda}\) \\
\(\frac{1}{3}\) \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 9 \\
& 7 \\
& 7 \\
& 5 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& 9 \\
& 7 \\
& 2 \\
& 5 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 4 . \\
& 9 \\
& 5 \\
& 5 \\
& 7
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Z } \\
& \text { İ } \\
& \text { E }
\end{aligned}
\] & \[
\stackrel{\square}{2}
\] & n
n
n
N
a \\
\hline & & & & & & & 安 & & & 合 & ARS 1-17-00216-007 & 宮 & & & N & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ARS International Baton Rouge Laboratory} \\
\hline ABatch Sample 10 & Analyte \\
\hline \multirow[t]{3}{*}{06 －TRG} & Arocior－1260 \\
\hline & DCBP（Surr） \\
\hline & TCMX（Surr） \\
\hline \multirow[t]{9}{*}{07－TRG} & Aroclor－1016 \\
\hline & Aroclor－1221 \\
\hline & Arocior－1232 \\
\hline & Aroclor－1242 \\
\hline & Aroclor－1248 \\
\hline & Aroclor－1254 \\
\hline & Arocior－1260 \\
\hline & DCBP（Surr） \\
\hline & TCMX（Surr） \\
\hline \multirow[t]{2}{*}{08－MS} & Arocior－1016 \\
\hline & Aroclor－1260 \\
\hline \multirow[t]{2}{*}{O9－MSD} & Aroclor－1016 \\
\hline & Aroclor－1260 \\
\hline
\end{tabular}

Printed: 2/1/2017 12:23 PM
ARS international
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Procedure Data} & \multirow[t]{2}{*}{Parent} & \multirow[t]{2}{*}{Wi/vi (g/ml)} & \multirow[t]{2}{*}{Extraction Type} & \multirow[t]{2}{*}{Extraction Date/Time} & \multirow[t]{2}{*}{Conc. Extract Vol (mI)} & \multirow[t]{2}{*}{Cleanup Type} & \multirow[t]{2}{*}{Cleanup Factor} & \multirow[t]{2}{*}{User ID} \\
\hline ABatch Sample ID & Client ID & & & & & & & & \\
\hline ARS1-B17-00184-01 & & & 30.0000 & Sonification & \[
\begin{gathered}
1 / 31 / 2017 \\
1: 00: 00 \mathrm{PM}
\end{gathered}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-B17-00184-02 & & & 30.0000 & Sonification & \[
\begin{aligned}
& 1 / 31 / 2017 \\
& \text { 1:00:00 PM }
\end{aligned}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-B17-00184-03 & & & 30.0000 & Sonification & \[
\begin{aligned}
& 1 / 31 / 2017 \\
& \text { 1:00:00 PM }
\end{aligned}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-B17-00184-04 & BE-18 & & 30.0000 & Sonification & \[
\begin{gathered}
1 / 31 / 2017 \\
1: 00: 00 \text { PM }
\end{gathered}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-B17-00184-05 & OS-2 & & 30.0000 & Sonification & \[
\begin{aligned}
& 1 / 31 / 2017 \\
& \text { 1:00:00 PM }
\end{aligned}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-B17-00184-06 & BB-19M & & 30.0000 & Sonification & \[
\begin{aligned}
& 1 / 31 / 2017 \\
& 1: 00: 00 \mathrm{PM}
\end{aligned}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-B17-00184-07 & BB-17 & & 30.0000 & Sonification & \[
\begin{aligned}
& 1 / 31 / 2017 \\
& \text { 1:00:00 PM }
\end{aligned}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-817-00184-08 & & ARS1-17-00216-002 & 30.0000 & Sonification & \[
\begin{aligned}
& 1 / 31 / 2017 \\
& 1: 00: 00 \text { PM }
\end{aligned}
\] & 1.0000 & & & RCHANIYAVA \\
\hline ARS1-B17-00184-09 & & ARS1-17-00216-002 & 30.0000 & Sonification & \[
\begin{aligned}
& 1 / 31 / 2017 \\
& 1: 00.00 \mathrm{PM}
\end{aligned}
\] & 1.0000 & & & RCHANIYAVA \\
\hline
\end{tabular}
No reagents were used for this procedure.
No reagents were scanned.
Evap Date 2•1-7017

Prep Date \(|-3|-2017\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\stackrel{\rightharpoonup}{\mathbf{\varepsilon}}
\] & \[
\left\lvert\, \begin{aligned}
& \stackrel{\rightharpoonup}{s} \\
& \underline{s}
\end{aligned}\right.
\] & \[
\begin{array}{r}
3 \\
3 \\
3
\end{array}
\] & & \[
\begin{aligned}
& 5 \\
& \underline{f} \\
& \hline
\end{aligned}
\] & \[
\underset{\sim}{f}
\] & \[
a
\] & \[
\{
\] & 主 \\
\hline & \[
\frac{1}{8}
\] & & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& -3 \\
& 4
\end{aligned}
\] & & \[
\underline{3}
\] & - & & & \\
\hline & \[
\left|\begin{array}{l}
\overrightarrow{3} \\
0 \\
0 \\
0
\end{array}\right|
\] & & \[
\begin{aligned}
& 3 \\
& 3 \\
& 3
\end{aligned}
\] & & \[
\left[\left.\begin{array}{c}
3 \\
\frac{3}{c} \\
0 \\
0
\end{array} \right\rvert\,\right.
\] & \[
\begin{aligned}
& 3 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 7 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\left\{\begin{array}{l}
3 \\
0 \\
0 \\
0
\end{array}\right.
\] & \\
\hline & 1 & 1 & 1 & 1 & 1 & 1 & \(!\) & 1 & \\
\hline & 1 & 1 & 1 & 1 & 1 & , & 1 & & \\
\hline & (\(\begin{gathered}\text { d } \\ 0 \\ \cdots\end{gathered}\) & \[
\hat{i}
\] & \[
\begin{gathered}
f \\
f \\
j
\end{gathered}
\] & & \[
\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right.
\] & \[
0
\] & \[
8
\] & \[
\left\lvert\, \begin{aligned}
& 5 \\
& 0 \\
& 0
\end{aligned}\right.
\] & - \\
\hline & \(\checkmark\) & 0 & \(\sim\) & \(\checkmark\) & & & \(\sim\) & \(\sim\) & 1 \\
\hline
\end{tabular}
\begin{tabular}{l}
Sample or QC ID \\
\(1-B 17-0018 h-01\) \\
\(1-B 17-00184-02\) \\
\(1-3120-184-03\) \\
\(1-B 17-00184-04\) \\
\(1-B 1-0084-08\) \\
\(1-B 17.00184-04\) \\
\(1-B 17-00184-09\) \\
\(1-B 17-0.184-06\) \\
\(1-B 17-0018 L-07\) \\
\hline
\end{tabular}

\footnotetext{
Note only what is used:
DCM Lot\# R17-ocs
Hexane Lot\#
1:1 H2SO4 Lot\#
}

Data File C: \CHEM32 \1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\076F0301.D Sample Name: ARS1-B17-00184-03 MB

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/7/2017 3:00:40 PM

Seq. Line : 3
Location : Vial 76
Inj : 1
Inj Volume : 1 ןl

Acq. Method : C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32\1\METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-02-17.M
Last changed : 2/21/2017 4:03:03 PM

Sample-related custom fields:

Name
|Value
Additional Info : Peak(s) manually integrated

External Standard Report

Sorted By : Signal
Calib. Data Modified : 2/4/2017 11:22:32 AM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\(\left.\begin{array}{ccccccc}\begin{array}{c}\text { RetTime } \\ \text { [min] }\end{array} & \begin{array}{c}\text { Area } \\ \text { [Hz*s] }\end{array} & \text { Amt/Area } & \begin{array}{c}\text { Amount } \\ \text { [ng/ul] }\end{array} & \text { Grp } & \text { Name }\end{array}\right]\)

Data File C: \CHEM32\1\DATA \PCB-DC-02-07-17B 2017-02-07 13-54-11\076F0301.D Sample Name: ARS1-B17-00184-03 MB
\(===2\)
Acq. Operator : Seq. Line : 3
Acq. Instrument : Instrument \(1 \quad\) Location : Vial 76
Injection Date : 2/7/2017 3:00:40 PM
Inj : 1
Inj Volume : 1 pl
Acq. Method : C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11 \DC-8082-MASTER.M Last changed : 2/2/2017 9:17:18 AM Analysis Method : C: \CHEM32\1\METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M Last changed : 2/21/2017 4:03:03 PM

Sample-related custom fields:

Signal 2: ECD2 B,
\begin{tabular}{cccccc}
\begin{tabular}{c}
RetTime \\
[min]
\end{tabular} & Type & \begin{tabular}{c}
Area \\
[Hz*s]
\end{tabular} & Amt/Area & \begin{tabular}{c}
Amount \\
[ng/ul]
\end{tabular} & Grp
\end{tabular} Name

Totals :
\(1.48493 \mathrm{e}-1\)

2 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)
Warning : Calibrated compound(s) not found

Summed Peaks Report
 Sample Name: ARS1-B17-00184-03 MB

Acq. Operator :
Seq. Line : 3
Acq. Instrument : Instrument \(1 \quad\) Location : Vial 76
Injection Date : 2/7/2017 3:00:40 PM
Inj : 1
Inj Volume : \(1 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \I \METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAI 02-02-17.M
Last changed : 2/21/2017 4:03:03 PM
Sample-related custom fields:

Name |Value
Additional Info : Peak(s) manually integrated

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***

Data File C: \CHEM32\1\DATA \PCB-DC-02-13-17 2017-02-13 09-53-07\076F1501.D Sample Name: ARS1-B17-00184-01 LCS

Acq. Operator :
Injection Date : 2/13/2017 4:31:30 PM
Seq. Line : 15
Location : Vial 76
Inj : 1
Inj Volume : \(1 \mu l\)

Acq. Method : C: \CHEM32\1\DATA \(\backslash P C B-D C-02-13-17\) 2017-02-13 09-53-07\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
 Last changed : 2/15/2017 1:54:25 PM

Sample-related custom fields:
Name
|Value
\(\qquad\)
\(\qquad\)

External Standard Report

Sorted By
Signal
Calib. Data Modified : 2/15/2017 1:50:53 PM
Multiplier: : 1.0000
Dilution:
1.0000

Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
 [min]
``` & Type & \[
\begin{aligned}
& \text { Area } \\
& {[H z * s]}
\end{aligned}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.660 & VV & 819.97058 & \(1.43031 \mathrm{e}-5\) & \(1.17281 e-2\) & TCMX \\
\hline 10.804 & VV & 767.02747 & 8.93492e-4 & 6.85333e-1 & 1016\#1 \\
\hline 12.184 & VV & 719.93164 & \(1.14470 \mathrm{e}-3\) & 8.24109e-1 & 1016\#2 \\
\hline 12.883 & BV & 1055.28955 & \(7.46094 e-4\) & \(7.87345 \mathrm{e}-1\) & 1016\#3 \\
\hline 13.354 & BV & 614.07379 & \(1.26929 \mathrm{e}-3\) & \(7.79436 \mathrm{e}-1\) & 1016\#4 \\
\hline 13.789 & BV & 891.99750 & 9.15770e-4 & 8.16865e-1 & 1016\#5 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-13-17 2017-02-13 09-53-07\076F1501.D Sample Name: ARS1-B17-00184-01 LCS
\(================================================================2\)

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/13/2017 4:31:30 PM

Seq. Line : 15
Location : Vial 76
Inj : 1
Inj Volume : 1 \(\mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA\PCB-DC-02-13-17 2017-02-13 09-53-07\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32\1\METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-13-17.M Last changed : 2/15/2017 1:54:25 PM

Sample-related custom fields:

Name
|Value
\(\qquad\)
\begin{tabular}{lllllll}
\begin{tabular}{c} 
RetTime Type \\
[min]
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c} 
Area \\
[Hz*S]
\end{tabular}} & Amt/Area & \begin{tabular}{c} 
Amount \\
[ng/ul]
\end{tabular} & Grp
\end{tabular} Name

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{Hz}{ }^{*} \mathrm{~s}\right]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.550 & BV & 670.56342 & \(1.68633 \mathrm{e}-5\) & \(1.13079 \mathrm{e}-2\) & TCMX \\
\hline 10.169 & VV & 1253.21680 & \(5.24749 \mathrm{e}-4\) & \(6.57624 \mathrm{e}-1\) & 1016\#1 \\
\hline 11.082 & VV & 845.92596 & \(1.01474 \mathrm{e}-3\) & 8.58396e-1 & 1016\#2 \\
\hline 11.124 & VB & 1231.68774 & 6.26688e-4 & \(7.71884 \mathrm{e}-1\) & 1016\#3 \\
\hline 11.382 & BV & 650.61157 & 1.33291e-3 & 8.67207e-1 & 1016\#4 \\
\hline 12.168 & BV & 705.45691 & \(1.23885 \mathrm{e}-3\) & 8.73952e-1 & 1016\#5 \\
\hline 14.402 & BB & 1282.52905 & 7.38857e-4 & 9.47606e-1 & 1260\#1 \\
\hline 15.118 & VB & 784.32312 & \(1.31880 \mathrm{e}-3\) & 1.03437 & 1260\#2 \\
\hline 15.587 & VV & 742.61456 & \(1.16219 \mathrm{e}-3\) & 8.63057e-1 & 1260\#3 \\
\hline 16.024 & VV & 810.98187 & \(1.28720 \mathrm{e}-3\) & 1.04390 & 1260\#4 \\
\hline 16.562 & BV & 1478.29382 & 5.55008e-4 & 8.20464e-1 & 1260\#5 \\
\hline 18.963 & BB & 525.59442 & 8.64602e-5 & \(4.54430 \mathrm{e}-2\) & DCBP \\
\hline
\end{tabular}

Totals :
8.79520

1 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Signal 1: ECD1 A,

Acq. Operator : Seq. Line : 15
Acq. Instrument : Instrument \(1 \quad\) Location : Vial 76
Injection Date : 2/13/2017 4:31:30 PM
Inj : 1
Inj Volume : 1 씨
Acq. Method : C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-02-13-17 2017-02-13 09-53-07 \DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-13-17.M
Last changed : 2/15/2017 1:54:25 PM

Sample-related custom fields:

Name
|Value
--------------------------------|


Signal 2: ECD2 B,


\section*{Final Summed Peaks Report}


Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***

Data File C: \CHEM32\1\DATA\PCB-DC-02-13-17 2017-02-13 09-53-07\077F1601.D Sample Name: ARS1-B17-00184-02 LCSD



Sample-related custom fields:

Name
\(\qquad\)



External Standard Report

Sorted By
Signal
Calib. Data Modified : 2/15/2017 1:50:53 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECD1 A,
\begin{tabular}{rl}
\begin{tabular}{c} 
RetTime \\
[min]
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c} 
Area \\
[Hz*s]
\end{tabular}}
\end{tabular} Amt/Area \begin{tabular}{c} 
Amount \\
[ng/ul]
\end{tabular} Grp Name

Data File C: \CHEM32\1\DATA\PCB-DC-02-13-17 2017-02-13 09-53-07\077F1601.D Sample Name: ARS1-B17-00184-02 LCSD
\begin{tabular}{|c|c|c|}
\hline Acq. Operator & : & Seq. Line : 16 \\
\hline Acq. Instrument & Instrument 1 & Location : Vial 77 \\
\hline Injection Date & : 2/13/2017 4:59:58 PM & Inj \\
\hline & & Inj Volume : 1 pl \\
\hline Acq. Method & : C:\CHEM32\1\DATA \PCB & 17 2017-02-13 09-53-07\DC-8082-MASTER.M \\
\hline Last changed & : 2/2/2017 9:17:18 AM & \\
\hline Analysis Method & C \(\backslash\) CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash\) P &  \\
\hline Last changed & 2/15/2017 1:54:25 PM & \\
\hline
\end{tabular}

Sample-related custom fields:


Totals :
8.58696

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
    [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{[H z * s]}
\end{gathered}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 8.554 & BV & 670.41205 & \(1.68635 \mathrm{e}-5\) & \(1.13055 \mathrm{e}-2\) & TCMX \\
\hline 10.173 & VV & 1268.93494 & 5.24921e-4 & 6.66091e-1 & 1016\#1 \\
\hline 11.084 & VV & 930.05267 & \(1.01557 \mathrm{e}-3\) & \(9.44534 \mathrm{e}-1\) & 1016\#2 \\
\hline 11.125 & VV & 1344.57568 & 6.26043e-4 & 8.41762e-1 & 1016\#3 \\
\hline 11.383 & BV & 673.14514 & 1.33287e-3 & 8.97213e-1 & 1016\#4 \\
\hline 12.169 & BV & 715.24866 & 1.23876e-3 & 8.86025e-1 & 1016\#5 \\
\hline 14.403 & BB & 1297.79248 & 7.39028e-4 & 9.59105e-1 & 1260\#1 \\
\hline 15.119 & VB & 786.86603 & 1.31886e-3 & 1.03776 & 1260\#2 \\
\hline 15.589 & VV & 745.76898 & 1.16229e-3 & 8.66801e-1 & 1260\#3 \\
\hline 16.026 & VV & 806.22168 & \(1.28713 \mathrm{e}-3\) & 1.03771 & 1260\#4 \\
\hline 16.564 & BV & 1472.85510 & 5.55002e-4 & 8.17438e-1 & 1260\#5 \\
\hline 18.964 & BB & 525.21222 & 8.64610e-5 & 4.54103e-2 & DCBP \\
\hline
\end{tabular}

Totals :
9.01116

1 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Signal 1: ECD1 A,

```

Acq. Operator :
Seq. Line : 16
Acq. Instrument : Instrument $1 \quad$ Location : Vial 77
Injection Date : 2/13/2017 4:59:58 PM
Inj : $\quad 1$
Inj Volume : 1 pl
Acq. Method : C: \CHEM32\1\DATA \PCB-DC-02-13-17 2017-02-13 09-53-07\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

```

```

Last changed : 2/15/2017 1:54:25 PM

```

Sample-related custom fields:

Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***
Analytical Batch ID ARS1-B17-00184

il

\(=\)
LCS Aroclor-1016
 \begin{tabular}{l}
0 \\
\hline \\
1 \\
\(\vdots\) \\
\hline
\end{tabular} 03 - MBL Aroclor-1016
 \begin{tabular}{c}
\(N\) \\
\multirow{2}{*}{} \\
\hline
\end{tabular} \begin{tabular}{c}
4 \\
\hline
\end{tabular} \(\stackrel{+}{\stackrel{4}{N}}\)
 0
0
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\) 0
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\) 2
7
\(\frac{b}{4}\)
4
 N
\(\substack{1 \\ \vdots \\ \vdots \\ \vdots \\ 4}\)
 \(\stackrel{H}{4}\)

 \begin{tabular}{c}
9 \\
7 \\
\(\frac{1}{2}\) \\
\(\frac{1}{4}\) \\
\hline
\end{tabular} \(\stackrel{4}{N}\) 0
\(\frac{0}{1}\)
\(\frac{0}{2}\)
\(\frac{8}{4}\) \(\begin{array}{r}2 \\ 5 \\ 0 \\ 0 \\ 0 \\ 4 \\ 8 \\ \hline\end{array}\) TCMX (Surr) Ardor-1016

 \begin{tabular}{c}
18 \\
4 \\
\hline
\end{tabular} DSET-10pan
Printed： \(3 / 3 / 2017\) 10：57 AM
Page 2 of 2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& 0.0 \\
& 0 \\
& 0
\end{aligned}
\] & \(z\) & z & 0 & \[
0
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
0
\] & z & z & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
0
\] & \({ }_{0}^{\circ}\) \\
\hline & & & & & & & \(\bigcirc\) & － & \(\bigcirc\) & \(\bigcirc\) & & & 2 & 2 & & \\
\hline & & \[
{ }^{\circ} \mathrm{O}
\] & & \[
8
\] & \[
8
\] & \[
0
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\begin{gathered}
\stackrel{\rightharpoonup}{\mathbf{~}} \\
\underset{\sim}{n}
\end{gathered}
\] & & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{4} \\
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{1}{6}
\end{aligned}
\] & & \[
\begin{aligned}
& 4 \\
& 4 \\
& \hline
\end{aligned}
\] & \\
\hline & \[
\stackrel{\circ}{\mathrm{o}}
\] & ii & \[
\dot{1}
\] & \[
\stackrel{i}{\infty}
\] & \[
\stackrel{i}{\boldsymbol{\infty}}
\] & \[
\stackrel{\dot{8}}{\boldsymbol{\infty}}
\] & \[
\stackrel{\text { í }}{\boldsymbol{\infty}}
\] & \[
\stackrel{8}{\circ}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\begin{aligned}
& \text { ì } \\
& \stackrel{y}{\infty}
\end{aligned}
\] & \[
\dot{\infty}
\] & \[
\begin{aligned}
& \mathrm{i} \\
& \stackrel{\sim}{\infty} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& \infty
\end{aligned}
\] & \[
\dot{\otimes}
\] & \[
\begin{aligned}
& \text { fo } \\
& \dot{\infty}
\end{aligned}
\] & ¢ \\
\hline & & \[
\stackrel{\sim}{4}
\] & 说 & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
8
\] & \[
\stackrel{\underset{\sim}{\mu}}{\underset{\sim}{4}}
\] & \[
\begin{aligned}
& \text { ì } \\
& \mathbf{w} \\
& \mathbf{0}
\end{aligned}
\] & \[
\stackrel{\xrightarrow[4]{4}}{\stackrel{\sim}{n}}
\] & \[
\stackrel{\rightharpoonup}{i}
\] & \[
\stackrel{\rightharpoonup}{7}
\] & \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{\square}{\circ}\) & \(\stackrel{\square}{\square}\) & & & \[
8
\] & － & \％ & \[
8
\] & \％ & ¢ & \％ & \(\stackrel{\square}{n}\) & 宮 & \({ }^{\circ}\) & & ¢ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline SDG／Fraction & Analysis Date／Time \\
\hline ARS1－17－00216－004 & 02／07／17 18：48 \\
\hline ARS1－17－00216－004 & 02／07／17 18：48 \\
\hline ARS 1－17－00216－004 & 02／07／17 18：48 \\
\hline ARS 1－17－00216－007 & 02／07／17 19：16 \\
\hline ARS1－17－00216－007 & 02／07／17 19：16 \\
\hline ARS1－17－00216－007 & 02／07／17 19：16 \\
\hline ARS1－17－00216－007 & 02／07／17 19：16 \\
\hline ARS 1－17－00216－007 & 02／07／17 19：16 \\
\hline ARS 1－17－00216－007 & 02／07／17 19：16 \\
\hline ARS1－17－00216－002 & 02／07／17 19：44 \\
\hline ARS1－17－00216－002 & 02／07／17 19：44 \\
\hline ARS1－17－00216－002 & 02／07／17 20：13 \\
\hline ARS1－17－00216－002 & 02／07／17 20： \\
\hline
\end{tabular}
ABatch ID Analyte

C
号
0
0
0
－

\(N\)

\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\) a
\(\frac{1}{7}\)
\(\vdots\)
\(\frac{0}{4}\)
\(\frac{4}{4}\)

 \begin{tabular}{l}
8 \\
\hline \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\)
\end{tabular}
 Aroclor－1016 \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular}
 Aroclor－1260

Data File C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\079F0901.D Sample Name: ARS1-B17-00184-04

Sample-related custom fields:

Name
|Value
Additional Info : Peak(s) manually integrated

\section*{External Standard Report}

Sorted By : Signal

Calib. Data Modified : 2/4/2017 11:22:32 AM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{array}{r}
\text { Area } \\
{\left[\mathrm{Hz} z^{*} \mathrm{~s}\right]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.664 & BV & 792.16748 & \(2.40277 \mathrm{e}-5\) & \(1.90340 \mathrm{e}-2\) & tcmx \\
\hline 10.663 & BV & 413.56122 & 1.36425e-3 & 5.64202e-1 & 1016\#1 \\
\hline 12.180 & BB & 2748.43115 & 1.79088e-3 & 4.92212 & 1016\#2 \\
\hline 12.864 & VB & 550.95032 & \(1.17859 \mathrm{e}-3\) & \(6.49344 \mathrm{e}-1\) & 1016\#3 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\079F0901.D Sample Name: ARS1-B17-00184-04

Sample-related custom fields:

Additional Info : Peak(s) manually integrated
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
 [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 13.233 & BV & 2228.52661 & \(2.43789 \mathrm{e}-3\) & 5.43291 & 1016\#4 \\
\hline 13.798 & & - & - & - & 1016\#5 \\
\hline 16.142 & BV & 281.55954 & \(6.12167 \mathrm{e}-4\) & \(1.72361 \mathrm{e}-1\) & 1260\#1 \\
\hline 16.511 & BV & 351.97629 & \(6.08521 e-4\) & \(2.14185 \mathrm{e}-1\) & 1260\#2 \\
\hline 17.165 & VB & 749.68048 & \(5.08290 \mathrm{e}-4\) & 3.81055e-1 & 1260\#3 \\
\hline 17.390 & VV & 910.40338 & 9.86730e-4 & 8.98322e-1 & 1260\#4 \\
\hline 17.816 & VV & 339.58466 & 9.30998e-4 & \(3.16153 \mathrm{e}-1\) & 1260\#5 \\
\hline 21.436 & BV & 352.97122 & \(5.26189 \mathrm{e}-5\) & \(1.85730 \mathrm{e}-2\) & dcbp \\
\hline
\end{tabular}

Totals : 13.58825

Signal 2: ECD2 B,
\begin{tabular}{cccccc}
\begin{tabular}{c} 
RetTime \\
[min]
\end{tabular} & Type & \begin{tabular}{c} 
Area \\
[Hz*s]
\end{tabular} & Amt/Area & \begin{tabular}{c} 
Amount \\
[ng/ul]
\end{tabular} & Grp
\end{tabular} Name

Totals :
16.73445

\section*{2 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing) warning : Calibrated compound(s) not found
\begin{tabular}{|c|c|}
\hline Acq. Operator & Seq. Line : 9 \\
\hline Acq. Instrument & : Instrument 1 Location : Vial 79 \\
\hline Injection Date & : 2/7/2017 5:51:09 PM Inj : 1 \\
\hline & Inj Volume : 1 ¢ \\
\hline Acq. Method & : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\DC-8082-MASTER.M \\
\hline Last changed & : 2/2/2017 9:17:18 AM \\
\hline Analysis Method & : C: \CHEM32\1\METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M \\
\hline Last changed & : 2/8/2017 10:07:09 AM \\
\hline & (modified after loading) \\
\hline
\end{tabular}

Sample-related custom fields:
\begin{tabular}{|c|c|}
\hline Name & | Value \\
\hline & 1--. \\
\hline
\end{tabular}

Additional Info : Peak(s) manually integrated


Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***

Current Chromatogram(s)



Current Chromatogram(s)



Current Chromatogram (s)




0

Current Chromatogram(s)


Current Chromatogram (s)


Data File C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\080F1001.D
Sample Name: ARS1-B17-00184-05


Sample-related custom fields:


External Standard Report

Sorted By : Signal

Calib. Data Modified : 2/4/2017 11:22:32 AM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz*} \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.667 & BV & 762.55957 & 2.37898e-5 & 1.81411e-2 & tcmx \\
\hline 10.792 & VB & 79.87797 & 1.18502e-3 & 9.46569e-2 & 1016\#1 \\
\hline 12.182 & VV & 2498.16113 & \(1.79037 \mathrm{e}-3\) & 4.47264 & 1016\#2 \\
\hline 12.854 & VB & 219.01204 & 1.26986e-3 & 2.78115e-1 & 1016\#3 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\080F1001.D
Sample Name: ARS1-B17-00184-05

Acq. Operator :
Seq. Line : 10
Acq. Instrument : Instrument 1
Injection Date : 2/7/2017 6:19:33 PM
Location : Vial 80
Inj : 1
Inj Volume : 1 \(\mu \mathrm{l}\)
Acq. Method : C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11 \DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32\1\METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M
Last changed : 2/8/2017 10:12:17 AM (modified after loading)

Sample-related custom fields:


Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RetTime } \\
& \text { [min] }
\end{aligned}
\] & Type & \[
\begin{array}{r}
\text { Area } \\
{\left[\mathrm{Hz}^{*} \mathrm{~s}\right]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 13.532 & BV & 76.84234 & 1.95653e-3 & \(1.50345 \mathrm{e}-1\) & 1016\#4 \\
\hline 13.618 & VB & 78.04550 & 1.30239e-3 & \(1.01646 \mathrm{e}-1\) & 1016\#5 \\
\hline 16.079 & BB & 79.47666 & 4.23440e-4 & 3.36536e-2 & 1260\#1 \\
\hline 16.633 & BB & 46.29071 & \(2.20836 \mathrm{e}-4\) & 1.02227e-2 & 1260\#2 \\
\hline 16.934 & BB & 195.15271 & \(4.69035 \mathrm{e}-4\) & \(9.15334 \mathrm{e}-2\) & 1260\#3 \\
\hline 17.397 & BV & 615.88147 & 9.74842e-4 & \(6.00387 \mathrm{e}-1\) & 1260\#4 \\
\hline 17.904 & VV & 846.47760 & 9.54810e-4 & \(8.08225 \mathrm{e}-1\) & 1260\#5 \\
\hline 21.442 & BV & 336.29321 & \(5.06871 \mathrm{e}-5\) & 1.70457e-2 & dcbp \\
\hline
\end{tabular}

Totals :
6.67661

Signal 2: ECD2 B,


\section*{3 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing)
Warning : Calibrated compound(s) not found
Warning : Elution order of calibrated compounds may have changed


Current Chromatogram (s)



Current Chromatogram(s)


ECD2 B. (PCB-DC-02-07-17B 2017-02-07 13-54-111003F1901.D)


Current Chromatogram (s)



Current Chromatogram(s)



Instrument 1 2/8/2017 2:38:03 PM

Current Chromatogram(s)



Current Chromatogram(s)



Instrument 1 2/8/2017 2:36:36 PM

Current Chromatogram(s)


ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111008F2401.D)


Current Chromatogram (s)


Data File C: \CHEM32 \1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\081F1101.D
Sample Name: ARS1-B17-00184-06


Sample-related custom fields:
\(\qquad\) |Value

Additional Info : Peak(s) manually integrated




\section*{External Standard Report}

Sorted By : Signal
Calib. Data Modified : 2/4/2017 11:22:32 AM
Multiplier: : 1.0000
Dilution:
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECDI A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{Hz} \mathrm{H}^{\star} \mathrm{S}\right]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.666 & VV S & 5666.46191 & \(2.92996 \mathrm{e}-5\) & \(1.66025 \mathrm{e}-1\) & tcmx \\
\hline 10.815 & & - & - & - & 1016\#1 \\
\hline 12.180 & VV s & 2.93706 e 4 & \(1.79550 \mathrm{e}-3\) & 52.73478 & 1016\#2 \\
\hline 12.769 & VV S & 2.02842 e 4 & \(1.12001 \mathrm{e}-3\) & 22.71842 & 1016\#3 \\
\hline
\end{tabular}

Data File C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\081F1101.D
Sample Name: ARS1-B17-00184-06

Acq. Operator :
Seq. Line ; 11
Acq. Instrument : Instrument 1
Location : Vial 81
Injection Date : 2/7/2017 6:48:03 PM
Inj : 1
Inj Volume : 1 بl
Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11 \DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

Last changed : 2/8/2017 12:41:22 PM (modified after loading)

Sample-related custom fields:

|Value
Additional Info : Peak(s) manually integrated

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RetTime Type } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 13.443 & - & - & - & 1016\#4 \\
\hline 13.798 & - & - & - & 1016\#5 \\
\hline 16.154 & - & - & - & 1260\#1 \\
\hline 16.351 VV S & 1.82821 e 4 & 6.66099e-4 & 12.17768 & 1260\#2 \\
\hline 16.984 VV S & 4656.68848 & 5.19881e-4 & 2.42092 & 1260\#3 \\
\hline 17.394 VV S & 1268.61145 & 9.93749e-4 & 1.26068 & 1260\#4 \\
\hline 17.723 VB S & 717.24908 & 9.51936e-4 & 6.82775e-1 & 1260\#5 \\
\hline 21.437 VV & 846.21997 & \(7.53236 e-5\) & \(6.37404 \mathrm{e}-2\) & dcbp \\
\hline
\end{tabular}

Totals : 92.22503

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
    [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{[H z * S]}
\end{gathered}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 8.555 & VB & 661.68890 & \(2.77484 e-5\) & \(1.83608 \mathrm{e}-2\) & tcmx \\
\hline 10.181 & & - & - & - & 1016\#1 \\
\hline 11.519 & & - & - & - & 1016\#2 \\
\hline 11.746 & VV S & 3.68487 e 6 & 3.24545e-3 & 1.19591 e 4 & 1016\#3 \\
\hline 11.797 & & - & - & - & 1016\#4 \\
\hline 12.890 & & - & - & - & 1016\#5 \\
\hline 14.425 & & - & - & - & 1260\#1 \\
\hline 15.438 & BB & 708.78790 & \(6.53531 \mathrm{e}-4\) & \(4.63215 \mathrm{e}-1\) & 1260\#2 \\
\hline 15.608 & & - & - & - & 1260\#3 \\
\hline 16.043 & & - & - & - & 1260\#4 \\
\hline 16.587 & & - & - & - & 1260\#5 \\
\hline 18.968 & BV & 483.38864 & \(7.84515 \mathrm{e}-5\) & 3.79226e-2 & dcbp \\
\hline
\end{tabular}

2 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)
Warning : Calibrated compound(s) not found

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\081F1101.D
Sample Name: ARS1-B17-00184-06

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/7/2017 6:48:03 PM
Seq. Line : 11
Location : Vial 81
Inj : 1
Inj Volume : \(1 \mu \mathrm{l}\)
Acq. Method : C: \CHEM32\1\DATA \(\backslash P C B-D C-02-07-17 B\) 2017-02-07 13-54-11\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \1 \METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M
Last changed : 2/8/2017 12:41:22 PM (modified after loading)

Sample-related custom fields:
```

Name |Value
---------------------------------------------------------------------------
Additional Info : Peak(s) manually integrated

```


```

                    Summed Peaks Report
    ```

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***

Current Chromatogram(s)

ECD1A, (PCB-DC-02-07-17B 2017-02-07 13-54-111080F1001.D)

Current Chromatogram(s)

Current Chromatogram(s)

ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111005F2101.D)

ECD1 A, (PCB-DC-02-07-17B 2017-02-07 13-54-111080F1001.D)

ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-1 1l080F1001.D)

Current Chromatogram(s)

Current Chromatogram(s)

ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111007F2301.D)

ECD1 A, (PCB-DC-02-07-17B 2017-02-07 13-54-111080F1001.D)

Current Chromatogram(s)

ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111008F2401.D)

ECD1 A, (PCB-DC-02-07-17B 2017-02-07 13-54-111080F1001.D)

Current Chromatogram(s)

ECD1 A, (PCB-DC-02-07-17B 2017-02-07 13-54-111080F1001.D)

ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111080F1001.D)

Data File C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11 \082F1201.D
Sample Name: ARS1-B17-00184-07

Sample-related custom fields:
\(\qquad\) |Value
Additional Info : Peak(s) manually integrated

Data File C: \CHEM32 \1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\082F1201.D
Sample Name: ARS1-B17-00184-07

Sample-related custom fields:

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
 [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.555 & VB & 330.98666 & \(2.35476 \mathrm{e}-5\) & \(7.79393 e-3\) & tcmx \\
\hline 10.182 & BB & 231.74347 & 7.41886e-4 & \(1.71927 \mathrm{e}-1\) & 1016\#1 \\
\hline 11.536 & VB & 1005.12482 & 3.08262e-3 & 3.09841 & 1016\#2 \\
\hline 11.736 & BB & 327.39401 & 3.19644e-3 & 1.04649 & 1016\#3 \\
\hline 11.923 & BB & 159.67238 & 3.81987e-3 & 6.09927e-1 & 1016\#4 \\
\hline 12.670 & VB & 184.61641 & \(1.27967 e-3\) & \(2.36248 \mathrm{e}-1\) & 1016\#5 \\
\hline 14.425 & & - & - & - & 1260\#1 \\
\hline 15.358 & BV & 184.67665 & 1.19650e-3 & \(2.20965 e-1\) & 1260\#3 \\
\hline 15.445 & VB & 107.93499 & 7.31357e-4 & 7.89390e-2 & 1260\#2 \\
\hline 15.898 & BB & 209.24226 & \(1.37694 e-3\) & 2.88113e-1 & 1260\#4 \\
\hline 16.338 & BB & 258.25043 & 5.34246e-4 & 1.37969e-1 & 1260\#5 \\
\hline 18.968 & BB & 141.83875 & 2.80559e-5 & 3.97942e-3 & dcop \\
\hline
\end{tabular}

Totals :
5.90077

3 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)
Warning : Calibrated compound(s) not found
Warning : Elution order of calibrated compounds may have changed

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\082F1201.D
Sample Name: ARS1-B17-00184-07


Sample-related custom fields:


Signal 1: ECD1 A, Signal 2: ECD2 B,


\section*{Final Summed Peaks Report}


Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:

Current Chromatogram (s)


ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111003F1901.D)



Current Chromatogram(s)


Current Chromatogram(s)


Current Chromatogram(s)


Current Chromatogram(s)





Current Chromatogram(s)


ECD1 A, (PCB-DC-02-07-17B 2017-02-07 13-54-111082F1201.D)


ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111082F1201.D)


Current Chromatogram(s)


Data File C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17P 2017-02-07 13-54-11\083F1301.D
Sample Name: ARS1-B17-00184-08 MS

Acq. Operator :
Seq. Line : 13
Acq. Instrument : Instrument 1
Injection Date : 2/7/2017 7:44:46 PM
Location : Vial 83
Inj : 1
Inj Volume : \(1 \mu \mathrm{l}\)
Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash M E T H O D S \backslash P C B\) DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-02-17.M
Last changed : 2/8/2017 12:32:23 PM (modified after loading)

Sample-related custom fields:

\section*{Name}
---------------------------------1
|Value
Additional Info : Peak(s) manually integrated



ECD2 B, (PCB-DC-02-07-17B 2017-02-07 13-54-111083F1301.D)


Data File \(\mathrm{C}: \backslash \mathrm{CHEM} 32 \backslash 1 \backslash \mathrm{DATA} \backslash \mathrm{PCB}-\mathrm{DC}-02-07-17 \mathrm{~B}\) 2017-02-0713-54-11\083F1301.D Sample Name: ARSl-B17-00184-08 MS


Sample-related custom fields:

\section*{Name}
|Value
Additional Info : Peak(s) manually integrated
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz*s}}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 13.435 & VB & 370.59100 & 2.35171e-3 & \(8.71522 \mathrm{e}-1\) & 1016\#4 \\
\hline 13.795 & BV & 638.29865 & 1.36890e-3 & 8.73766e-1 & 1016\#5 \\
\hline 16.144 & BV & 1053.74121 & 6.66558e-4 & \(7.02380 \mathrm{e}-1\) & 1260\#1 \\
\hline 16.513 & BV & 1142.74048 & \(6.49147 \mathrm{e}-4\) & \(7.41806 \mathrm{e}-1\) & 1260\#2 \\
\hline 17.170 & VB & 1534.49048 & \(5.15356 \mathrm{e}-4\) & \(7.90808 \mathrm{e}-1\) & 1260\#3 \\
\hline 17.328 & BV & 553.77179 & 9.70721e-4 & 5.37558e-1 & 1260\#4 \\
\hline 17.867 & VB & 472.78302 & 9.42201e-4 & \(4.45456 \mathrm{e}-1\) & 1260\#5 \\
\hline 21.530 & VB & 590.30090 & \(6.82797 e-5\) & \(4.03055 \mathrm{e}-2\) & dcbp \\
\hline
\end{tabular}

Totals :
11.12462

Signal 2: ECD2 B ,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.556 & VB & 1658.64575 & \(3.02755 \mathrm{e}-5\) & 5.02163e-2 & tcmx \\
\hline 10.172 & VB & 914.33472 & 7.83321e-4 & \(7.16217 \mathrm{e}-1\) & 1016\#1 \\
\hline 11.534 & VB & 1310.63171 & 3.08068e-3 & 4.03764 & 1016\#2 \\
\hline 11.741 & BV & 817.09381 & 3.22582e-3 & 2.63579 & 1016\#3 \\
\hline 11.982 & BV & 6704.89209 & 3.90614e-3 & 26.19023 & 1016\#4 \\
\hline 12.885 & VV & 494.19199 & 1.53486e-3 & \(7.58513 \mathrm{e}-1\) & 1016\#5 \\
\hline 14.405 & BB & 900.47583 & 8.92584e-4 & \(8.03750 \mathrm{e}-1\) & 1260\#1 \\
\hline 15.393 & BB & 1546.15015 & 6.45959e-4 & 9.98750e-1 & 1260\#2 \\
\hline 15.592 & BV & 494.40305 & 1.17227e-3 & \(5.79575 \mathrm{e}-1\) & 1260\#3 \\
\hline 16.043 & & - & - & - & 1260\#4 \\
\hline 16.564 & BB & 783.09082 & 5.33795e-4 & \(4.18010 \mathrm{e}-1\) & 1260\#5 \\
\hline 18.970 & BV & 483.03415 & 7.84361e-5 & 3.78873e-2 & dcop \\
\hline
\end{tabular}

Totals :
37.22658

2 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)
Warning : Calibrated compound(s) not found

Data File C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\083F1301.D
Sample Name: ARS1-B17-00184-08 MS

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : \(2 / 7 / 2017\) 7:44:46 PM

Seq. Line : 13
Injection Date : 2/7/2017 7:44:46 PM
Location : Vial 83
Inj: 1
Inj Volume : 1 \(\mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA \(\backslash \mathrm{PCB}-\mathrm{DC}-02-07-17 \mathrm{~B}\) 2017-02-07 13-54-11\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

Last changed : 2/8/2017 12:32:23 PM (modified after loading)

Sample-related custom fields:

Additional Info : Peak(s) manually integrated


Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 \(B\),
Compound-related custom fields:

Data File C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\084F1401.D
Sample Name: ARS1-B17-00184-09 MSD

Acq. Operator :
Seq. Line : 14
Acq. Instrument : Instrument 1
Injection Date : 2/7/2017 8:13:14 PM
Location : Vial 84
Inj : 1
Inj Volume : 1 pl
Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

Last changed : 2/8/2017 12:36:13 PM
(modified after loading)
Sample-related custom fields:

\section*{Name}
\(\qquad\)
|Value

Additional Info : Peak(s) manually integrated


ECD1 A, (PCB-DC-02-07-17B 2017-02-07 13-54-111084F1401.D)




-


```

External Standard Report

```


```

Sorted By : Signal
Calib. Data Modified : 2/4/2017 11:22:32 AM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs

```

Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
    [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{[H z * s]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.666 & BB & 1015.54535 & \(2.53758 \mathrm{e}-5\) & \(2.57703 \mathrm{e}-2\) & tcmx \\
\hline 10.810 & VV & 801.97668 & \(1.38503 \mathrm{e}-3\) & 1.11076 & 1016\#1 \\
\hline 12.180 & VB & 6541.01416 & 1.79383e-3 & 11.73349 & 1016\#2 \\
\hline 12.885 & VV & 1464.75330 & 1.14102e-3 & 1.67131 & 1016\#3 \\
\hline
\end{tabular}

Data File C: \CHEM32 \1 \DATA \PCB-DC-02-07-17B 2017-02-07 13-54-11\084F1401.D
Sample Name: ARS1-B17-00184-09 MSD

Sample-related custom fields:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Name} & \multicolumn{2}{|l|}{Value} & \\
\hline \multicolumn{6}{|l|}{Additional Info : Peak(s) manually integrated} \\
\hline \multirow[t]{2}{*}{```
RetTime
 [min]
```} & \multirow[t]{2}{*}{Type} & Area & Amt/Area & Amount & Grp Name \\
\hline & & [ \(\mathrm{Hz*}\) s] & & [ng/ul] & \\
\hline 13.436 & VB & 374.75784 & 2.35286e-3 & 8.81752e-1 & 1016\#4 \\
\hline 13.794 & BV & 808.34454 & \(1.37085 \mathrm{e}-3\) & 1.10812 & 1016\#5 \\
\hline 16.142 & BV & 1197.81226 & 6.68944e-4 & 8.01269e-1 & 1260\#1 \\
\hline 16.511 & BV & 1267.80652 & 6.50931e-4 & \(8.25254 \mathrm{e}-1\) & 1260\#2 \\
\hline 17.167 & BB & 1615.71973 & 5.15695e-4 & 8.33219e-1 & 1260\#3 \\
\hline 17.325 & BV & 570.11615 & 9.71893e-4 & 5.54092e-1 & 1260\#4 \\
\hline 17.864 & & 514.94464 & 9.44539e-4 & \(4.86385 \mathrm{e}-1\) & 1260\#5 \\
\hline 21.440 & BV & 384.07816 & 5.57737e-5 & \(2.14215 \mathrm{e}-2\) & dcbp \\
\hline
\end{tabular}

Totals :
20.05285

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Area } \\
{[H z * s]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.558 & VB & 1016.53772 & 2.92160e-5 & \(2.96992 \mathrm{e}-2\) & tcmx \\
\hline 10.176 & VB & 1273.69812 & 7.87290e-4 & 1.00277 & 1016\#1 \\
\hline 11.534 & BB & 1440.90552 & 3.08011e-3 & 4.43814 & 1016\#2 \\
\hline 11.743 & BV & 751.50989 & 3.22410e-3 & 2.42294 & 1016\#3 \\
\hline 11.792 & VB & 348.03812 & 3.86770e-3 & 1.34611 & 1016\#4 \\
\hline 12.884 & VV & 580.96112 & 1.55758e-3 & 9.04896e-1 & 1016\#5 \\
\hline 14.404 & BB & 1010.94031 & 8.93791e-4 & \(9.03569 \mathrm{e}-1\) & 1260\#1 \\
\hline 15.391 & BB & 1702.58203 & 6.45371e-4 & 1.09880 & 1260\#2 \\
\hline 15.590 & BV & 569.88007 & 1.17036e-3 & 6.66964e-1 & 1260\#3 \\
\hline 16.026 & VB & 470.30640 & \(1.34119 \mathrm{e}-3\) & 6.30769e-1 & 1260\#4 \\
\hline 16.561 & VV & 890.54865 & 5.33768e-4 & 4.75346e-1 & 1260\#5 \\
\hline 18.835 & BB & 394.88522 & 7.37610e-5 & 2.91271e-2 & dcbp \\
\hline
\end{tabular}

Totals :
13.94913

2 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)
Warning : Elution order of calibrated compounds may have changed

Data File C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\084F1401.D Sample Name: ARS1-B17-00184-09 MSD


Sample-related custom fields:


Signal 1: ECD1 A, Signal 2: ECD2 \(B\),

Final Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***
```

 Calibration Table
    ```

Calib. Data Modified : 2/4/2017 12:01:07 PM

Rel. Reference Window :
Abs. Reference Window :
Rel. Non-ref. Window
Abs. Non-ref. Window Uncalibrated Peaks Partial Calibration : Correct All Ret. Times:

Curve Type
Origin
Weight
\(5.000 \%\)
0.000 min
5.000 훔
0.000 min
not reported
Yes, identified peaks are recalibrated No, only for identified peaks

Linear
Ignored
Linear (Amnt)

Recalibration Settings:
Average Response : Average all calibrations
Average Retention Time: Average all calibrations

\section*{Calibration Report Options :}

Printout of recalibrations within a sequence:
Calibration Table after Recalibration Normal Report after Recalibration
If the sequence is done with bracketing: Results of first cycle (ending previous bracket)

Signal 1: ECD1 \(A\),
Signal 2:
ECD2

RetTime Lvl Amount Area Amt/Area Ref Grp Name

\(8.563214 .00000 \mathrm{e}-3 \quad 207.490141 .92780 \mathrm{e}-5 \quad\) tcmx
\(21.00000 e-2350.298492 .85471 e-5\)
\(32.00000 \mathrm{e}-2825.227052 .42358 \mathrm{e}-5\)
\(44.00000 \mathrm{e}-21481.63000 \quad 2.69973 \mathrm{e}-5\)
\(58.00000 \mathrm{e}-2 \quad 2034.657103 .93187 \mathrm{e}-5\)
\(61.00000 e-13333.475342 .99987 e-5\)
\(71.20000 \mathrm{e}-14314.39014 \quad 2.78139 \mathrm{e}-5\)
\(92.00000 \mathrm{e}-16113.372563 .27152 \mathrm{e}-5\)
\(9.669114 .00000 \mathrm{e}-3 \quad 283.571081 .41058 \mathrm{e}-5 \quad\) tcmx
\(21.00000 \mathrm{e}-2 \quad 477.480772 .09433 \mathrm{e}-5\)
\(32.00000 \mathrm{e}-2 \quad 897.340522 .22881 \mathrm{e}-5\)
\(44.00000 \mathrm{e}-2\) 1627.79553 2.45731e-5
\(58.00000 \mathrm{e}-22206.964603 .62489 \mathrm{e}-5\)
\(61.00000 \mathrm{e}-13611.21997\) 2.76915e-5
\(71.20000 \mathrm{e}-14645.084472 .58338 \mathrm{e}-5\) \(92.00000 \mathrm{e}-16572.57764 \quad 3.04295 \mathrm{e}-5\)
\(10.181215 .00000 \mathrm{e}-2 \quad 64.54073\) 7.74705e-4 1016\#1
\(21.00000 \mathrm{e}-1 \quad 133.66855 \quad 7.48119 \mathrm{e}-4\)
\(32.00000 \mathrm{e}-1 \quad 316.00793 \quad 6.32896 \mathrm{e}-4\)
\(44.00000 \mathrm{e}-1 \quad 529.70923\) 7.55131e-4
5 5.00000e-1 701.95435 7.12297e-4
\(68.00000 \mathrm{e}-1\) 1040.15930 7.69113e-4




Method C: \CHEM32\1\METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
RetTime
    [min]
``` & & & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Area & Amt/Area & Ref Grp Name \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1288.69629 & 6.20782e-4 & \\
\hline & & 7 & 1.00000 & 1685.67078 & 5.93236e-4 & \\
\hline & & 9 & 1.60000 & 2132.84692 & 7.50171e-4 & \\
\hline 16.587 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 84.27430 & 5.93301e-4 & 1260\#5 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 157.91661 & 6.33246e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 444.02090 & 4.50429e-4 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 729.09674 & 5.48624e-4 & \\
\hline & & 5 & \(5.00000 \mathrm{e}-1\) & 1017.59302 & 4.91356e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1525.74072 & 5.24335e-4 & \\
\hline & & 7 & 1.00000 & 2022.94092 & 4.94330e-4 & \\
\hline & & 9 & 1.60000 & 2730.64697 & 5.85942e-4 & \\
\hline 17.188 & 1 & 1 & \(5.00000 \mathrm{e}-2\) & 107.50050 & \(4.65114 \mathrm{e}-4\) & 1260\#3 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 182.17996 & 5.48908e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 459.73468 & 4.35034e-4 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 764.41290 & 5.23277e-4 & \\
\hline & & 5 & \(5.00000 \mathrm{e}-1\) & 1061.27917 & 4.71130e-4 & \\
\hline & & 6 & 8.00000e-1 & 1606.29626 & 4.98040e-4 & \\
\hline & & 7 & 1.00000 & 2130.68970 & 4.69332e-4 & \\
\hline & & 9 & 1.60000 & 2752.85474 & 5.81215e-4 & \\
\hline 17.335 & 1 & 1 & \(5.00000 \mathrm{e}-2\) & 64.05074 & 7.80631e-4 & 1260\#4 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 104.29836 & 9.58788e-4 & \\
\hline & & 3 & 2.00000e-1 & 260.11435 & 7.68893e-4 & \\
\hline & & 4 & 4.00000e-1 & 419.93045 & 9.52539e-4 & \\
\hline & & 5 & 5.00000e-1 & 570.16553 & 8.76938e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 847.60712 & 9.43834e-4 & \\
\hline & & 7 & 1.00000 & 1103.11243 & 9.06526e-4 & \\
\hline & & 9 & 1.60000 & 1406.42761 & \(1.13763 \mathrm{e}-3\) & \\
\hline 17.873 & 1 & 1 & \(5.00000 \mathrm{e}-2\) & 63.07708 & 7.92681e-4 & 1260\#5 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 98.07703 & 1.01961e-3 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 248.83839 & \(8.03734 e-4\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 414.62775 & 9.64721e-4 & \\
\hline & & 5 & \(5.00000 \mathrm{e}-1\) & 574.65411 & 8.70089e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 864.52429 & 9.25364e-4 & \\
\hline & & 7 & 1.00000 & 1143.72302 & 8.74338e-4 & \\
\hline & & 9 & 1.60000 & 1493.80957 & 1.07109e-3 & \\
\hline 18.972 & 2 & 1 & \(8.00000 \mathrm{e}-3\) & 155.74324 & 5.13666e-5 & dcbp \\
\hline & & 2 & \(2.00000 \mathrm{e}-2\) & 322.71283 & \(6.19746 e-5\) & \\
\hline & & 3 & 4.00000e-2 & 583.05145 & 6.86046e-5 & \\
\hline & & 4 & \(8.00000 \mathrm{e}-2\) & 1007.98535 & \(7.93662 e-5\) & \\
\hline & & 5 & \(1.60000 \mathrm{e}-1\) & 1514.28870 & \(1.05660 \mathrm{e}-4\) & \\
\hline & & 6 & \(2.00000 \mathrm{e}-1\) & 2010.97791 & 9.94541e-5 & \\
\hline & & 7 & 2.40000e-1 & 2836.70703 & 8.46051e-5 & \\
\hline & & 9 & \(4.00000 \mathrm{e}-1\) & 3934.55151 & \(1.01663 e-4\) & \\
\hline 21.437 & 1 & 1 & \(8.00000 \mathrm{e}-3\) & 231.19279 & 3.46032e-5 & dcbp \\
\hline & & 2 & 2.00000e-2 & 317.05734 & 6.30801e-5 & \\
\hline & & 3 & \(4.00000 \mathrm{e}-2\) & 686.49658 & 5.82669e-5 & \\
\hline & & 4 & 8.00000e-2 & 1165.19067 & 6.86583e-5 & \\
\hline & & 5 & \(1.60000 \mathrm{e}-1\) & 1713.97717 & 9.33501e-5 & \\
\hline & & 6 & 2.00000e-1 & 2270.34277 & 8.80924e-5 & \\
\hline & & 7 & \(2.40000 \mathrm{e}-1\) & 3019.47998 & \(7.94839 \mathrm{e}-5\) & \\
\hline & & 9 & \(4.00000 \mathrm{e}-1\) & 4334.11621 & 9.22910e-5 & \\
\hline
\end{tabular}

11 Warnings or Errors (10 first messages follow) :

Warning : Overlapping peak time windows at 12.89 min , signal 1 Warning : Overlapping peak time windows at 13.443 min , signal 1 Warning : Overlapping peak time windows at 16.154 min , signal 1
Warning : Overlapping peak time windows at 16.53 min , signal 1
Warning : Overlapping peak time windows at 17.188 min , signal 1
Warning : Overlapping peak time windows at 17.335 min , signal 1
Warning : Overlapping peak time windows at 11.519 min , signal 2
Warning : Overlapping peak time windows at 11.75 min , signal 2
Warning : Overlapping peak time windows at 15.447 min, signal 2
Warning : Overlapping peak time windows at 15.608 min, signal 2

\section*{Peak Sum Table}
No Entries in table

\section*{Calibration Curve}

\section*{Calibration Curve}

\section*{Calibration Curve}

Calibration Curve

Calibration Curve

Calibration Curve

\section*{Calibration Curve}

Calibration Curve

Calibration Curve

Calibration Curve

Calibration Curve

\section*{Calibration Curve}

Calibration Curve

Calibration Curve

\section*{Calibration Curve}

\section*{Calibration Curve}

Calibration Curve

Calibration Curve

Calibration Curve

Calibration Curve

Calibration Curve

\section*{Calibration Curve}

Calibration Curve

Calibration Curve

Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\002F0301.D
Sample Name: ARO1660 L-1 \(0.05 \mathrm{ug} / \mathrm{ml}\)
\(==2\)
Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/2/2017 10:44:44 AM
Seq. Line : 3
Location : Vial 2
Inj : 1
Inj Volume : 1 pl
Acq. Method : C:\CHEM32 \(\backslash 1 \backslash\) DATA \(\backslash\) PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M
Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:

Name
|Value
Additional Info : Peak(s) manually integrated

\section*{External Standard Report}

\section*{Sorted By}

Signal
Calib. Data Modified : 2/4/2017 12:01:07 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
 [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{Hz}^{\star} \mathrm{s}\right]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.670 & VB & 295.67444 & \(1.37366 \mathrm{e}-5\) & \(4.06155 \mathrm{e}-3\) & tcmx \\
\hline 10.816 & BB & 54.75792 & \(1.08311 \mathrm{e}-3\) & \(5.93090 \mathrm{e}-2\) & 1016\#1 \\
\hline 12.193 & VB & 27.13686 & 1.28052e-3 & 3.47492e-2 & 1016\#2 \\
\hline 12.890 & BB & 25.92000 & 3.57928e-3 & 9.27749e-2 & 1016\#3 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\002F0301.D
Sample Name: ARO1660 L-1 \(0.05 \mathrm{ug} / \mathrm{ml}\)


Sample-related custom fields:

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RetTime Type } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{array}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 13.438 VB & 39.02277 & \(1.47336 \mathrm{e}-3\) & \(5.74945 \mathrm{e}-2\) & 1016\#4 \\
\hline 13.798 BV & 42.93440 & \(1.24042 \mathrm{e}-3\) & 5.32569e-2 & 1016\#5 \\
\hline 16.161 BB & 92.45186 & \(4.60344 \mathrm{e}-4\) & 4.25597e-2 & 1260\#1 \\
\hline 16.539 VB & 96.28390 & 4.52616e-4 & 4.35796e-2 & 1260\#2 \\
\hline 17.196 BV & 107.72646 & 4.25965e-4 & 4.58877e-2 & 1260\#3 \\
\hline 17.340 VV & 63.64373 & 6.55996e-4 & 4.17501e-2 & 1260\#4 \\
\hline 17.878 BV & 66.45370 & 7.67561e-4 & \(5.10072 \mathrm{e}-2\) & 1260\#5 \\
\hline 21.441 BB & 225.69649 & 3.06529e-5 & \(6.91826 \mathrm{e}-3\) & dcbp \\
\hline
\end{tabular}

Totals :
\(5.33349 \mathrm{e}-1\)

Signal 2: ECD2 B ,


\section*{2 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing) Warning : Elution order of calibrated compounds may have changed

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\002F0301.D
Sample Name: ARO1660 L-1 \(0.05 \mathrm{ug} / \mathrm{ml}\)
\(==================================================================2\)
Acq. Operator : Seq. Line : 3
Acq. Instrument : Instrument 1
Injection Date : \(2 / 2 / 2017\) 10:44:44 AM
Location : Vial 2
Inj : 1
Inj Volume : 1 pl
Acq. Method : C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M
Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:
```

Name |Value
--
Additional Info : Peak(s) manually integrated

```


```

 Summed Peaks Report
    ```

Signal 1: ECD1 A,
Signal 2: ECD2 B,

                    Final Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***

Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\003F0401.D
Sample Name: ARO1660 L-2 \(0.10 \mathrm{ug} / \mathrm{ml}\)


Sample-related custom fields:



External Standard Report

Sorted By : Signal
Calib. Data Modified : 2/4/2017 12:01:07 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECDI A,


Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\003F0401.D Sample Name: ARO1660 L-2 \(0.10 \mathrm{ug} / \mathrm{ml}\)
\begin{tabular}{|c|c|}
\hline Acq. Operator & Seq. Line : 4 \\
\hline Acq. Instrument & Instrument \(1 \quad\) Location : Vial 3 \\
\hline Injection Date & : 2/2/2017 11:13:12 AM Inj : 1 \\
\hline & Inj Volume : \(1 \mathrm{\mu l}\) \\
\hline Acq. Method & \(: \mathrm{C}: \backslash \mathrm{CHEM} 32 \backslash 1 \backslash \mathrm{DATA} \backslash\) PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M \\
\hline Last changed & : 2/2/2017 9:17:18 AM \\
\hline Analysis Method & : C: \CHEM32 \(\backslash 1 \backslash \mathrm{METHODS} \backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M \\
\hline Last changed & \(: 2 / 4 / 2017\) 12:01:27 PM \\
\hline & (modified after loading) \\
\hline
\end{tabular}

Sample-related custom fields:


Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|}
\hline ```
RetTime Type
    [min]
``` & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 8.566 BB & 350.29849 & 2.40109e-5 & 8.41100e-3 & tcmx \\
\hline 10.181 BV & 133.66855 & \(7.01163 \mathrm{e}-4\) & 9.37235e-2 & 1016\#1 \\
\hline 11.520 VB & 24.20983 & 3.41910e-3 & 8.27757e-2 & 1016\#2 \\
\hline 11.750 BV & 38.53780 & \(2.82900 \mathrm{e}-3\) & 1.09024e-1 & 1016\#3 \\
\hline 11.797 VV & 31.55272 & 3.46102e-3 & 1.09205e-1 & 1016\#4 \\
\hline 12.891 VB & 108.40559 & 9.93290e-4 & \(1.07678 \mathrm{e}-1\) & 1016\#5 \\
\hline 14.432 BB & 100.35081 & 8.04534e-4 & 8.07356e-2 & 1260\#1 \\
\hline 15.458 BV & 123.34299 & 7.19888e-4 & 8.87932e-2 & 1260\#2 \\
\hline 15.613 VV & 79.29781 & \(1.24789 \mathrm{e}-3\) & 9.89550e-2 & 1260\#3 \\
\hline 16.048 BV & 57.63525 & \(1.54635 \mathrm{e}-3\) & 8.91243e-2 & 1260\#4 \\
\hline 16.595 VB & 157.91661 & 5.34674e-4 & 8.44339e-2 & 1260\#5 \\
\hline 18.975 BV & 322.71283 & 6.80315e-5 & 2.19546e-2 & dcbp \\
\hline Totals : & \multicolumn{4}{|c|}{\(9.74813 \mathrm{e}-1\)} \\
\hline
\end{tabular}

\section*{1 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing)

\section*{Summed Peaks Report}

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/2/2017 11:13:12 AM

Seq. Line : 4
Location : Vial 3
Inj : 1
Inj Volume : 1 \(\mu l\)

Acq. Method : C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-02-17.M
Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:

Signal 1: ECD1 A,
Signal 2: ECD2 B ,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Compound-related custom fields:

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\004F0501.D Sample Name: ARO1660 L-3 \(0.20 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:

External Standard Report

Sorted By
Signal
Calib. Data Modified : 2/4/2017 12:01:07 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
RetTime
 [min]
``` & Type & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz*s}]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp & Name \\
\hline 9.669 & BB & 897.34052 & \(2.47460 \mathrm{e}-5\) & 2.22056e-2 & & tcmx \\
\hline 10.815 & BB & 175.22739 & 1.30589e-3 & \(2.28829 \mathrm{e}-1\) & & 1016\#1 \\
\hline 12.193 & VB & 131.01570 & 1.68921e-3 & \(2.21313 \mathrm{e}-1\) & & 1016\#2 \\
\hline 12.890 & BV & 141.36113 & \(1.46301 \mathrm{e}-3\) & \(2.06813 \mathrm{e}-1\) & & 1016\#3 \\
\hline 13.443 & VB & 102.03152 & \(2.07961 \mathrm{e}-3\) & \(2.12186 \mathrm{e}-1\) & & 1016\#4 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\004F0501.D
Sample Name: ARO1660 L-3 \(0.20 \mathrm{ug} / \mathrm{ml}\)


Sample-related custom fields:
\begin{tabular}{|c|c|}
\hline Name & |Value \\
\hline & \\
\hline \(=\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{array}{r}
\text { Area } \\
{\left[\mathrm{Hz}^{*} \mathrm{~S}\right]}
\end{array}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 13.798 & BV & 165.27083 & 1.34238e-3 & \(2.21856 \mathrm{e}-1\) & 1016\#5 \\
\hline 16.154 & BB & 371.65009 & 6.30159e-4 & 2.34199e-1 & 1260\#1 \\
\hline 16.530 & VB & 381.98624 & \(6.13134 e-4\) & \(2.34209 \mathrm{e}-1\) & 1260\#2 \\
\hline 17.188 & BV & 459.73468 & 4.99577e-4 & \(2.29673 \mathrm{e}-1\) & 1260\#3 \\
\hline 17.335 & VV & 260.11435 & 9.24584e-4 & \(2.40497 e-1\) & 1260\#4 \\
\hline 17.873 & BB & 248.83839 & 9.16496e-4 & \(2.28059 \mathrm{e}-1\) & 1260\#5 \\
\hline 21.438 & BB & 758.64673 & 7.34481e-5 & 5.57212e-2 & dcbp \\
\hline
\end{tabular}

Totals :
2.33556

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|}
\hline ```
RetTime Type
    [min]
``` & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~S}]}
\end{gathered}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 8.563 BB & 825.22705 & 2.85816e-5 & 2.35863e-2 & tcmx \\
\hline 10.181 BV & 316.00793 & \(7.56686 \mathrm{e}-4\) & 2.39119e-1 & 1016\#1 \\
\hline 11.519 VB & 65.93283 & 3.20091e-3 & \(2.11045 \mathrm{e}-1\) & 1016\#2 \\
\hline 11.750 BV & 70.28287 & 3.01711e-3 & 2.12051e-1 & 1016\#3 \\
\hline 11.797 VB & 58.49398 & 3.66700e-3 & 2.14498e-1 & 1016\#4 \\
\hline 12.890 BB & 163.28340 & \(1.22645 \mathrm{e}-3\) & 2.00259e-1 & 1016\#5 \\
\hline 14.425 VV & 275.51465 & 8.67534e-4 & 2.39018e-1 & 1260\#1 \\
\hline 15.447 BV & 347.85193 & \(6.68037 \mathrm{e}-4\) & \(2.32378 \mathrm{e}-1\) & 1260\#2 \\
\hline 15.608 VV & 203.16814 & \(1.19298 \mathrm{e}-3\) & 2.42375e-1 & 1260\#3 \\
\hline 16.043 BV & 173.48642 & 1.39021e-3 & 2.41183e-1 & 1260\#4 \\
\hline 16.587 VB & 444.02090 & 5.33964e-4 & 2.37091e-1 & 1260\#5 \\
\hline 18.973 VV & 771.14417 & 8.62610e-5 & 6.65196e-2 & dcbp \\
\hline
\end{tabular}

Totals :
2.35912

1 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\004F0501.D
Sample Name: ARO1660 L-3 \(0.20 \mathrm{ug} / \mathrm{ml}\)

```

Acq. Operator : Seq. Line : 5
Acq. Instrument : Instrument 1 Location : Vial 4
Injection Date : 2/2/2017 11:41:32 AM
Inj : l
Inj Volume : 1 \mul
Acq. Method : C:\CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C:\CHEM32\1\METHODS\PCB DC ICAL 02-02-17.M\PCB DC ICAL 02-02-17.M
Last changed : 2/4/2017 12:01:27 PM
(modified after loading)
Sample-related custom fields:

```
```

Name |Value

```
Name |Value
--
```

----------------------------------------------------------------------------

```


Signal 1: ECD1 A,
Signal 2: ECD2 B,

 Final Summed Peaks Report
Signal 1: ECD1 A,
Signal 2: ECD2 \(B\),
Compound-related custom fields:
 *** End of Report ***

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\005F0601.D
Sample Name: ARO1660 L-4 \(0.40 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:

External Standard Report

Sorted By : Signal
Calib. Data Modified : 2/4/2017 12:01:07 PM
Multiplier: : 1.0000
Dilution:
\(: \quad 1.0000\)
Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECDI A,
\begin{tabular}{cccccc}
\begin{tabular}{c}
RetTime \\
[min]
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{c}
Area \\
[Hz*s]
\end{tabular}} & Amt/Area & \begin{tabular}{c}
Amount \\
[ng/ul]
\end{tabular} & Grp
\end{tabular} Name

Data File C:\CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\005F0601.D
Sample Name: ARO1660 L-4 \(0.40 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Name |Value} \\
\hline RetTime & Type & Area & Amt/Area & Amount & Grp Name \\
\hline [min] & & [\(\mathrm{Hz*}\) ¢ \({ }^{\text {] }}\) & & [ng/ul] & \\
\hline 13.796 & BV & 283.59225 & 1.35731e-3 & \(3.84923 \mathrm{e}-1\) & 1016\#5 \\
\hline 16.150 & BB & 607.95355 & \(6.52016 \mathrm{e}-4\) & 3.96395e-1 & 1260\#1 \\
\hline 16.525 & VB & 621.85382 & \(6.34000 \mathrm{e}-4\) & \(3.94255 \mathrm{e}-1\) & 1260\#2 \\
\hline 17.181 & BV & 764.41290 & \(5.08556 \mathrm{e}-4\) & \(3.88747 \mathrm{e}-1\) & 1260\#3 \\
\hline 17.332 & VV & 419.93045 & 9.57696e-4 & \(4.02166 \mathrm{e}-1\) & 1260\#4 \\
\hline 17.870 & BB & 414.62775 & 9.38195e-4 & 3.89002e-1 & 1260\#5 \\
\hline 21.437 & BB & 1272.42151 & \(8.07658 \mathrm{e}-5\) & \(1.02768 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals :
4.01922

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{array}{r}
\text { Area } \\
{\left[\mathrm{Hz}{ }^{*} \mathrm{~S}\right]}
\end{array}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 8.561 & BB & 1481.63000 & \(3.00751 \mathrm{e}-5\) & \(4.45602 \mathrm{e}-2\) & tcmx \\
\hline 10.178 & BV & 529.70923 & \(7.73107 e-4\) & 4.09522e-1 & 1016\#1 \\
\hline 11.516 & VB & 113.14131 & \(3.14809 \mathrm{e}-3\) & 3.56179e-1 & 1016\#2 \\
\hline 11.747 & BV & 119.26826 & \(3.11089 \mathrm{e}-3\) & 3.71031e-1 & 1016\#3 \\
\hline 11.794 & VB & 102.41528 & \(3.77046 \mathrm{e}-3\) & 3.86153e-1 & 1016\#4 \\
\hline 12.889 & BB & 253.31912 & \(1.39015 \mathrm{e}-3\) & 3.52152e-1 & 1016\#5 \\
\hline 14.419 & VV & 453.46390 & 8.81698e-4 & 3.99818e-1 & 1260\#1 \\
\hline 15.422 & BV & 588.10986 & 6.56400e-4 & 3.86035e-1 & 1260\#2 \\
\hline 15.602 & VV & 332.33963 & \(1.17932 \mathrm{e}-3\) & 3.91933e-1 & 1260\#3 \\
\hline 16.038 & BV & 262.94757 & 1.36378e-3 & 3.58603e-1 & 1260\#4 \\
\hline 16.582 & VB & 729.09674 & 5.33811e-4 & \(3.89200 \mathrm{e}-1\) & 1260\#5 \\
\hline 18.970 & BV & 1137.59155 & 9.04869e-5 & \(1.02937 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals :
3.94812

\section*{1 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\005F0601.D
Sample Name: ARO1660 L-4 \(0.40 \mathrm{ug} / \mathrm{ml}\)

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/2/2017 12:09:51 PM
Seq. Line : 6
Location : Vial 5
Inj : 1
Inj Volume : \(1 \mu \mathrm{l}\)
Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 \(B\),

Compound-related custom fields:

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\006F0701.D
Sample Name: ARO1660 L-5 \(0.50 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\006F0701.D Sample Name: ARO1660 L-5 \(0.50 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:
\begin{tabular}{|c|c|}
\hline Name & |Value \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline ```
RetTime Type
 [min]
``` & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~S}]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 13.797 BV & 390.31989 & \(1.36301 \mathrm{e}-3\) & 5.32011e-1 & 1016\#5 \\
\hline 16.149 BB & 827.33044 & 6.61131e-4 & \(5.46974 \mathrm{e}-1\) & 1260\#1 \\
\hline 16.522 VB & 854.13269 & \(6.43037 e-4\) & 5.49239e-1 & 1260\#2 \\
\hline 17.180 BV & 1061.27917 & \(5.12346 \mathrm{e}-4\) & 5.43742e-1 & 1260\#3 \\
\hline 17.331 VV & 570.16553 & 9.71896e-4 & 5.54142e-1 & 1260\#4 \\
\hline 17.869 BB & 574.65411 & 9.47264e-4 & \(5.44349 \mathrm{e}-1\) & 1260\#5 \\
\hline 21.434 BB & 1713.97717 & 8.35495e-5 & \(1.43202 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals : 5.53295

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.561 & BV & 2034.65710 & \(3.05855 \mathrm{e}-5\) & 6.22309e-2 & tcmx \\
\hline 10.179 & BV & 701.95435 & \(7.79065 \mathrm{e}-4\) & \(5.46868 \mathrm{e}-1\) & 1016\#1 \\
\hline 11.517 & VB & 166.41948 & 3.12447e-3 & \(5.19973 \mathrm{e}-1\) & 1016\#2 \\
\hline 11.749 & BV & 167.39635 & 3.14958e-3 & 5. \(27229 \mathrm{e}-1\) & 1016\#3 \\
\hline 11.796 & VB & 138.32378 & 3.80623e-3 & \(5.26492 \mathrm{e}-1\) & 1016\#4 \\
\hline 12.891 & BB & 343.96219 & \(1.46839 \mathrm{e}-3\) & \(5.05070 \mathrm{e}-1\) & 1016\#5 \\
\hline 14.419 & BB & 605.28107 & 8.87198e-4 & 5.37004e-1 & 1260\#1 \\
\hline 15.419 & BV & 827.11469 & 6.51531e-4 & 5.38891e-1 & 1260\#2 \\
\hline 15.603 & VV & 457.88135 & \(1.17342 \mathrm{e}-3\) & \(5.37289 \mathrm{e}-1\) & 1260\#3 \\
\hline 16.038 & BV & 375.32373 & \(1.34844 \mathrm{e}-3\) & 5.06101e-1 & 1260\#4 \\
\hline 16.582 & VB & 1017.59302 & 5.33744e-4 & \(5.43134 \mathrm{e}-1\) & 1260\#5 \\
\hline 18.971 & BB & 1481.07349 & 9.25492e-5 & \(1.37072 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals :
5.48735

\section*{1 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\006F0701.D
Sample Name: ARO1660 L-5 \(0.50 \mathrm{ug} / \mathrm{ml}\)

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date \(: 2 / 2 / 2017 \quad 12: 38: 17 \mathrm{PM}\)

Seq. Line : 7
Acq. Instrument : Instrument 1
Injection Date : 2/2/2017 12:38:17 PM
Location : Vial 6

Inj Volume : \(1 \mu\)
Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:
\begin{tabular}{|c|c|}
\hline Name & |Value \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Compound-related custom fields:

Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\007F0801.D Sample Name: ARO1660 L-6 \(0.80 \mathrm{ug} / \mathrm{ml}\)

\begin{tabular}{ll} 
Acq. Operator : & Seq. Line : 8 \\
Acq. Instrument : Instrument 1 \\
Injection Date \(: 2 / 2 / 20171: 06: 34 \mathrm{PM}\) & Location : Vial 7 \\
& Inj : 1 \\
&
\end{tabular}

Acq. Method : C: \CHEM32\I\DATA \(\backslash\) PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M Last changed : 2/2/2017 9:17:18 AM Analysis Method : C: \CHEM32 \(\backslash 1 \backslash \mathrm{METHODS} \backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:



\section*{External Standard Report}


Sorted By : Signal
Calib. Data Modified : 2/4/2017 12:01:07 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECD1 A,
\begin{tabular}{llllll}
\begin{tabular}{c} 
RetTime \\
[min]
\end{tabular} & \begin{tabular}{c} 
Area \\
[Hz*s]
\end{tabular} & Amt/Area & \begin{tabular}{c} 
Amount \\
[ng/ul]
\end{tabular} & Grp Name
\end{tabular}

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\007F0801.D Sample Name: ARO1660 L-6 \(0.80 \mathrm{ug} / \mathrm{ml}\)


Sample-related custom fields:


Signal 2: ECD2 B,

Totals :
8.51477

\section*{1 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\007F0801.D
Sample Name: ARO1660 L-6 \(0.80 \mathrm{ug} / \mathrm{ml}\)
\(===============================================================\)
Acq. Operator :
Seq. Line : 8
Acq. Instrument : Instrument 1
Location : Vial 7
Injection Date : 2/2/2017 1:06:34 PM
Inj : 1
Inj Volume : 1 pl
Acq. Method : C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:


Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\008F0901.D Sample Name: ARO1660 L-7 \(1.0 \mathrm{ug} / \mathrm{ml}\)


Sample-related custom fields:


External Standard Report

Sorted By : Signal
Calib. Data Modified : 2/4/2017 12:01:07 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
    [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{Hz}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.667 & BB & 4645.08447 & 2.91112e-5 & \(1.35224 \mathrm{e}-1\) & tcmx \\
\hline 10.812 & VV & 779.70172 & \(1.38440 \mathrm{e}-3\) & 1.07942 & 1016\#1 \\
\hline 12.192 & VB & 610.39368 & \(1.77306 \mathrm{e}-3\) & 1.08226 & 1016\#2 \\
\hline 12.889 & VB & 1007.81201 & \(1.05450 \mathrm{e}-3\) & 1.06274 & 1016\#3 \\
\hline 13.441 & VB & 471.21255 & \(2.37378 e^{-3}\) & 1.11856 & 1016\#4 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\008F0901.D Sample Name: ARO1660 L-7 \(1.0 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz*s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 13.797 & BV & 806.93866 & \(1.37083 \mathrm{e}-3\) & 1.10618 & 1016\#5 \\
\hline 16.147 & BB & 1637.17297 & \(6.73626 e-4\) & 1.10284 & 1260\#1 \\
\hline 16.520 & VB & 1685.67078 & \(6.54971 e-4\) & 1.10407 & 1260\#2 \\
\hline 17.177 & BV & 2130.68970 & 5.17244e-4 & 1.10209 & 1260\#3 \\
\hline 17.329 & VV & 1103.11243 & 9.91073e-4 & 1.09326 & 1260\#4 \\
\hline 17.869 & BB & 1143.72302 & 9.58956e-4 & 1.09678 & 1260\#5 \\
\hline 21.434 & BB & 3242.62109 & 8.73311e-5 & \(2.83182 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

\footnotetext{
Totals :
}
11.36660

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
 [min]
``` & Type & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.560 & BV & 4314.39014 & \(3.13080 \mathrm{e}-5\) & 1.35075e-1 & tcmx \\
\hline 10.178 & BV & 1323.39771 & 7.87669e-4 & 1.04240 & 1016\#1 \\
\hline 11.516 & VB & 361.76962 & 3.09739e-3 & 1.12054 & 1016\#2 \\
\hline 11.749 & BV & 346.14587 & 3.19909e-3 & 1.10735 & 1016\#3 \\
\hline 11.795 & VB & 288.07773 & 3.85926e-3 & 1.11177 & 1016\#4 \\
\hline 12.890 & BB & 666.13879 & \(1.57414 \mathrm{e}-3\) & 1.04859 & 1016\#5 \\
\hline 14.414 & BB & 1230.66602 & 8.95547e-4 & 1.10212 & 1260\#I \\
\hline 15.411 & BV & 1742.29517 & 6.45238e-4 & 1.12419 & 1260\#2 \\
\hline 15.599 & VV & 905.62823 & 1.16571e-3 & 1.05570 & 1260\#3 \\
\hline 16.035 & BV & 841.23340 & 1.32855e-3 & 1.11762 & 1260\#4 \\
\hline 16.576 & VB & 2022.94092 & 5.33659e-4 & 1.07956 & 1260\#5 \\
\hline 18.969 & BV & 3040.84839 & 9.60529e-5 & 2.92082e-1 & dcbp \\
\hline
\end{tabular}

Totals :
11.33701

\section*{1 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\008F0901.D Sample Name: ARO1660 L-7 \(1.0 \mathrm{ug} / \mathrm{ml}\)


Signal 1: ECD1 A, Signal 2: ECD2 B,


Final Summed Peaks Report

Signal 1: ECD1 A, Signal 2: ECD2 B,

Compound-related custom fields:

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\010F1101.D
Sample Name: ARO1660 L-9 \(1.6 \mathrm{ug} / \mathrm{ml}\)


Sample-related custom fields:

\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{External Standard Report} \\
\hline Sorted By & : & Signal & \\
\hline Calib. Data Modified & : & 2/4/2017 & 12:01:07 \\
\hline Multiplier: & & : & 1.0000 \\
\hline Dilution: & & : & 1.0000 \\
\hline
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz*s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.665 & BB & 6572.57764 & 2.94177e-5 & \(1.93350 \mathrm{e}-1\) & tcmx \\
\hline 10.810 & BV & 1038.98389 & 1.39008e-3 & 1.44427 & 1016\#1 \\
\hline 12.189 & VB & 806.11359 & \(1.77862 \mathrm{e}-3\) & 1.43377 & 1016\#2 \\
\hline 12.886 & BB & 1266.08301 & \(1.04090 \mathrm{e}-3\) & 1.31787 & 1016\#3 \\
\hline 13.437 & VB & 593.09564 & \(2.39049 \mathrm{e}-3\) & 1.41779 & 1016\#4 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\010F1101.D Sample Name: ARO1660 L-9 \(1.6 \mathrm{ug} / \mathrm{ml}\)


Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/2/2017 2:31:40 PM

Seq. Line : 11
Location : Vial 10
Inj : 1
Inj Volume : \(1 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM

Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:

\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz*s}}
\end{gathered}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 13.793 & BV & 1038.96777 & 1.37247e-3 & 1.42595 & 1016\#5 \\
\hline 16.143 & BB & 2064.54590 & \(6.76268 \mathrm{e}-4\) & 1.39619 & 1260\#1 \\
\hline 16.515 & VB & 2132.71899 & 6.57541e-4 & 1.40235 & 1260\#2 \\
\hline 17.172 & BV & 2752.11230 & \(5.18342 \mathrm{e}-4\) & 1.42653 & 1260\#3 \\
\hline 17.326 & VV & 1407.14417 & \(9.95505 \mathrm{e}-4\) & 1.40082 & 1260\#4 \\
\hline 17.864 & BB & 1493.32056 & 9.61720e-4 & 1.43616 & 1260\#5 \\
\hline 21.431 & BB & 4334.11621 & 8.83990e-5 & \(3.83131 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals : 14.67818

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|}
\hline ```
RetTime Type
    [min]
``` & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{Hz}^{*} \mathrm{~s}\right]}
\end{gathered}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 8.559 BV & 6113.37256 & \(3.14977 \mathrm{e}-5\) & \(1.92557 \mathrm{e}-1\) & tcmx \\
\hline 10.176 BV & 1851.14429 & \(7.90440 \mathrm{e}-4\) & 1.46322 & 1016\#1 \\
\hline 11.513 VB & 475.18155 & 3.09188e-3 & 1.46920 & 1016\#2 \\
\hline 11.747 BV & 449.65909 & 3.20977e-3 & 1.44330 & 1016\#3 \\
\hline 11.793 VB & 373.87631 & 3.87050e-3 & 1.44709 & 1016\#4 \\
\hline 12.886 BV & 642.66827 & 1.57001e-3 & 1.00900 & 1016\#5 \\
\hline 14.409 BB & 1572.59192 & 8.97304e-4 & 1.41109 & 1260\#1 \\
\hline 15.404 BV & 2190.16748 & \(6.44075 \mathrm{e}-4\) & 1.41063 & 1260\#2 \\
\hline 15.594 VV & 1276.50427 & \(1.16342 \mathrm{e}-3\) & 1.48511 & 1260\#3 \\
\hline 16.031 BV & 1109.14648 & \(1.32468 \mathrm{e}-3\) & 1.46927 & 1260\#4 \\
\hline 16.571 VB & 2730.64697 & \(5.33636 \mathrm{e}-4\) & 1.45717 & 1260\#5 \\
\hline 18.966 BB & 3934.55151 & 9.68086e-5 & 3.80898e-1 & dcbp \\
\hline
\end{tabular}

Totals :
14.63854

1 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\010F1101.D
Sample Name: ARO1660 L-9 \(1.6 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:

Signal 1: ECD1 A, Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B ,

Compound-related custom fields:

Data File C:\CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\011F1301.D
Sample Name: aro1660 2nd source \(1.0 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:

Name
|Value

External Standard Report
\begin{tabular}{|c|c|c|c|c|}
\hline Sorted By & : & Signal & & \\
\hline Calib. Data Modified & : & 2/4/2017 & 12:01:07 & \\
\hline Multiplier: & & : & 1.0000 & \\
\hline Dilution: & & : & 1.0000 & \\
\hline
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECDI A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Area } \\
{[H z * s]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.669 & BB & 3911.39722 & \(2.89152 \mathrm{e}-5\) & \(1.13099 \mathrm{e}-1\) & tcmx \\
\hline 10.814 & BB & 658.34851 & 1.38021e-3 & 9.08656e-1 & 1016\#1 \\
\hline 12.192 & VB & 508.63663 & 1.76847e-3 & 8.99509e-1 & 1016\#2 \\
\hline 12.889 & VB & 833.19055 & \(1.06847 \mathrm{e}-3\) & 8.90237e-1 & 1016\#3 \\
\hline 13.440 & VB & 385.41025 & \(2.35568 \mathrm{e}-3\) & \(9.07904 \mathrm{e}-1\) & 1016\#4 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA\PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\011F1301.D
Sample Name: aro1660 2nd source \(1.0 \mathrm{ug} / \mathrm{ml}\)

Sample-related custom fields:

Signal 2: ECD2 B,
\begin{tabular}{rlrl}
\begin{tabular}{c}
RetTime \\
[min]
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c}
Area \\
[Hz*S]
\end{tabular}} & Amt/Area & \begin{tabular}{c}
Amount \\
[ng/ul]
\end{tabular}
\end{tabular} Grp Name

Totals :
10.05080

2 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing) Warning : Elution order of calibrated compounds may have changed

Data File C: \CHEM32\1\DATA \PCB-DC-ICAL-02-02-17 2017-02-02 09-46-49\011F1301.D
Sample Name: aro1660 2nd source \(1.0 \mathrm{ug} / \mathrm{ml}\)

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : \(2 / 2 / 20173: 28: 27 \mathrm{PM}\)

Acq. Method : C:\CHEM32 \1 \DATA \(\backslash P C B-D C-I C A L-02-02-17\) 2017-02-02 09-46-49\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-02-17.M
Last changed : 2/4/2017 12:01:27 PM (modified after loading)

Sample-related custom fields:
```

Name |Value
-------------------------------------------------------------------------

```


Signal 1: ECD1 A,
Signal 2: ECD2 \(B\),

 Final Summed Peaks Report
Signal 1: ECD1 A,
Signal 2: ECD2 B,

Compound-related custom fields:

\section*{Print of window 38: Current Chromatogram(s)}

Current Chromatogram(s)
ECD1 A, (PCB-DC-ICAL-02-02-17 2017-02-02 09-46-491012F1501.D)

Current Chromatogram(s)

Current Chromatogram(s)

ECD2 B. (PCB-DC-ICAL-02-02-17 2017-02-02 09-46-491014F1701.D)

ECD2 B, (PCB-DC-ICAL-02-02-17 2017-02-02 09-46-491015F 1801.D)

Current Chromatogram(s)

\section*{Current Chromatogram(s)}

ECD2 B, (PCB-DC-ICAL-02-02-17 2017-02-02 09-46-491017F2001.D)

Instrument 1 2/4/2017 1:10:20 PM

Current Chromatogram(s)

\begin{tabular}{ll}
Rel．Reference Window ： & 5.000 o \\
Abs．Reference Window ： & 0.000 min \\
Rel．Non－ref．Window ： & 5.000 \％ \\
Abs．Non－ref．Window ： & 0.000 min \\
Uncalibrated Peaks \(:\) & not reported \\
Partial Calibration ： & Yes，identified peaks are recalibrated \\
Correct All Ret．Times： & No，only for identified peaks \\
& \\
Curve Type & \\
Origin & Linear \\
Weight & Ignored
\end{tabular}

Recalibration Settings：
Average Response ：
Average Retention Time：

Calibration Report Options ：
Printout of recalibrations within a sequence：
Calibration Table after Recalibration
Normal Report after Recalibration
If the sequence is done with bracketing：
Results of first cycle（ending previous bracket）
Signal 1：ECD1 A，
Signal 2：ECD2 B，
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
 [min]
``` & \[
\mathrm{Lvl}^{\mathrm{Lg}}
\] & \begin{tabular}{l}
Amount \\
［ng／ul］
\end{tabular} & Area & Amt／Area & Ref Grp Name \\
\hline \multirow[t]{8}{*}{8.546} & \multirow[t]{8}{*}{21} & \(5.00000 e-3\) & 300.18878 & 1．66562e－5 & TCMX \\
\hline & & \(1.00000 \mathrm{e}-2\) & 651．31531 & 1．53535e－5 & \\
\hline & & 2．00000e－2 & 967.38239 & \(2.06743 e-5\) & \\
\hline & & 4．00000e－2 & 2226.20654 & 1．79678e－5 & \\
\hline & & \(8.00000 \mathrm{e}-2\) & 5367.72070 & 1．49039e－5 & \\
\hline & & 1．00000e－1 & 7083.89990 & 1．41165e－5 & \\
\hline & & 1．20000e－1 & 7090.01611 & 1．69252e－5 & \\
\hline & & \(1.60000 \mathrm{e}-1\) & 9663.43164 & 1．65573e－5 & \\
\hline \multirow[t]{8}{*}{9.659} & \multirow[t]{8}{*}{1} & \(5.00000 \mathrm{e}-3\) & 378.00626 & \(1.32273 e-5\) & TCMX \\
\hline & & \(1.00000 \mathrm{e}-2\) & 758.30237 & \(1.31874 e-5\) & \\
\hline & & \(2.00000 \mathrm{e}-2\) & 1158.98267 & 1．72565e－5 & \\
\hline & & \(4.00000 \mathrm{e}-2\) & 2528．88843 & \(1.58172 e-5\) & \\
\hline & & \(8.00000 \mathrm{e}-2\) & 5937.22510 & \(1.34743 e-5\) & \\
\hline & & \(1.00000 \mathrm{e}-1\) & 7794.66650 & 1．28293e－5 & \\
\hline & & \(1.20000 \mathrm{e}-1\) & 7826.12842 & \(1.53333 e-5\) & \\
\hline & & \(1.60000 \mathrm{e}-1\) & 1.05401 e 4 & 1．51801e－5 & \\
\hline \multirow[t]{6}{*}{10.166} & \multirow[t]{6}{*}{2} & \(5.00000 \mathrm{e}-2\) & 114.71913 & \(4.35847 \mathrm{e}-4\) & 1016\＃1 \\
\hline & & \(1.00000 \mathrm{e}-1\) & 248.40646 & 4．02566e－4 & \\
\hline & & \(2.00000 \mathrm{e}-1\) & 364.65576 & 5．48462e－4 & \\
\hline & & \(4.00000 \mathrm{e}-1\) & 747.52820 & 5．35097e－4 & \\
\hline & & \(8.00000 \mathrm{e}-1\) & 1657.94458 & 4．82525e－4 & \\
\hline & & 1.00000 & 2089．17480 & \(4.78658 \mathrm{e}-4\) & \\
\hline
\end{tabular}

Method C: \CHEM32\1\METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-13-17.M
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & & Lvl & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Area & Amt/Area & Ref Grp Name \\
\hline & & 8 & 1.20000 & 2143.38696 & \(5.59862 \mathrm{e}-4\) & \\
\hline & & 9 & 1.60000 & 2825.16260 & \(5.66339 \mathrm{e}-4\) & \\
\hline 10.804 & 1 & 1 & \(5.00000 \mathrm{e}-2\) & 68.12133 & \(7.33984 e-4\) & 1016\#1 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 138.73372 & \(7.20805 \mathrm{e}-4\) & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 254.16116 & \(7.86902 e-4\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 448.42169 & 8.92018e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 970.38544 & 8.24415e-4 & \\
\hline & & 7 & 1.00000 & 1229.06018 & \(8.13630 \mathrm{e}-4\) & \\
\hline & & 8 & -1.20000 & 1240.82373 & \(9.67099 \mathrm{e}-4\) & \\
\hline & & 9 & 9 1.60000 & 1642.56287 & 9.74088e-4 & \\
\hline 11.079 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 57.05913 & 8.76284e-4 & 1016\#2 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 121.12975 & 8.25561e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 172.21825 & \(1.16132 \mathrm{e}-3\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 353.52765 & \(1.13145 \mathrm{e}-3\) & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 843.84094 & 9.48046e-4 & \\
\hline & & 7 & 1.00000 & 1078.39124 & 9.27307e-4 & \\
\hline & & 8 & 81.20000 & 1116.84521 & \(1.07446 e-3\) & \\
\hline & & 9 & 1.60000 & 1542.66296 & \(1.03717 \mathrm{e}-3\) & \\
\hline 11.120 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 72.58194 & \(6.88877 e-4\) & 1016\#3 \\
\hline & & 2 & 1.00000e-1 & 164.00909 & \(6.09722 e-4\) & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 251.22812 & \(7.96089 \mathrm{e}-4\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 551.82941 & 7.24862e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1356.26050 & 5.89857e-4 & \\
\hline & & 7 & 1.00000 & 1762.29907 & 5.67441e-4 & \\
\hline & & 8 & 81.20000 & 1836.37122 & 6.53463e-4 & \\
\hline & & 9 & 9 1.60000 & 2526.03271 & 6.33404e-4 & \\
\hline 11.376 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 39.81900 & 1.25568e-3 & 1016\#4 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 83.78606 & \(1.19352 \mathrm{e}-3\) & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 121.62669 & 1.64438e-3 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 261.65378 & \(1.52874 \mathrm{e}-3\) & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 638.43622 & \(1.25306 e-3\) & \\
\hline & & 7 & 71.00000 & 835.59857 & \(1.19675 \mathrm{e}-3\) & \\
\hline & & 8 & 81.20000 & 873.43463 & \(1.37389 \mathrm{e}-3\) & \\
\hline & & 9 & 1.60000 & 1158.27649 & \(1.38136 \mathrm{e}-3\) & \\
\hline 12.161 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 40.60505 & \(1.23137 \mathrm{e}-3\) & 1016\#5 \\
\hline & & 2 & 1.00000e-1 & 84.52531 & 1.18308e-3 & \\
\hline & & 3 & 2.00000e-1 & 128.62825 & \(1.55487 \mathrm{e}-3\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 294.69821 & 1.35732e-3 & \\
\hline & & 6 & 8.00000e-1 & 696.65466 & 1.14835e-3 & \\
\hline & & 7 & 1.00000 & 890.77008 & \(1.12262 \mathrm{e}-3\) & \\
\hline & & 8 & 81.20000 & 915.26190 & 1.31110e-3 & \\
\hline & & 9 & 9 1.60000 & 1261.07056 & \(1.26876 e^{-3}\) & \\
\hline 12.184 & 1 & 1 & 5.00000e-2 & 55.24522 & 9.05056e-4 & 1016\#2 \\
\hline & & 2 & 1.00000e-1 & 108.70388 & 9.19930e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 167.67911 & \(1.19275 \mathrm{e}-3\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 346.63461 & 1.15395e-3 & \\
\hline & & 6 & \(6.800000 \mathrm{e}-1\) & 765.05865 & \(1.04567 e-3\) & \\
\hline & & 7 & \(7 \quad 1.00000\) & 960.17743 & \(1.04147 \mathrm{e}-3\) & \\
\hline & & 8 & 81.20000 & 991.88745 & 1.20981e-3 & \\
\hline & & 9 & 91.60000 & 1300.52954 & \(1.23027 \mathrm{e}-3\) & \\
\hline 12.880 & 1 & & \(15.00000 \mathrm{e}-2\) & 66.67388 & 7.49919e-4 & 1016\#3 \\
\hline & & 2 & 1.00000e-1 & 147.66995 & 6.77186e-4 & \\
\hline & & 3 & 2.00000e-1 & 231.85435 & 8.62610e-4 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 481.47147 & 8.30787e-4 & \\
\hline & & 6 & 8.00000e-1 & 1193.56824 & 6.70259e-4 & \\
\hline & & 7 & \(7 \quad 1.00000\) & 1508.83105 & 6.62765e-4 & \\
\hline & & 8 & 81.20000 & 1509.25513 & \(7.95094 \mathrm{e}-4\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & & vl & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Area & Amt/Area & Ref Grp Name \\
\hline & & 9 & 1.60000 & 2030.51184 & 7.87979e-4 & \\
\hline 13.352 & 1 & 1 & \(5.00000 \mathrm{e}-2\) & 45.35458 & \(1.10242 \mathrm{e}-3\) & 1016\#4 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 97.48624 & \(1.02579 \mathrm{e}-3\) & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 146.19235 & \(1.36806 \mathrm{e}-3\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 302.09076 & \(1.32411 \mathrm{e}-3\) & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 678.75031 & \(1.17864 \mathrm{e}-3\) & \\
\hline & & 7 & 1.00000 & 860.46552 & \(1.16216 e^{-3}\) & \\
\hline & & 8 & 1.20000 & 893.69763 & \(1.34274 \mathrm{e}-3\) & \\
\hline & & 9 & 1.60000 & 1200.82397 & 1.33242e-3 & \\
\hline 13.789 & 1 & 1 & \(5.00000 \mathrm{e}-2\) & 65.65133 & 7.61599e-4 & 1016\#5 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 137.81898 & 7.25589e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 203.77571 & 9.81471e-4 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 416.59262 & 9.60171e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 946.14325 & 8.45538e-4 & \\
\hline & & 7 & 1.00000 & 1201.25500 & 8.32463e-4 & \\
\hline & & 8 & 1.20000 & 1238.02075 & 9.69289e-4 & \\
\hline & & 9 & 1.60000 & 1654.30457 & 9.67174e-4 & \\
\hline 14.413 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 85.74789 & 5.83105e-4 & 1260\#1 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 180.88387 & 5.52841e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 258.14603 & \(7.74755 \mathrm{e}-4\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 526.33722 & 7.59969e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1159.09436 & 6.90194e-4 & \\
\hline & & 7 & 1.00000 & 1495.03625 & 6.68880e-4 & \\
\hline & & 8 & 1.20000 & 1530.48645 & \(7.84064 e-4\) & \\
\hline & & 9 & 1. 60000 & 2063.51147 & 7.75377e-4 & \\
\hline 14.942 & 1 & 1 & \(5.00000 \mathrm{e}-2\) & 82.94392 & 6.02817e-4 & 1260\#1 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 133.14914 & 7.51038e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 198.80913 & \(1.00599 \mathrm{e}-3\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 339.50085 & 1.17820e-3 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 641.80212 & \(1.24649 \mathrm{e}-3\) & \\
\hline & & 7 & 1.00000 & 806.90851 & \(1.23930 \mathrm{e}-3\) & \\
\hline & & 8 & 1.20000 & 840.73193 & \(1.42733 \mathrm{e}-3\) & \\
\hline & & 9 & 1.60000 & 1109.06628 & \(1.44265 e-3\) & \\
\hline 15.132 & 2 & 1 & \[
5.00000 e-2
\] & \[
46.17986
\] & \(1.08272 e^{-3}\) & 1260\#2 \\
\hline & & 2 & \[
1.00000 \mathrm{e}-1
\] & \[
87.90114
\] & 1.13764e-3 & \\
\hline & & 3 & \[
2.00000 \mathrm{e}-1
\] & \[
147.52350
\] & \[
1.35572 \mathrm{e}-3
\] & \\
\hline & & 4 & \[
4.00000 \mathrm{e}-1
\] & \[
313.17520
\] & \[
1.27724 e-3
\] & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 659.92108 & \(1.21227 e-3\) & \\
\hline & & 7 & 1.00000 & 832.26465 & \(1.20154 e^{-3}\) & \\
\hline & & 8 & 1.20000 & 852.11554 & \(1.40826 e-3\) & \\
\hline & & 9 & 1.60000 & 1146.42969 & 1.39564e-3 & \\
\hline 15.595 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 53.16164 & 9.40528e-4 & 1260\#3 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 116.99038 & 8.54771e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 162.10866 & \(1.23374 \mathrm{e}-3\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 336.59540 & \(1.18837 \mathrm{e}-3\) & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 724.83252 & \(1.10370 e^{-3}\) & \\
\hline & & 7 & 1.00000 & 953.57147 & \(1.04869 \mathrm{e}-3\) & \\
\hline & & 8 & 1.20000 & 966.42651 & \(1.24169 \mathrm{e}-3\) & \\
\hline & & 9 & 1.60000 & 1317.32751 & \(1.21458 \mathrm{e}-3\) & \\
\hline 16.032 & 2 & 1 & \(5.00000 \mathrm{e}-2\) & 45.69059 & \(1.09432 \mathrm{e}-3\) & 1260\#4 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 98.32481 & \(1.01704 \mathrm{e}-3\) & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 141.71486 & \(1.41128 \mathrm{e}-3\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 268.90594 & 1.48751e-3 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 654.13898 & 1.22298e-3 & \\
\hline & & 7 & 1.00000 & 872.81256 & 1.14572e-3 & \\
\hline & & 8 & 1.20000 & 877.06683 & 1.36820e-3 & \\
\hline & & 9 & 1.60000 & 1218.72827 & \(1.31284 e-3\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & & 1 & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Area & Amt/Area & Ref Grp Name \\
\hline \multirow[t]{8}{*}{16.146} & \multirow[t]{8}{*}{1} & 1 & \(5.00000 \mathrm{e}-2\) & 115.36158 & 4.33420e-4 & 1260\#2 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 241.64920 & \(4.13823 \mathrm{e}-4\) & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 345.16608 & 5.79431e-4 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 627.71405 & 6.37233e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1408.35657 & 5.68038e-4 & \\
\hline & & 7 & 1.00000 & 1803.34827 & 5.54524e-4 & \\
\hline & & 8 & 1.20000 & 1847.44373 & 6.49546e-4 & \\
\hline & & 9 & 1.60000 & 2448.84204 & 6.53370e-4 & \\
\hline \multirow[t]{8}{*}{16.520} & \multirow[t]{8}{*}{1} & 1 & \(5.00000 \mathrm{e}-2\) & 118.17410 & 4.23105e-4 & 1260\#3 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 249.30994 & 4.01107e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 353.97952 & 5.65004e-4 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 685.25769 & 5.83722e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1441.67871 & 5.54909e-4 & \\
\hline & & 7 & 1.00000 & 1870.40527 & 5.34643e-4 & \\
\hline & & 8 & 1.20000 & 1968.98511 & 6.09451e-4 & \\
\hline & & 9 & 1.60000 & 2600.43359 & 6.15282e-4 & \\
\hline \multirow[t]{8}{*}{16.580} & \multirow[t]{8}{*}{2} & 1 & \(5.00000 \mathrm{e}-2\) & 96.66483 & 5.17251e-4 & 1260\#5 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 213.81819 & 4.67687e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 286.38934 & 6.98350e-4 & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 666.58661 & 6.00072e-4 & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1500.12317 & 5.33290e-4 & \\
\hline & & 7 & 1.00000 & 2050.66675 & \(4.87646 \mathrm{e}-4\) & \\
\hline & & 8 & 1.20000 & 1998.79541 & 6.00362e-4 & \\
\hline & & 9 & 1.60000 & 2831.97070 & 5.64978e-4 & \\
\hline \multirow[t]{8}{*}{17.327} & \multirow[t]{8}{*}{1} & 1 & \(5.00000 \mathrm{e}-2\) & 72.22842 & 6.92248e-4 & 1260\#4 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 144.09505 & 6.93986e-4 & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 208.24243 & \(9.60419 \mathrm{e}-4\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 416.45065 & 9.60498e-4 & \\
\hline & & 5 & \(8.00000 \mathrm{e}-1\) & 875.54248 & 9.13719e-4 & \\
\hline & & 7 & 1.00000 & 1144.49072 & 8.73751e-4 & \\
\hline & & 8 & 1.20000 & 1176.59229 & \(1.01989 \mathrm{e}-3\) & \\
\hline & & 9 & 1.60000 & 1577.61670 & \(1.01419 \mathrm{e}-3\) & \\
\hline \multirow[t]{8}{*}{18.308} & \multirow[t]{8}{*}{1} & 1 & \(5.00000 \mathrm{e}-2\) & 124.68354 & \(4.01015 \mathrm{e}-4\) & 1260\#5 \\
\hline & & 2 & \(1.00000 \mathrm{e}-1\) & 258.10562 & \(3.87438 \mathrm{e}-4\) & \\
\hline & & 3 & \(2.00000 \mathrm{e}-1\) & 335.02197 & \(5.96976 e-4\) & \\
\hline & & 4 & \(4.00000 \mathrm{e}-1\) & 706.41956 & \(5.66236 \mathrm{e}-4\) & \\
\hline & & 6 & \(8.00000 \mathrm{e}-1\) & 1554.50366 & \(5.14634 \mathrm{e}-4\) & \\
\hline & & 7 & 1.00000 & 2094.50562 & \(4.77440 \mathrm{e}-4\) & \\
\hline & & 8 & 1.20000 & 2041.40076 & \(5.87832 \mathrm{e}-4\) & \\
\hline & & 9 & 1.60000 & 2838.75171 & 5.63628e-4 & \\
\hline \multirow[t]{8}{*}{18.963} & \multirow[t]{8}{*}{2} & 1 & \(1.00000 \mathrm{e}-2\) & 105.94125 & 9.43919e-5 & DCBP \\
\hline & & 2 & \(2.00000 \mathrm{e}-2\) & 293.63858 & \(6.81109 \mathrm{e}-5\) & \\
\hline & & 3 & \(4.00000 \mathrm{e}-2\) & 354.32748 & \(1.12890 \mathrm{e}-4\) & \\
\hline & & 4 & \(8.00000 \mathrm{e}-2\) & 842.33331 & \(9.49743 e-5\) & \\
\hline & & 6 & \(1.60000 \mathrm{e}-1\) & 1880.05383 & 8.51039e-5 & \\
\hline & & 7 & \(2.00000 \mathrm{e}-1\) & 2780.13770 & \(7.19389 \mathrm{e}-5\) & \\
\hline & & 8 & \(2.40000 \mathrm{e}-1\) & 2492.84009 & 9.62757e-5 & \\
\hline & & 9 & \(3.20000 \mathrm{e}-1\) & 3724.18823 & 8.59248e-5 & \\
\hline \multirow[t]{8}{*}{21.429} & \multirow[t]{8}{*}{1} & 1 & \(1.00000 \mathrm{e}-2\) & 147.62543 & \(6.77390 \mathrm{e}-5\) & DCBP \\
\hline & & 2 & \(2.00000 \mathrm{e}-2\) & 349.45694 & \(5.72317 e-5\) & \\
\hline & & 3 & \(4.00000 \mathrm{e}-2\) & 454.35388 & \(8.80371 e-5\) & \\
\hline & & 4 & \(8.00000 \mathrm{e}-2\) & 987.82172 & \(8.09863 \mathrm{e}-5\) & \\
\hline & & 6 & \(1.60000 \mathrm{e}-1\) & 2152.60181 & \(7.43287 e-5\) & \\
\hline & & 7 & \(2.00000 \mathrm{e}-1\) & 3040.79321 & 6.57723e-5 & \\
\hline & & 8 & \(2.40000 \mathrm{e}-1\) & 2716.35522 & \(8.83537 \mathrm{e}-5\) & \\
\hline & & 9 & \(3.20000 \mathrm{e}-1\) & 3995.09839 & 8.00982e-5 & \\
\hline
\end{tabular}
10 Warnings or Errors :
Warning : Overlapping peak time windows at 12.88 min , signal 1
Warning : Overlapping peak time windows at 13.352 min , signal 1
Warning : Overlapping peak time windows at 16.146 min, signal 1
Warning : Overlapping peak time windows at 16.52 min , signal 1
Warning : Overlapping peak time windows at 11.079 min , signal 2
Warning : Overlapping peak time windows at 11.12 min , signal 2
Warning : Overlapping peak time windows at 14.413 min, signal 2
Warning : Overlapping peak time windows at 15.132 min, signal 2
Warning : Overlapping peak time windows at 15.595 min, signal 2
Warning : Overlapping peak time windows at 16.032 min, signal 2

Calibration Curve


Calibration Curve


Calibration Curve


Calibration Curve


Calibration Curve


Print of window 66: Calibration Curve

Calibration Curve


Calibration Curve


Calibration Curve


Calibration Curve


\section*{Calibration Curve}


Calibration Curve


Calibration Curve


\section*{Calibration Curve}


\section*{Calibration Curve}


\section*{Calibration Curve}


Calibration Curve


Calibration Curve


Calibration Curve


\section*{Calibration Curve}


Calibration Curve


\section*{Calibration Curve}


\section*{Calibration Curve}


Calibration Curve


\section*{Calibration Curve}


Calibration Curve


Data File C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11
Sample Name: aro 1660 ccv 1.0 ppm


Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/7/2017 1:55:29 PM

Seq. Line : 1
Location : Vial 2
Inj : 1
Inj Volume : 1 pl
```

Acq. Method : C: \CHEM32\1\DATA $\backslash \mathrm{PCB}-\mathrm{DC}-02-07-17 \mathrm{~B}$ 2017-02-07 13-54-11\DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32\1\METHODS $\backslash P C B$ DC ICAL 02-02-17.M $\backslash P C B$ DC ICAL 02-02-17.M
Last changed : 2/8/2017 9:04:51 AM (modified after loading)

```

Sample-related custom fields:
Name
|Value
\(\qquad\)
Additional Info : Peak(s) manually integrated



External Standard Report

Sorted By : Signal
Calib. Data Modified : 2/4/2017 11:22:32 AM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz} \star \mathrm{~s}]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.660 & BBA & 4320.65576 & \(2.90327 e-5\) & \(1.25440 \mathrm{e}-1\) & tcmx \\
\hline 10.805 & BBA & 712.96954 & 1.38227e-3 & 9.85517e-1 & 1016\#1 \\
\hline 12.184 & VB & 602.37396 & \(1.77275 \mathrm{e}-3\) & 1.06786 & 1016\#2 \\
\hline 12.882 & BV & 935.58862 & \(1.15383 \mathrm{e}-3\) & 1.07951 & 1016\#3 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0101.D Sample Name: aro 1660 ccv 1.0 ppm


Sample-related custom fields:


\section*{Totals :}
10.49254

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ```
RetTime
    [min]
``` & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.547 & BBA & 3846.33325 & \(3.12295 \mathrm{e}-5\) & \(1.20119 \mathrm{e}-1\) & tcmx \\
\hline 10.166 & BBA & 1218.12830 & \(7.86829 \mathrm{e}-4\) & 9.58459e-1 & 1016\#1 \\
\hline 11.500 & BBA & 312.86493 & \(3.10099 \mathrm{e}-3\) & 9.70192e-1 & 1016\#2 \\
\hline 11.737 & BV & 376.13965 & \(3.20279 \mathrm{e}-3\) & 1.20470 & 1016\#3 \\
\hline 11.783 & VBA & 306.85605 & \(3.86226 e-3\) & 1.18516 & 1016\#4 \\
\hline 12.877 & BV & 449.69937 & \(1.51980 \mathrm{e}-3\) & 6.83453e-1 & 1016\#5 \\
\hline 14.402 & BB & 1153.55396 & 8.95007e-4 & 1.03244 & 1260\#1 \\
\hline 15.395 & BV & 1548.02209 & 6.45952e-4 & 9.99947e-1 & 1260\#2 \\
\hline 15.588 & VV & 869.04297 & \(1.16604 \mathrm{e}-3\) & 1.01334 & 1260\#3 \\
\hline 16.024 & BV & 732.51770 & 1.33093e-3 & 9.74929e-1 & 1260\#4 \\
\hline 16.564 & VB & 1732.42883 & 5.33673e-4 & 9.24551e-1 & 1260\#5 \\
\hline 18.960 & VV R & 3034.88354 & \(9.60464 \mathrm{e}-5\) & \(2.91490 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals :
10.35877

2 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing) Warning : Elution order of calibrated compounds may have changed

Data File C: \CHEM32\1\DATA \PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0101.D
Sample Name: aro 1660 ccv 1.0 ppm

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
*** End of Report ***

Data File C: \CHEM32 \1 \DATA \PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0601.D
Sample Name: aro 1660 ccv 1.0 ppm

\section*{Name}
|Value
Additional Info : Peak(s) manually integrated

External Standard Report
\begin{tabular}{lccl}
Sorted By & \(:\) & Signal \\
Calib. Data Modified & \(:\) & \(2 / 4 / 201711: 22: 32 \mathrm{AM}\) \\
Multiplier: & \(:\) & 1.0000 \\
Dilution: & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECD1 A,
\begin{tabular}{lcrcccc}
\begin{tabular}{c}
RetTime \\
[min]
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c}
Area \\
[Hz*s]
\end{tabular}} & Amt/Area & \begin{tabular}{c}
Amount \\
[ng/ul]
\end{tabular} & Grp Name
\end{tabular}

Data File C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0601.D Sample Name: aro 1660 ccv 1.0 ppm

Sample-related custom fields:

Totals : 10.17709

Signal 2: ECD2 \(B\),
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RetTime Type } \\
& \text { [min] }
\end{aligned}
\] & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~S}]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.553 BV & 3848.64111 & 3.12299e-5 & \(1.20193 \mathrm{e}-1\) & tcmx \\
\hline 10.172 BV & 1211.14258 & 7.86768e-4 & 9.52889e-1 & 1016\#1 \\
\hline 11.505 VB & 406.80905 & 3.09483e-3 & 1.25901 & 1016\#2 \\
\hline 11.742 BV & 357.42456 & 3.20056e-3 & 1.14396 & 1016\#3 \\
\hline 11.789 VB & 298.94312 & 3.86104e-3 & 1.15423 & 1016\#4 \\
\hline 12.882 BV & 411.16302 & 1.50412e-3 & 6.18441e-1 & 1016\#5 \\
\hline 14.407 BB & 1095.12915 & 8.94547e-4 & \(9.79644 \mathrm{e}-1\) & 1260\#1 \\
\hline 15.400 BV & 1487.19641 & 6.46213e-4 & 9.61046e-1 & 1260\#2 \\
\hline 15.592 VV & 824.27826 & \(1.16649 \mathrm{e}-3\) & \(9.61513 \mathrm{e}-1\) & 1260\#3 \\
\hline 16.028 BV & 696.12994 & \(1.33189 \mathrm{e}-3\) & 9.27169e-1 & 1260\#4 \\
\hline 16.569 VB & 1610.42395 & 5.33681e-4 & 8.59452e-1 & 1260\#5 \\
\hline 18.965 BV & 2104.70264 & 9.45731e-5 & \(1.99048 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals :
10.13659

\section*{2 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing) Warning : Elution order of calibrated compounds may have changed

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0601.D Sample Name: aro 1660 ccv 1.0 ppm

\begin{tabular}{llrl}
Acq. Operator & \(:\) & Seq. Line : & 6 \\
Acq. Instrument & Instrument 1 & Location \(:\) Vial 2
\end{tabular}

Sample-related custom fields:

Additional Info : Peak(s) manually integrated

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:

Data File C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0701.D Sample Name: aro 1660 ccv 1.0 ppm

Sample-related custom fields:

Name
|Value

External Standard Report
\begin{tabular}{lccl}
Sorted By & \(:\) & Signal \\
Calib. Data Modified & \(:\) & \(2 / 4 / 201711: 22: 32 \mathrm{AM}\) \\
Multiplier: & \(:\) & 1.0000 \\
Dilution: & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \[
\begin{array}{r}
\text { Area } \\
{\left[\mathrm{Hz}^{*} \mathrm{~s}\right]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.664 & BBA & 4750.84424 & \(2.91345 \mathrm{e}-5\) & \(1.38413 \mathrm{e}-1\) & tcmx \\
\hline 10.810 & BBA & 777.26465 & \(1.38433 \mathrm{e}-3\) & 1.07599 & 1016\#1 \\
\hline 12.190 & VB & 654.45471 & \(1.77460 e^{-3}\) & 1.16139 & 1016\#2 \\
\hline 12.887 & BV & 1033.51807 & \(1.15047 \mathrm{e}-3\) & 1.18903 & 1016\#3 \\
\hline 13.438 & VBA & 502.90582 & 2.37891e-3 & 1.19637 & 1016\#4 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0701.D
Sample Name: aro 1660 ccv 1.0 ppm

Sample-related custom fields:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{Hz}^{*} \mathrm{~S}\right]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 13.794 & BBA & 784.95123 & \(1.37063 \mathrm{e}-3\) & 1.07588 & 1016\#5 \\
\hline 16.145 & BB & 1642.53064 & \(6.73668 \mathrm{e}-4\) & 1.10652 & 1260\#1 \\
\hline 16.516 & VB & 1650.70496 & 6.54711e-4 & 1.08074 & 1260\#2 \\
\hline 17.173 & BV & 2038.60437 & 5.17025e-4 & 1.05401 & 1260\#3 \\
\hline 17.328 & VV & 997.14526 & 9.88892e-4 & 9.86069e-1 & 1260\#4 \\
\hline 17.866 & BB & 1035.39172 & 9.57720e-4 & \(9.91616 e-1\) & 1260\#5 \\
\hline 21.432 & BB & 2354.08716 & 8.57307e-5 & \(2.01818 \mathrm{e}-1\) & dcbp \\
\hline
\end{tabular}

Totals : 11.25784

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{array}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline 8.554 & BBA & 4224.41846 & \(3.12942 \mathrm{e}-5\) & \(1.32200 \mathrm{e}-1\) & tcmx \\
\hline 10.173 & BBA & 1333.78625 & \(7.87745 \mathrm{e}-4\) & 1.05068 & 1016\#1 \\
\hline 11.508 & BBA & 365.00998 & \(3.09718 \mathrm{e}-3\) & 1.13050 & 1016\#2 \\
\hline 11.745 & BV & 426.62643 & \(3.20784 \mathrm{e}-3\) & 1.36855 & 1016\#3 \\
\hline 11.791 & VBA & 350.81308 & \(3.86802 \mathrm{e}-3\) & 1.35695 & 1016\#4 \\
\hline 12.885 & BV & 478.92389 & \(1.53000 \mathrm{e}-3\) & 7.32756e-1 & 1016\#5 \\
\hline 14.409 & BB & 1244.92322 & 8.95639e-4 & 1.11500 & 1260\#1 \\
\hline 15.402 & BV & 1653.52283 & 6.45543e-4 & 1.06742 & 1260\#2 \\
\hline 15.594 & VV & 915.60999 & \(1.16563 \mathrm{e}-3\) & 1.06726 & 1260\#3 \\
\hline 16.030 & BV & 767.22424 & \(1.33010 \mathrm{e}-3\) & 1.02048 & 1260\#4 \\
\hline 16.571 & VB & 1756.83301 & 5.33672e-4 & 9.37572e-1 & 1260\#5 \\
\hline 18.965 & BB & 2146.69580 & 9.46672e-5 & 2.03222e-1 & dcop \\
\hline
\end{tabular}

Totals :
11.18260

\section*{2 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing) Warning : Elution order of calibrated compounds may have changed

Summed Peaks Report

Data File C:\CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\002F0701.D Sample Name: aro 1660 ccv 1.0 ppm

Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:

Data File C: \CHEM32\1\DATA\PCB-DC-02-07-17B 2017-02-07 13-54-11\002F1701.D
Sample Name: aro 1660 ccv 1.0 ppm ending
\begin{tabular}{|c|c|}
\hline Acq. Operator & Seq. Line : 17 \\
\hline Acq. Instrument & Instrument \(1 \quad\) Location : Vial 2 \\
\hline Injection Date & 2/7/2017 9:38:22 PM Inj : 1 \\
\hline & Inj Volume : 1 ¢1 \\
\hline Acq. Method & C: \CHEM32 \1 \DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11\DC-8082-MASTER.M \\
\hline Last changed & 2/2/2017 9:17:18 AM \\
\hline Analysis Method & C: \CHEM32 \(\backslash 1 \backslash \mathrm{METHODS} \backslash \mathrm{PCB}\) DC ICAL 02-02-17.M PCB \(^{\text {DC }}\) ICAL 02-02-17.M \\
\hline Last changed & : 2/8/2017 9:38:38 AM \\
\hline & (modified after loading) (Current integration events modified) \\
\hline
\end{tabular}

Sample-related custom fields:

External Standard Report
\begin{tabular}{llll}
Sorted By & \(:\) & Signal \\
Calib. Data Modified & \(:\) & \(2 / 4 / 201711: 22: 32\) & AM \\
Multiplier: & & \(:\) & 1.0000 \\
Dilution: & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 9.662 & VV & 4281.12305 & \(2.90224 \mathrm{e}-5\) & \(1.24248 \mathrm{e}-1\) & tcmx \\
\hline 10.808 & BB & 724.39874 & \(1.38266 \mathrm{e}-3\) & 1.00160 & 1016\#1. \\
\hline 12.187 & VB & 567.64374 & \(1.77133 \mathrm{e}-3\) & 1.00548 & 1016\#2 \\
\hline 12.885 & BV & 945.71405 & \(1.15345 \mathrm{e}-3\) & 1.09084 & 1016\#3 \\
\hline 13.436 & VB & 452.08127 & 2.37034e-3 & 1.07159 & 1016\#4 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA \PCB-DC-02-07-17B 2017-02-07 13-54-11\002F1701.D
Sample Name: aro 1660 ccv 1.0 ppm ending

Sample-related custom fields:

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz*} \text { © }}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.553 & VB & 3768.82227 & \(3.12146 \mathrm{e}-5\) & \(1.17642 \mathrm{e}-1\) & tcmx \\
\hline 10.172 & BV & 1224.45618 & \(7.86884 \mathrm{e}-4\) & \(9.63505 \mathrm{e}-1\) & 1016\#1 \\
\hline 11.505 & VB & 455.26990 & \(3.09265 e-3\) & 1.40799 & 1016\#2 \\
\hline 11.743 & BV & 391.38177 & \(3.20445 \mathrm{e}-3\) & 1.25416 & 1016\#3 \\
\hline 11.790 & VB & 325.70566 & 3.86492e-3 & 1.25883 & 1016\#4 \\
\hline 12.883 & VV & 436.81613 & 1.51487e-3 & 6.61718e-1 & 1016\#5 \\
\hline 14.407 & BB & 1001.63843 & 8.93699e-4 & 8.95163e-1 & 1260\#1 \\
\hline 15.398 & BV & 1312.82312 & 6.47098e-4 & 8.49526e-1 & 1260\#2 \\
\hline 15.593 & VV & 698.79822 & 1.16805e-3 & 8.16229e-1 & 1260\#3 \\
\hline 16.029 & BV & 589.52930 & 1.33539e-3 & 7.87252e-1 & 1260\#4 \\
\hline 16.568 & BB & 1252.35352 & 5.33712e-4 & 6.68396e-1 & 1260\#5 \\
\hline 18.966 & VB & 1671.55273 & 9.33276e-5 & 1.56002e-1 & dcbp \\
\hline
\end{tabular}

Totals :
9.83641

\section*{2 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing) Warning : Elution order of calibrated compounds may have changed

Summed Peaks Report

Data File C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11 \002F1701.D
Sample Name: aro 1660 ccv 1.0 ppm ending

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/7/2017 9:38:22 PM

Seq. Line : 17
Location : Vial 2
Inj : 1
Inj Volume : 1 \(\mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA \(\backslash\) PCB-DC-02-07-17B 2017-02-07 13-54-11 \DC-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32\1\METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-02-17.M
Last changed : 2/8/2017 9:38:38 AM (modified after loading) (Current integration events modified)

Sample-related custom fields:

Signal 1: ECD1 A,
Signal 2: ECD2 \(B\),

Final Summed Peaks Report

Signal 1: ECD1 A,
Signal 2: ECD2 B,

Compound-related custom fields:

Data File C:\CHEM32\1\DATA\PCB-DC-02-13-17 2017-02-13 09-53-07\011F1301.D Sample Name: PCB 2ND SS 1.0 UG/ML

Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 2/13/2017 3:34:49 PM

Seq. Line : 13
Location : Vial 11
Inj : 1
Inj Volume : 1 pl

Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-13-17 2017-02-13 09-53-07 \DC-8082-MASTER.M Last changed : 2/2/2017 9:17:18 AM Analysis Method : C: \CHEM32\1 \METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash\) PCB DC ICAL 02-13-17.M Last changed : 2/15/2017 1:54:25 PM

Sample-related custom fields:

External Standard Report

Sorted By : Signal
Calib. Data Modified : 2/15/2017 1:50:53 PM
Multiplier: : 1.0000
Dilution: : 1.0000
Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{|c|c|c|c|c|c|}
\hline RetTime [min] & Type & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz*s}}
\end{gathered}
\] & Amt/Area & Amount [ng/ul] & Grp Name \\
\hline \multicolumn{6}{|l|}{} \\
\hline 9.660 & BV & 7340.47021 & \(1.45049 \mathrm{e}-5\) & \(1.06473 \mathrm{e}-1\) & TCMX \\
\hline 10.805 & BV & 1227.59937 & 9.04033e-4 & 1.10979 & 1016\#1 \\
\hline 12.185 & VB & 921.15533 & 1.14993e-3 & 1.05926 & 1016\#2 \\
\hline 12.882 & BV & 1433.08398 & \(7.45963 e-4\) & 1.06903 & 1016\#3 \\
\hline 13.354 & & 839.58740 & \(1.27419 e-3\) & 1.06980 & 1016\#4 \\
\hline 13.790 & BV & 1177.64197 & 9.19521e-4 & 1.08287 & 1016\#5 \\
\hline
\end{tabular}

Data File C: \CHEM32\1\DATA \PCB-DC-02-13-17 2017-02-13 09-53-07\011F1301.D Sample Name: PCB 2ND SS 1.0 UG/ML

\begin{tabular}{ll}
Acq. Operator : & Seq. Line : 13 \\
Acq. Instrument : Instrument 1 & Location : Vial 11 \\
Injection Date : \(2 / 13 / 20173: 34: 49 \mathrm{PM}\) & Inj : 1
\end{tabular}

Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-13-17 2017-02-13 09-53-07 \(\backslash \mathrm{DC}\)-8082-MASTER.M Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash P C B\) DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-13-17.M Last changed : 2/15/2017 1:54:25 PM

Sample-related custom fields:

\begin{tabular}{cccccc}
\begin{tabular}{c}
RetTime \\
[min]
\end{tabular} & \multicolumn{1}{c}{\begin{tabular}{c}
Area \\
[Hz*s]
\end{tabular}} & Amt/Area & \begin{tabular}{c}
Amount \\
[ng/ul]
\end{tabular} & Grp & Name
\end{tabular}

Totals :
11.43659

Signal 2: ECD2 B,
\begin{tabular}{|c|c|c|c|c|}
\hline ```
RetTime Type
 [min]
``` & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{Hz} * \mathrm{~s}]}
\end{gathered}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.550 VV & 6679.44336 & 1.59827e-5 & \(1.06756 \mathrm{e}-1\) & TCMX \\
\hline 10.168 BV & 2002.97742 & 5.29949e-4 & 1.06147 & 1016\#1 \\
\hline 11.081 BV & 1056.84814 & \(1.01657 \mathrm{e}-3\) & 1.07436 & 1016\#2 \\
\hline 11.122 VV & 1758.63013 & 6.24386e-4 & 1.09806 & 1016\#3 \\
\hline 11.381 BV & 853.31403 & \(1.33261 \mathrm{e}-3\) & 1.13713 & 1016\#4 \\
\hline 12.168 BV & 905.21765 & \(1.23755 e-3\) & 1.12025 & 1016\#5 \\
\hline 14.406 BB & 1554.02539 & \(7.41400 \mathrm{e}-4\) & 1.15215 & 1260\#1 \\
\hline 15.125 VB & 877.52997 & \(1.32064 \mathrm{e}-3\) & 1.15890 & 1260\#2 \\
\hline 15.592 VV & 1110.03345 & \(1.17030 \mathrm{e}-3\) & 1.29907 & 1260\#3 \\
\hline 16.029 BV & 996.72687 & \(1.28939 \mathrm{e}-3\) & 1.28517 & 1260\#4 \\
\hline 16.570 VB & 2276.12695 & 5.55499e-4 & 1.26439 & 1260\#5 \\
\hline 18.966 BB & 2611.26831 & 8.56432e-5 & \(2.23637 \mathrm{e}-1\) & DCBP \\
\hline
\end{tabular}

Totals :
11.98136

1 Warnings or Errors :
Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Signal 1: ECD1 A,

Data File C: \CHEM32\1\DATA\PCB-DC-02-13-17 2017-02-13 09-53-07\011F1301.D Sample Name: PCB 2ND SS 1.0 UG/ML

Acq. Operator : Seq. Line : 13
Acq. Instrument : Instrument 1
Injection Date : 2/13/2017 3:34:49 PM
Location : Vial 11
Inj : 1
Inj Volume : 1 pl
Acq. Method : C: \CHEM32\1\DATA \(\backslash\) PCB-DC-02-13-17 2017-02-13 09-53-07 \(\backslash \mathrm{DC}\)-8082-MASTER.M
Last changed : 2/2/2017 9:17:18 AM
Analysis Method : C: \CHEM32 \(\backslash 1 \backslash\) METHODS \(\backslash\) PCB DC ICAL 02-02-17.M \(\backslash P C B\) DC ICAL 02-13-17.M
Last changed : 2/15/2017 1:54:25 PM
Sample-related custom fields:


Signal 2: ECD2 B,

Final Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,

Compound-related custom fields:

Data File C: \CHEM32\1\DATA\PCB-DC-02-13-17 2017-02-13 09-53-07\008F1701.D
Sample Name: aro 1660 ccv 1.0 ppm


Sample-related custom fields:


ECD1 A, (PCB-DC-02-13-17 2017-02-13 09-53-071008F1701.D)


External Standard Report
\begin{tabular}{lccl} 
Sorted By & \(:\) & Signal & \\
Calib. Data Modified & \(:\) & \(2 / 15 / 2017 \quad 1: 50: 53\) & PM \\
Multiplier: & & \(:\) & 1.0000 \\
Dilution: & \(:\) & 1.0000
\end{tabular}

Do not use Multiplier \& Dilution Factor with ISTDs
Signal 1: ECD1 A,
\begin{tabular}{rccccc}
\begin{tabular}{c} 
RetTime \\
[min]
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{c} 
Area \\
[Hz*s]
\end{tabular}} & Amt/Area & \begin{tabular}{c} 
Amount \\
[ng/ul]
\end{tabular} & Grp
\end{tabular} Name

Data File C: \CHEM32\1\DATA \PCB-DC-02-13-17 2017-02-13 09-53-07\008F1701.D Sample Name: aro 1660 ccv 1.0 ppm


Sample-related custom fields:


Signal 2: ECD2. \(B\),
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{array}{r}
\text { Area } \\
{[\mathrm{Hz*s}]}
\end{array}
\] & Amt/Area & \begin{tabular}{l}
Amount \\
[ng/ul]
\end{tabular} & Grp Name \\
\hline 8.553 & VV & 7461.86865 & 1.59724e-5 & \(1.19184 \mathrm{e}-1\) & TCMX \\
\hline 10.171 & BV & 2251.58057 & 5.30908e-4 & 1.19538 & 1016\#1 \\
\hline 11.084 & BV & 1196.37952 & \(1.01743 \mathrm{e}-3\) & 1.21723 & 1016\#2 \\
\hline 11.124 & VV & 1981.14160 & 6.23782e-4 & 1.23580 & 1016\#3 \\
\hline 11.382 & BV & 937.82031 & 1.33252e-3 & 1.24966 & 1016\#4 \\
\hline 12.170 & BV & 1005.13995 & \(1.23709 \mathrm{e}-3\) & 1.24345 & 1016\#5 \\
\hline 14.409 & BB & 1730.35693 & \(7.42624 e-4\) & 1.28500 & 1260\#1 \\
\hline 15.127 & VB & 968.27643 & 1.32209e-3 & 1.28015 & 1260\#2 \\
\hline 15.595 & VV & 1121.78174 & 1.17047e-3 & 1.31301 & 1260\#3 \\
\hline 16.032 & BV & 1032.85950 & 1.28972e-3 & 1.33210 & 1260\#4 \\
\hline 16.573 & VB & 2423.38354 & 5.55554e-4 & 1.34632 & 1260\#5 \\
\hline 18.968 & BB & 3240.05103 & 8.56032e-5 & 2.77359e-1 & DCBP \\
\hline
\end{tabular}

Totals :
13.09467

\section*{1 Warnings or Errors :}

Warning : Calibration warnings (see calibration table listing)

Summed Peaks Report

Data File C: \CHEM32\1\DATA\PCB-DC-02-13-17 2017-02-13 09-53-07\008F1701.D Sample Name: aro 1660 ccv 1.0 ppm


Signal 1: ECD1 A,
Signal 2: ECD2 B,

Final Summed Peaks Report


Signal 1: ECD1 A,
Signal 2: ECD2 B,
Compound-related custom fields:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{9}{|l|}{Prep Batch ID ARS1-P17-00147} \\
\hline & \multicolumn{3}{|l|}{Matrix} & \multicolumn{6}{|l|}{SO} \\
\hline & \multicolumn{3}{|l|}{Prep Group} & \multicolumn{6}{|l|}{SOLID} \\
\hline PBatch Sample ID & Gamma & Wet & Rad & Basis & SDG & FR & Storage & 13 Client ID & Lab Deadine \\
\hline ARS1-P17-00147-01 & X & \(\mathbf{x}\) & X & DGAM, DINO, DPCB, DRAD, DSVO & ARS1-17-00216 & 003 & D4 & OS-2 & 02/11/17 \\
\hline ARS1-P17-00147-02 & X & X & X & DGAM, DINO, DPCB, DRAD, DSVO & ARS1-17-00216 & 005 & D4 & BB-16B & 02/11/17 \\
\hline ARS1-P17-00147-03 & X & X & X & DGAM, DINO, DPCB, DRAD, DSVO & ARS1-17-00216 & 006 & D4 & BB-16A & 02/11/17 \\
\hline ARS1-P17-00147-04 & \(\mathbf{x}\) & x & X & DGAM, DINO, DPCB, DRAD, DSVO & ARS1-17-00216 & 007 & D4 & BB-17 & 02/11/17 \\
\hline ARS1-P17-00147-05 & X & X & x & DGAM, DINO, DPCB, DRAD, DSVO & ARS1-17-00216 & 008 & D4 & BB-17 Mud/Sludge & 02/11/17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{} \\
\hline Prep Batch ID & SDG & FR & ICOC ID & Parent ID & Type & Geometry & Tare 9 & Cont+Sample 9 & Net Sample g \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
01
\end{gathered}
\] & ARS1-17-00216 & 003 & & & DGAM, DINO, DPCB, DRAD, DSVO & & & & \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
02
\end{gathered}
\] & ARS1-17-00216 & 005 & & & DGAM, DINO, DPCB, DRAD, DSVO & & & & \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
03
\end{gathered}
\] & ARS1-17-00216 & 006 & & & DGAM, DINO, DPCB, DRAD, DSVO & & & & \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
04
\end{gathered}
\] & ARS1-17-00216 & 007 & & & DGAM, DINO, DPCB, DRAD, DSVO & & & & \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
05
\end{gathered}
\] & ARS1-17-00216 & 008 & & & DGAM, DINO, DPCB, DRAD, DSVO & & & & \\
\hline
\end{tabular}
ARS international
Baton Rouge Laboratory
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Prep Batch ID & SDG & FR & ICOC ID & Parent ID & Tareg & \[
\begin{gathered}
\text { Cont+Sample } \\
\mathbf{g}
\end{gathered}
\] & Net Sample \(g\) & \[
\begin{gathered}
\text { Oven } \\
\text { ID }
\end{gathered}
\] & Oven Temp C & Start TIme & Stop Time & Cont+Sample & Net Sample & \% Solid & \% Molsure \\
\hline \[
\begin{gathered}
\text { ARS 1-P17-00147- } \\
01
\end{gathered}
\] & ARS1-17-00216 & 003 & 256338 & 255893 & 6.63 & 25.24 & 18.61 & 3 & 120 & 2/2/2017 3:49 PM & 2/3/2017 8:00 AM & 21.09 & 14.46 & 77.70\% & 22.30\% \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
02
\end{gathered}
\] & ARS 1-17-00216 & 005 & 256339 & 255887 & 6.64 & 24.15 & 17.51 & 3 & 120 & 2/2/2017 3:49 PM & 2/3/2017 8:01 AM & 22.20 & 15.56 & 88.86\% & 11.14\% \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
03
\end{gathered}
\] & ARS1-17-00216 & 006 & 256340 & 255888 & 6.64 & 28.33 & 21.69 & 3 & 120 & 2/2/2017 3:49 PM & 2/3/2017 8:00 AM & 25.44 & 18.80 & 86.68\% & 13.32\% \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
04
\end{gathered}
\] & ARS1-17-00216 & 007 & 256341 & 255889 & 6.62 & 20.98 & 14.36 & 3 & 120 & 2/2/2017 3:49 PM & 2/3/2017 8:00 AM & 18.47 & 11.85 & 82.52\% & 17.48\% \\
\hline \[
\begin{gathered}
\text { ARS1-P17-00147- } \\
05
\end{gathered}
\] & ARS 1-17-00216 & 008 & 256342 & 255890 & 6.59 & 291.47 & 284.88 & 3 & 120 & 1/27/2017 5:08 PM & 1/28/2017 9:31 AM & 65.39 & 58.80 & 20.64\% & 79.36\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fraction & Container & Client ID & Aliquot & Units & Geometry & Prep Type & Origin & Origin2 & ICOC ID \\
\hline 001 & 1 & BB-16L & 211.0000 & g & & ORIG & SCI & & 255884 \\
\hline 001 & 2 & BB-16L & 1195.0000 & g & & ORIG & SCI & & 255894 \\
\hline 001 & 2 & BB-16L & 549.6800 & g & & DRYF & PRP & & 256078 \\
\hline 001 & 2 & BB-16L & 292.7500 & g & 250 mL Jar & DGAM & PRP & & 256081 \\
\hline 001 & 2 & BB-16L & 37.2600 & g & & DRAD & ALI & Manual & 256085 \\
\hline 001 & 2 & BB-16L & 2.5078 & g & & DRAD & PRO & ARS-032 & 256122 \\
\hline 002 & 1 & BB-18 & 218.0000 & g & & ORIG & SCI & & 255883 \\
\hline 002 & 2 & BB-18 & 237.0000 & g & & ORIG & SCI & & 255895 \\
\hline 002 & 3 & BB-18 & 234.0000 & g & & ORIG & SCl & & 255896 \\
\hline 002 & 4 & BB-18 & 1366.0000 & g & & ORIG & SCl & & 255899 \\
\hline 002 & 4 & BB-18 & 683.3300 & g & & DRYF & PRP & & 256079 \\
\hline 002 & 4 & BB-18 & 381.3300 & g & 250 mL Jar & DGAM & PRP & & 256082 \\
\hline 002 & 4 & BB-18 & 52.0400 & g & & DRAD & ALI & Manual & 256086 \\
\hline 002 & 4 & BB-18 & 2.5164 & g & & DRAD & PRO & ARS-032 & 256123 \\
\hline 003 & 1 & OS-2 & 226.0000 & g & & ORIG & SCl & & 255885 \\
\hline 003 & 2 & \(\mathrm{OS}-2\) & 206.0000 & g & & ORIG & SCI & & 255893 \\
\hline 003 & 2 & OS-2 & 18.6100 & g & & DRYF & PRP & & 256338 \\
\hline 004 & 1 & BB-19M & 1266.0000 & g & & ORIG & SCl & & 255886 \\
\hline 004 & 2 & BB-19M & 238.0000 & g & & ORIG & SCI & & 255892 \\
\hline 004 & 3 & BB-19M & 211.0000 & g & & ORIG & SCI & & 255897 \\
\hline 004 & 4 & BB-19M & 216.0000 & g & & ORIG & SCl & & 255898 \\
\hline 004 & 4 & BB-19M & 742.2500 & g & & DRYF & PRP & & 256080 \\
\hline 004 & 4 & BB-19M & 284.5300 & g & 250 mL Jar & DGAM & PRP & & 256083 \\
\hline 004 & 4 & BB-19M & 34.3700 & g & & DRAD & ALI & Manual & 256087 \\
\hline 004 & 4 & BB-19M & 2.5041 & g & & DRAD & PRO & ARS-032 & 256245 \\
\hline 005 & 1 & BB-16B & 214.0000 & g & & ORIG & SCI & & 255887 \\
\hline 005 & 1 & BB-16B & 17.5100 & g & & DRYF & PRP & & 256339 \\
\hline 006 & 1 & BB-16A & 228.0000 & g & & ORIG & SCI & & 255888 \\
\hline 006 & 1 & BB-16A & 21.6900 & g & & DRYF & PRP & & 256340 \\
\hline 007 & 1 & BB-17 & 206.0000 & g & & ORIG & SCl & & 255889 \\
\hline 007 & 1 & BB-17 & 14.3600 & g & & DRYF & PRP & & 256341 \\
\hline 007 & 2 & BB-17 & 215.0000 & g & & ORIG & SCl & & 255891 \\
\hline 008 & 1 & BB-17 Mud/Sludge & 352.0000 & g & & ORIG & SCI & & 255890 \\
\hline 008 & 1 & BB-17 Mud/Sludge & 22.0400 & g & & DRAD & ALI & Manual & 256084 \\
\hline 008 & 1 & BB-17 Mud/Sludge & 2.5081 & g & & DRAD & PRO & ARS-032 & 256124 \\
\hline 008 & 1 & BB-17 Mud/Sludge & 284.8800 & 9 & & DRYF & PRP & & 256342 \\
\hline
\end{tabular}

\title{
Standard Information
}

SDG\# ARS1-17-00216
COC SOLID SAMPLES

\begin{tabular}{|c|c|}
\hline S-0313 & |||||||||||||||||||||||||||| \\
\hline Sr-90 & Verified 5/9/16 \\
\hline S & Expires 5/9/17 \\
\hline Manufactuer & Analytics \\
\hline Sol Matrix
Ref No
Tech
Parent ID & \[
\begin{aligned}
& 1 \mathrm{M} \mathrm{HCL} \text { with } 30 \mathrm{ug} / \mathrm{g} \\
& 75186-526 \\
& \text { BSteffens } \\
& \mathrm{S}-0160
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{RADIOACTIVE STANDARDS -- BATON ROUGE LABORATORY} \\
\hline
\end{tabular}

\section*{QUSALITY CGNTROL PROGRAM}

\section*{AMILRCAN RADHETLONSERKICEES R*DIOACTHE BLEFRDNCE SOLWTIONS ANNLUAL ACTIVITY VERIDICATHON}

\begin{tabular}{lll} 
Principal Radionuclide \\
\hline Sr-90 \\
\hline
\end{tabular}

Radionuclide \(\mathrm{Sr}-90\)
Dilution Reference Date 5/5/20160:00
\begin{tabular}{|c|c|c|c|}
\hline Dilution Activity & 19.75 & pCi per gram \(=\Longrightarrow \Rightarrow d p m / g\) & 43.85 \\
\hline Verif. Date Decay Corrected & 19.74 & pCi per gram \(===>\mathrm{dpm} / \mathrm{g}\) & 43.83 \\
\hline
\end{tabular}


American Radiation Services
Baton Rouge Laboratory
Printed 5/11/2016 8:25 AM

American Radiation Services
Baton Rouge Laboratory

American Radiation Services
Baton Rouge Laboratory

American Radiation Services
Baton Rouge Laboratory
Printed 5/11/2016 8:30 AM

\begin{tabular}{ll} 
Tech: & J Byrd \\
Pipet \# & \\
Scale ID & 12332539 \\
Standard \# & S- 0313
\end{tabular}
\begin{tabular}{lr} 
Sample ID & Std weight g. \\
\hline S-0313-V1 & 1.0053 \\
S-0313-V2 & 1.0091 \\
S-0313-V3 & 1.0084 \\
S-0313-V4 & 1.0109 \\
S-0313-V5 & 1.0091 \\
& \\
Performed By: J Byrd
\end{tabular}
\(\begin{array}{cccccccc}\text { Detector ID } & \text { Sample ID } & \text { Alpha } & \text { Beta } & \text { Count Time } & \text { Voltage } & \text { TOD } \\ \text { A2 } & \text { S-0313-V1 } & 12 & 4694 & 120 & 1402.5 & 5 / 9 / 16 & 16: 52 \\ \text { A3 } & \text { S-0313-V2 } & 5 & 4672 & 120 & 1402.5 & 5 / 9 / 16 & 16: 52 \\ \text { A4 } & \text { S-0313-V3 } & 14 & 4670 & 120 & 1402.5 & 5 / 9 / 16 & 16: 52 \\ \text { B1 } & \text { S-0313-V4 } & 5 & 4659 & 120 & 1402.5 & 5 / 9 / 16 & 16: 52 \\ \text { B2 } & \text { S-0313-V5 } & 18 & 4726 & 120 & 1402.5 & 5 / 9 / 1616: 52\end{array}\)

\begin{tabular}{lc} 
Tech: & J Byrd \\
Pipet \# & \multicolumn{1}{c}{12332539} \\
Scale ID & \\
Standard \# & S-0313
\end{tabular}
\begin{tabular}{ll} 
Sample ID & Std weight g. \\
\hline S-0313-V1 & 1.0055 \\
\(\mathrm{~S}-0313-\mathrm{V} 2\) & 1.0041 \\
\(\mathrm{~S}-0333-\mathrm{V} 3\) & 1.0054 \\
\(\mathrm{~S}-0313-\mathrm{V} 4\) & 1.0109 \\
\(\mathrm{~S}-0313-\mathrm{V} 5\) & 1.0091
\end{tabular}

Performed By: J Byrd


Fax 661•257•8303

\title{
CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE
}
\begin{tabular}{ll} 
Customer: & AMERICAN RADIATION SERVICE \\
P.O. No.: & \(11-0530\) \\
Catalog No.: & EG-ML
\end{tabular}

\author{
Source No.: \\ Reference Date: \\ Contained Radioactivity:
}
```

1559-72-6
1-Feb-12 12:00 PST
$2.549 \quad \mu \mathrm{Ci} \quad 94.31 \quad \mathrm{kBq}$

```

Physical Description:
A. Capsule type:
B. Nature of active deposit:
C. Active diameter/volume:
D. Backing:
E. Cover:

Customer supplied tuna can Multinuclide distributed in \(1.5 \mathrm{~g} / \mathrm{cc}\) epoxy matrix Approximately 250 mL ( 375.2 grams) Steel
Steel

\begin{tabular}{cllcccc}
\begin{tabular}{c} 
Gamma-Ray \\
Energy \((\mathbf{k e V})\)
\end{tabular} & Nuclide & \multicolumn{1}{c}{ Half-life } & \begin{tabular}{c} 
Branching \\
Ratio \((\%)\)
\end{tabular} & \begin{tabular}{c} 
Activity \\
\((\mu \mathbf{C i})\)
\end{tabular} & \begin{tabular}{c} 
Gammas \\
per second
\end{tabular} & \begin{tabular}{c} 
Total \\
Uncert.
\end{tabular} \\
47 & Pb-210 & \(22.3 \pm 0.2\) years & 4.18 & 0.5834 & 902.3 & \(7.0 \%\) \\
60 & Am-241 & \(432.17 \pm 0.66\) years & 36.0 & 0.05866 & 781.4 & \(3.0 \%\) \\
88 & Cd-109 & \(462.6 \pm 0.7\) days & 3.63 & 0.5345 & 717.9 & \(3.1 \%\) \\
122 & Co-57 & \(271.79 \pm 0.09\) days & 85.6 & 0.02013 & 637.6 & \(3.1 \%\) \\
159 & Te-123m & \(119.7 \pm 0.1\) days & 84.0 & 0.02758 & 857.2 & \(3.0 \%\) \\
320 & Cr-51 & \(27.706 \pm 0.007\) days & 9.86 & 0.6881 & 2510 & \(3.0 \%\) \\
392 & Sn-113 & \(115.09 \pm 0.04\) days & 64.9 & 0.1048 & 2517 & \(3.0 \%\) \\
514 & Sr-85 & \(64.849 \pm 0.004\) days & 98.4 & 0.1282 & 4668 & \(3.0 \%\) \\
662 & Cs-137 & \(30.17 \pm 0.16\) years & 85.1 & 0.08881 & 2796 & \(3.0 \%\) \\
898 & Y-88 & \(106.630 \pm 0.025\) days & 94.0 & 0.2068 & 7193 & \(3.0 \%\) \\
1173 & Co-60 & \(5.272 \pm 0.001\) years & 99.86 & 0.1077 & 3979 & \(3.0 \%\) \\
1333 & Co-60 & \(5.272 \pm 0.001\) years & 99.98 & 0.1077 & 3984 & \(3.0 \%\) \\
1836 & Y-88 & \(106.630 \pm 0.025\) days & 99.4 & 0.2068 & 7606 & \(3.0 \%\)
\end{tabular}

\section*{Method of Calibration:}

This source was prepared from weighed aliquots of solutions whose concentrations in \(\mu \mathrm{Ci} / \mathrm{g}\) were determined by gamma spectrometry.

Notes:
- See reverse side for leak test(s) performed on this source.
- EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
- Nuclear data was taken from IAEA-TECDOC-619, 1991.
- Overall uncertainty is calculated at the \(99 \%\) confidence level.
- This source has a working life of 1 year.


EZIP Ref. No.: 1559-72

\section*{Standard Wipe Test}

The source was wiped over its entire surface with a moistened filter paper disk. After drying, the disk was checked for activity using a scintillation detector.

\section*{Special Wipe Test}

The source was wiped over its entire surface with moistened polystyrene. The polystyrene was then dissolved in a liquid scintillation cocktail and counted in a liquid scintillation counter.

\section*{Distilled Water Soak Test}

The source was immersed in distilled water and maintained at \((50 \pm 5)^{\circ} \mathrm{C}\) for a minimum of four hours or room temperature ( \(20 \pm 5)^{\circ} \mathrm{C}\) for 24 hours. After removal of the source, the liquid was a) checked for activity using a liquid scintillation counter, or b) evaporated in a planchet and the residue checked for activity using a windowless proportional counter or end-window G.M. tube.

\section*{Liquid Scintillation Soak Test}

The source was immersed for a minimum of 3 hours at room temperature \((20 \pm 5)^{\circ} \mathrm{C}\) in a liquid scintillation cocktail, which does not attack the source's outer surface material. The source was stored away from light to avoid photoluminescence. The sealed source was then removed and the activity of the liquid scintillation cocktail was measured.

\section*{Gas Source Test}

The source was placed in a vacuum desiccator and maintained at a pressure of \(<10 \mathrm{~mm} \mathrm{Hg}\) for not less than 12 hours. The activity was checked by introducing air into the desiccator and monitoring the air with an end-window G.M. tube.

\section*{Ampoule Leak Test}

The ampouie was kept in an inverted position on a filter paper disk or polystyrene wipe for a minimum of 16 hours. The wipe was then checked for activity using a scintillation detector or liquid scintillation counter.

\section*{Bubble Leak Test}

The container was pressurized to its fill pressure; then soapy water was applied over its valve and neck or, the valve and neck of the vessel were immersed in water. If no growing bubbles were observed, the container was considered leak free.

\section*{Wipe Test for Industrial Ni-63 Sources}

The sources were wipe tested by an approved sampling plan, which called for either \(100 \%\) of the batch to be individually wipe tested, or, a subset thereof. The wipe test(s) used to test for removable contamination and the results of those tests are recorded on the front of this form.

\section*{Pressure Test for Triotech Kr-85 Sources}

Prior to filling the vessel with \(\mathrm{Kr}-85\) gas, the vessel was evacuated to \(<5 \mathrm{~mm} \mathrm{Hg}\), the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss of the manifold system itself signified the vessel did not leak.

\section*{Leak Test Not Applicable}

The active area of the source is uncovered or is protected by a very thin coating. Although the deposit is adherent, it is not designed or centified to pass a standard leak test. The inactive portions of the source have been checked using the standard wipe test or special wipe test depending on the nuclide.

Other Leak Test

Tel 661•309.1010
Fax 661•257•8303

\title{
CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE
}

\author{
Customer: \\ P.O. No.: \\ AMERICAN RADIATION SERVICE \\ Catalog No.: \\ 14-0236 \\ EG-ML
}
Source No.:
Reference Date:
Contained Radioactivity:

tuna can
mL ( 377.6 grams gre epoxy matrix

1748-90-1
1-Oct-14 12:00 PST
\(0.9342 \quad \mu \mathrm{Ci} \quad 34.57 \quad \mathbf{k B q}\)
Physical Description:
A. Capsule type:
B. Nature of active deposit:
C. Active diameter/volume:
D. Backing:
E. Cover:
\begin{tabular}{cllcccr}
\begin{tabular}{c} 
Gamma-Ray \\
Energy (ReV)
\end{tabular} & Nuclide & \multicolumn{1}{c}{ Half-life } & \begin{tabular}{c} 
Branching \\
Ratio \((\%)\)
\end{tabular} & \begin{tabular}{c} 
Activity \\
\((\mu \mathbf{C i})\)
\end{tabular} & \begin{tabular}{c} 
Gammas \\
per second
\end{tabular} & \begin{tabular}{c} 
Total \\
Uncert.
\end{tabular} \\
47 & Pb-210 & \(22.3 \pm 0.2\) years & 4.18 & 0.2133 & 329.9 & \(4.1 \%\) \\
60 & Am-241 & \(432.17 \pm 0.66\) years & 36.0 & 0.02113 & 281.5 & \(3.1 \%\) \\
88 & Cd-109 & \(462.6 \pm 0.7\) days & 3.63 & 0.2039 & 273.9 & \(3.1 \%\) \\
122 & Co-57 & \(271.79 \pm 0.09\) days & 85.6 & 0.007394 & 234.2 & \(3.1 \%\) \\
159 & Te-123m & \(119.7 \pm 0.1\) days & 84.0 & 0.01066 & 331.3 & \(3.1 \%\) \\
320 & Cr-51 & \(27.706 \pm 0.007\) days & 9.86 & 0.2517 & 918.3 & \(3.0 \%\) \\
392 & Sn-113 & \(115.09 \pm 0.04\) days & 64.9 & 0.03574 & 858.2 & \(3.0 \%\) \\
514 & Sr-85 & \(64.849 \pm 0.004\) days & 98.4 & 0.04568 & 1663 & \(3.0 \%\) \\
662 & Cs-137 & \(30.17 \pm 0.16\) years & 85.1 & 0.03171 & 998.5 & \(3.1 \%\) \\
898 & Y-88 & \(106.630 \pm 0.025\) days & 94.0 & 0.07337 & 2552 & \(3.0 \%\) \\
1173 & Co-60 & \(5.272 \pm 0.001\) years & 99.86 & 0.03965 & 1465 & \(3.0 \%\) \\
1333 & Co-60 & \(5.272 \pm 0.001\) years & 99.98 & 0.03965 & 1467 & \(3.0 \%\) \\
1836 & Y-88 & \(106.630 \pm 0.025\) days & 99.4 & 0.07337 & 2698 & \(3.0 \%\)
\end{tabular}

\section*{Method of Calibration:}

This source was prepared from weighed aliquots of solutions whose concentrations in \(\mu \mathrm{Ci} / \mathrm{g}\) were determined by gamma spectrometry.

Notes:
- See reverse side for leak test(s) performed on this source.
- EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
- Nuclear data was taken from IAEA-TECDOC-619, 1991.
- Overall uncertainty is calculated at the \(99 \%\) confidence level.
- This source has a working life of 1 year.


EZIP Ref. No.: 1748-90

\section*{Standard Wipe Test}

The source was wiped over its entire surface with a moistened filter paper disk. After drying, the disk was checked for activity using a scintillation detector.

\section*{Special Wipe Test}

The source was wiped over its entire surface with moistened polystyrene. The polystyrene was then dissolved in a liquid scintillation cocktail and counted in a liquid scintillation counter.

\section*{Distilled Water Soak Test}

The source was immersed in distilled water and maintained at \((50 \pm 5)^{\circ} \mathrm{C}\) for a minimum of four hours or room temperature \((20 \pm 5)^{\circ} \mathrm{C}\) for 24 hours. After removal of the source, the liquid was a) checked for activity using a liquid scintillation counter, or b) evaporated in a planchet and the residue checked for activity using a windowless proportional counter or end-window G.M. tube.

\section*{Liquid Scintillation Soak Test}

The source was immersed for a minimum of 3 hours at room temperature \((20 \pm 5)^{\circ} \mathrm{C}\) in a liquid scintillation cocktail, which does not attack the source's outer surface material. The source was stored away from light to avoid photoluminescence. The sealed source was then removed and the activity of the liquid scintillation cocktail was measured.

\section*{Gas Source Test}

The source was placed in a vacuum desiccator and maintained at a pressure of < 10 mm Hg for not less than 12 hours. The activity was checked by introducing air into the desiccator and monitoring the air with an end-window G.M. tube.

\section*{Ampoule Leak Test}

The ampoule was kept in an inverted position on a filter paper disk or polystyrene wipe for a minimum of 16 hours. The wipe was then checked for activity using a scintillation detector or liquid scintillation counter.

\section*{Bubble Leak Test}

The container was pressurized to its fill pressure; then soapy water was applied over its valve and neck or, the valve and neck of the vessel were immersed in water. If no growing bubbles were observed, the container was considered leak free.

\section*{Wipe Test for Industrial Ni-63 Sources}

The sources were wipe tested by an approved sampling plan, which called for either \(100 \%\) of the batch to be individually wipe tested, or, a subset thereof. The wipe test(s) used to test for removable contamination and the results of those tests are recorded on the front of this form.

\section*{Pressure Test for Triotech Kr-85 Sources}

Prior to filling the vessel with \(\mathrm{Kr}-85\) gas, the vessel was evacuated to \(<5 \mathrm{~mm} \mathrm{Hg}\), the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss of the manifold system itself signified the vessel did not leak.

\section*{Leak Test Not Applicable}

The active area of the source is uncovered or is protected by a very thin coating. Although the deposit is adherent, it is not designed or certified to pass a standard leak test. The inactive portions of the source have been checked using the standard wipe test or special wipe test depending on the nuclide.

E\&Z 1748-90-1 250ml Tuna Can 1.5g/cc
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Nuclide & Energy & GPS & BRatio & Bq & DPM & pCi \\
\hline PB-210 & 47 & 329.9 & 0.0418 & 7892.344 & 473540.7 & 213306.4 \\
\hline AM-241 & 60 & 281.5 & 0.36 & 781.9444 & 46916.67 & 21133.61 \\
\hline CD-109 & 88 & 273.9 & 0.0363 & 7545.455 & 452727.3 & 203931 \\
\hline CO-57 & 122 & 234.2 & 0.856 & 273.5981 & 16415.89 & 7394.537 \\
\hline TE-123m & 159 & 331.3 & 0.84 & 394.4048 & 23664.29 & 10659.58 \\
\hline CR-51 & 320 & 918.3 & 0.0986 & 9313.387 & 558803.2 & 251712.9 \\
\hline SN-113 & 392 & 858.2 & 0.649 & 1322.342 & 79340.52 & 35738.94 \\
\hline SR-85 & 514 & 1663 & 0.984 & 1690.041 & 101402.4 & 45676.73 \\
\hline CS-137 & 662 & 998.5 & 0.851 & 1173.325 & 70399.53 & 31711.47 \\
\hline Y-88 & 898 & 2552 & 0.94 & 2714.894 & 162893.6 & 73375.43 \\
\hline CO-60 & 1173 & 1465 & 0.9986 & 1467.054 & 88023.23 & 39650.07 \\
\hline CO-60 & 1333 & 1467 & 0.9998 & 1467.293 & 88037.61 & 39656.54 \\
\hline Y-88 & 1836 & 2698 & 0.994 & 2714.286 & 162857.1 & 73359 \\
\hline
\end{tabular}

Eckert \& Ziegler
24937 Avenue Tibbitts
Recieved JTT Valencia, California 91355

Tel 661•309-1010
Fax 661,257.8303

\section*{CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE}

\author{
Customer: AMERICAN RADIATION SERVICE \\ P.O. No.: 12-0210 / R5197 \\ Catalog No.: EG-ML
}

\author{
Source No.: \\ Reference Date: \\ Contained Radioactivity:
}
```

1595-98-4
1-Jul-12 12:00 PST $1.024 \quad \mu \mathrm{Ci} \quad 37.89 \quad \mathrm{kBq}$

```

Physical Description:
A. Capsule type:
B. Nature of active deposit:
C. Active diameter/volume:
D. Backing:
E. Cover.

Customer supplied tuna can
Multinuclide distributed in \(1.5 \mathrm{~g} / \mathrm{cc}\) epoxy matrix
Approximately 250 mL ( 376.2 grams)
Plastic
Plastic
\begin{tabular}{cllclcr}
\begin{tabular}{c} 
Gamma-Ray \\
Energy (ReV)
\end{tabular} & Nuclide & \multicolumn{1}{c}{ Half-life } & \begin{tabular}{c} 
Branching \\
Ratio \((\%)\)
\end{tabular} & \begin{tabular}{c} 
Activity \\
\((\mu \mathrm{Ci})\)
\end{tabular} & \begin{tabular}{c} 
Gammas \\
per second
\end{tabular} & \begin{tabular}{c} 
Total \\
Uncert.
\end{tabular} \\
47 & Pb-210 & \(22.3 \pm 0.2\) years & 4.18 & 0.2320 & 358.8 & \\
60 & Am-241 & \(432.17 \pm 0.66\) years & 36.0 & 0.02273 & 302.8 & \(3.0 \%\) \\
88 & Cd-109 & \(462.6 \pm 0.7\) days & 3.63 & 0.2223 & 298.6 & \(3.2 \%\) \\
122 & Co-57 & \(271.79 \pm 0.09\) days & 85.6 & 0.008038 & 254.6 & \(3.1 \%\) \\
159 & Te-123m & \(119.7 \pm 0.1\) days & 84.0 & 0.01098 & 341.3 & \(3.1 \%\) \\
320 & Cr-51 & \(27.706 \pm 0.007\) days & 9.86 & 0.2766 & 1009 & \(3.0 \%\) \\
392 & Sn-113 & \(115.09 \pm 0.04\) days & 64.9 & 0.04358 & 1046 & \(3.0 \%\) \\
514 & Sr-85 & \(64.849 \pm 0.004\) days & 98.4 & 0.05122 & 1865 & \(3.0 \%\) \\
662 & Cs-137 & \(30.17 \pm 0.16\) years & 85.1 & 0.03546 & 1117 & \(3.0 \%\) \\
898 & Y-88 & \(106.630 \pm 0.025\) days & 94.0 & 0.07866 & 2736 & \(3.0 \%\) \\
1173 & Co-60 & \(5.272 \pm 0.001\) years & 99.86 & 0.04279 & 1581 & \(3.0 \%\) \\
1333 & Co-60 & \(5.272 \pm 0.001\) years & 99.98 & 0.04279 & 1583 & \(3.0 \%\) \\
1836 & Y-88 & \(106.630 \pm 0.025\) days & 99.4 & 0.07866 & 2893 & \(3.0 \%\)
\end{tabular}

Method of Calibration:
This source was prepared from weighed aliquots of solutions whose concentrations in \(\mu \mathrm{Ci} / \mathrm{g}\) were determined by gamma spectrometry.

\section*{Notes:}
- See reverse side for leak test(s) performed on this source.
- EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Material's (as in NRC Regulatory Guide 4.15).
- Nuclear data was taken from IAEA-TECDOC-619, 1991.
- Overall uncertainty is calculated at the \(99 \%\) confidence level.
- This source has a working life of 1 year.


EZIP Ref. No.: 1595-98

\section*{1595-98-4 - Tuna Can 1.5g/ce - 7-1-12}
\begin{tabular}{lcccccc} 
Nuclide & Energy & GPS & BRatio & Bq & DPM & pCl \\
& & & & & & \\
PB-210 & 47 & 358.8 & 0.0418 & 8583.73 & 515023.92 & 231992.53 \\
AM-241 & 60 & 302.8 & 0.36 & 841.11 & 50466.67 & 22732.71 \\
CD-109 & 88 & 298.6 & 0.0363 & 8225.90 & 493553.72 & 222321.27 \\
CO-57 & 122 & 254.6 & 0.856 & 297.43 & 17845.79 & 8038.64 \\
TE-123M & 159 & 341.3 & 0.84 & 406.31 & 24378.57 & 10981.33 \\
CR-51 & 320 & 1009 & 0.0986 & 10233.27 & 613995.94 & 276574.47 \\
SN-113 & 392 & 1046 & 0.649 & 1611.71 & 96702.62 & 43559.69 \\
SR-85 & 514 & 1865 & 0.984 & 1895.33 & 113719.51 & 51224.95 \\
CS-137 & 662 & 1117 & 0.851 & 1312.57 & 78754.41 & 35474.92 \\
Y-88 & 898 & 2736 & 0.94 & 2910.64 & 174638.30 & 78665.82 \\
CO-60 & 1173 & 1581 & 0.9986 & 1583.22 & 94992.99 & 42789.59 \\
CO-60 & 1333 & 1583 & 0.9998 & 1583.32 & 94999.00 & 42792.30 \\
Y-88 & 1836 & 2893 & 0.994 & 2910.46 & 174627.77 & 78661.08
\end{tabular}

\title{
CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source
}

73518-526
Th -230 47 mm Diameter \(\times 0.9 \mathrm{~mm}\) Thick Stainless Steel Disk in Stainless Steel Planchet

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a ans scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

ISOTOPE:
Th-230
ACTIVITY (dps):
1.888 E 2

HALF-LIFE:
CALIBRATION DATE:
7.538 E4 years

September 11, 2006 12:00 EST
RELATIVE EXPANDED
UNCERTAINTY ( \(k=2\) ):
\(3.0 \%\)

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.

P O NUMBER 06-0431, Item 1

SOURCE CALIBRATED BY:


380 Seaboard Industrlal Blvd. Atlanta, Georgia 30318 Tel 404-352.8677
Fax 404-352-2837
www.analyticsinc.com

\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73519-526
Th-230 47 mm Diameter \(x 0.9 \mathrm{~mm}\) Thick Stainless steel Disk in Stainless steel Planchet

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a ZnS scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance programs as described in USNRC Regulatory Guide 4.15. Rev. 1.
```

ISOTOPE:
ACTIVITY (dps):
HALF-IIFE:
CALIBRATION DATE:
RELATIVE EXPANDED
UNCERTAINTY (k=2):
Th-230
1.851 E2
7.538 E4 years
September 11, 2006 12:00 EST
3.0%

```

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.

P O NUMBER 06-0431, Item 1

SOURCE CALIBRATED BY:

Q A APPROVED:


An Isotope Products Laboratories Company
1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318
Tel 404-352-8677
Fax 404.352.2837
www.analyticsinc.com

\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73520-526
Th-230 47 mm Diameter x 0.9 mm Thick Stainless Steel Disk in Stainless steel Planchet

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a ZnS scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

ISOTOPE:
ACTIVITY (dps):
HALF-LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY ( \(\mathrm{k}=2\) ) ;

Th-230
1.907 E2
7.538 E4 years

September 11, 2006 12:00 EST
\(3.0 \%\)

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.
\(P O\) NUMBER 06-0431, Item I

SOURCE CALIBRATED BY:


Q A APPROVED:


1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404-352-8677
Fax 404-352-2837
www.analyticsinc.com

\section*{CERTIFICATE OF CALIBRATION}

73521-526
Th -230 47 mm Diameter \(\times 0.9 \mathrm{~mm}\) Thick Stainless Steel Disk in Stainless Steel planchet

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a Zns scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

ISOTOPE:
ACTIVITY (dps):
HALF-LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY \((\mathrm{k}=2)\) :

Th -230
1.916 Ez
7.538 E4 years

September 11, 2006 12:00 EST
3.0\%

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (ie., use Teflon coated forceps). Store in the container provided when not in use.

P O NUMBER 06-0431, Item 1

SOURCE CALIBRATED BY:

Q A APPROVED:


Daniel M. montgomery, Radiochemist


\title{
CERTIFICATE OF CALIBRATION
}

73522-526
Sr-90 in Aluminized Mylar on 47 mm Diameter Aluminum Ring
This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
Sr-90
ACTIVITY (dps): 1.826 Ez
HALF -LIFE:
CALIBRATION DATE:
28.79 years

October 9, 2006 12:00 EST
RELATIVE EXPANDED
UNCERTAINTY ( \(\mathrm{k}=2\) ): 3.3\%
Impurities: \(\gamma\)-impurities <0.1\%
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains y-90 in secular equilibrium with Sr-90. The Y-90 activity is equal to the Sr-90 activity. Since Sr-90 and Y-90 both decay \(100 \%\) by beta emission, the total beta activity for the source is twice the certified Sr-90 activity. The half-life for \(\mathrm{Y}-90\) is 64.08 hours.

PO NUMBER 06-0422, Item 1

SOURCE PREPARED BY:


QA APPROVED:


An Isotope Products Laboratories Company

\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73523-526
Sr-90 in Aluminized Mylar on 47 mm Diameter Aluminum Ring This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
ACTIVITY (dps):
HALE-LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY \((k=2): \quad 3.3 \%\)

Impurities: \(\quad \gamma\)-impurities <0.1\%
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains Y-90 in secular equilibrium with Sr-90. The Y-90 activity is equal to the Sr-90 activity. Since Sr-90 and \(Y-90\) both decay \(100 \%\) by beta emission, the total beta activity for the source is twice the certified \(s r-90\) activity. The half-life for \(Y-90\) is 64.08 hours.

P O NUMBER 06-0422, Item 1

SOURCE PREPARED BY: \(\frac{M d . \text { SN M Y M M }}{\text { M. Dimitrova, Radiochemist }}\)

Q A APPROVED:


\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73524-526
Sr-90 in Aluminized Mylar on 47 mm Diameter Aluminum Ring This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
ACTIVITY (dps):
HALF -LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY \((k=2): 3.3 \frac{5}{5}\)

Impurities: \(\gamma\)-impurities <0.1\%
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains \(Y-90\) in secular equilibrium with Sr-90. The \(Y-90\) activity is equal to the \(\operatorname{sr-90}\) activity. Since Sr-90 and Y-90 both decay \(100 \%\) by beta emission, the total beta activity for the source is twice the certified Sr-90 activity. The half-Iife for Y-90 is 64.08 hours.

P O NUMBER 06-0422, Item 1

SOURCE PREPARED BY:

M. Dimitrovo, Radiochemist

Q A APPROVED:


1380 Seaboard Industrial 8lvd. Atlanta, Georgia 30318
Tel 404-352.8677
Fax 404-352-2837
www.analyticsinc.com

\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73525-526
sx-90 in Alumindzed Mylay on 47 mm Diameter Aluminum Ring This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by Ifquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
Sr-90
ACTIVITY (dps) :
HALF-LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED
\[
\text { UNCERTAINTY }(k=2): \quad 3.3 \%
\]

Impurities: \(\gamma\)-impurities <0.I昜
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains \(Y\)-90 in secular equilibrium with Sr-90. The \(Y-90\) activity is equal to the Sr-90 activity. since Sr-90 and Y-90 both decay \(100 \%\) by beta emission, the total beta activity for the source is twice the certified \(\operatorname{sr}-90\) activity. The half-life for \(Y-90\) is 64.08 hours.

P O NUMBER 06-0422, Item 1

SOURCE PREPARED BY:

M. Dimitrova, Radiochemist

Q A APPROVED:



FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.
This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.


CERTIFIED VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Elution Order & \multicolumn{3}{|c|}{Compound} & \multicolumn{2}{|l|}{Grav. Conc. (weight/volume)} & & \multicolumn{3}{|l|}{Expanded Uncertainty (95\% C.L.; K=2)} \\
\hline 1 & Pyridin CAS \# Purity & \[
\begin{aligned}
& 110-86-1 \\
& 99 \%
\end{aligned}
\] & (Lot SHBC7174V) & 1,004.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 6.3298 30.4764 30.4764 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
N -Nitro CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { odimethylamin } \\
& 62-75-9 \\
& 99 \%
\end{aligned}
\] & (Lot 3846000) & 1,000.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/ /
\end{aligned}
\] & 6.3027 30.3459 30.3459 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 3 & Aniline CAS \# Purity & \[
\begin{aligned}
& 62-53-3 \\
& 99 \%
\end{aligned}
\] & (Lot K22Z462) & 1,001.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3090 \\
30.3762 \\
30.3762
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 4 & Phenol CAS \# Purity & \[
\begin{aligned}
& 108-95-2 \\
& 99 \%
\end{aligned}
\] & (Lot SHBF1351V) & 1,000.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
+1-
\]
\[
+/-
\]
+/- & \begin{tabular}{l}
6.3055 \\
30.3595 \\
30.3595
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravinetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 5 & Bis(2-c CAS \# Purity & \[
\begin{aligned}
& \text { oroethyllether } \\
& 111-44-4 \\
& 99 \%
\end{aligned}
\] & (Lot 45296HKV) & 1,000.7 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & 6.3068 30.3656 30.3656 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 6 & 2-Chlo CAS \# Purity & henol 95-57-8 99\% & (Lot STBF2690V) & 1,003.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & \begin{tabular}{l}
6.3235 \\
30.4460 \\
30.4460
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 7 & \[
\begin{aligned}
& \text { 1,3-Dicl } \\
& \text { CAS \# } \\
& \text { Purity }
\end{aligned}
\] & \[
\begin{aligned}
& \text { lorobenzene } \\
& 541-73-1 \\
& 99 \%
\end{aligned}
\] & (Lot BCBM5751V) & 1,001.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/\)
\(+/\)
\(+/-\) & 6.3087 30.3747 30.3747 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8 & \begin{tabular}{ll} 
1,4-Dichlorobenzene \\
CAS \# & \(106-46-7\) \\
Purity & \(99 \%\)
\end{tabular} & (Lot MKBS1350V) & 1,004.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3335 \\
30.4946 \\
30.4946
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 9 & \begin{tabular}{ll} 
1,2-Dichlorobenzene \\
CAS \# & \(95-50-1\) \\
Purity & \(99 \%\)
\end{tabular} & (Lot SHBD7331V) & 1,004.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 6.3279 30.4673 30.4673 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 10 & \begin{tabular}{ll} 
Benzyl alcohol \\
CAS \# & \(100-51-6\) \\
Purity & \(99 \%\)
\end{tabular} & (Lot SHBC1850V) & 1,007.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/ \\
& +/ \\
& +/
\end{aligned}
\] & 6.3490 30.5689 30.5689 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 11 & \begin{tabular}{ll} 
2,2'-oxybis(1-chloropropane) \\
CAS \# & \(108-60-1\) \\
Purity & \(99 \%\)
\end{tabular} & (Lot 2-KMW-57-8) & 1,002.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/ \\
& +/ \\
& +/
\end{aligned}
\] & \begin{tabular}{l}
6.3184 30.4218 \\
30.4218
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 12 & \begin{tabular}{ll} 
2-Methylphenol (o-cresol) \\
CAS \# & \(95-48-7\) \\
Purity & \(99 \%\)
\end{tabular} & (Lot SHBC1479V) & 1,002.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/ \\
& +/
\end{aligned}
\] & \begin{tabular}{l}
6.3150 \\
30.4051 \\
30.4051
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 13 & Hexachloroethane CAS \# 67-72-1 Purity \(99 \%\) & (Lot 4H3SF) & 1,003.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 6.3269 30.4627 30.4627 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 14 & \begin{tabular}{l}
N -Nitroso-di-n-propylamine \\
CAS \# 621-64-7 \\
Purity \(99 \%\)
\end{tabular} & (Lot OPAGF) & 1,001.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/ /
\end{aligned}
\] & 6.3121 30.3914 30.3914 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 15 & \[
\begin{aligned}
& \text { 4-Methylphenol (p-cresol) } \\
& \text { CAS \# 106-44-5 } \\
& \text { Purity } 99 \%
\end{aligned}
\] & (Lot 49396APV) & 504.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 3.1784 15.3034 15.3034 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 16 & \[
\begin{aligned}
& \text { 3-Methylphenol (m-cresol) } \\
& \text { CAS \# } \quad 108-39-4 \\
& \text { Purity } \quad 99 \%
\end{aligned}
\] & (Lot SHBD0627V) & 500.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 3.1542 \\
& 15.1866 \\
& 15.1866
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 17 & \begin{tabular}{l}
Nitrobenzene \\
CAS \# 98-95-3 \\
Purity 99\%
\end{tabular} & (Lot SHBB0246V) & 1,002.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & 6.3165 30.4127 30.4127 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 18 & \begin{tabular}{l}
Isophorone \\
CAS \# 78-59-1 \\
Purity \(99 \%\)
\end{tabular} & (Lot MKBG2442V) & 1,004.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/
\end{aligned}
\] & \begin{tabular}{l}
6.3298 \\
30.4764 \\
30.4764
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 19 & \begin{tabular}{l}
2-Nitrophenol \\
CAS \# 88-75-5 \\
Purity 99\%
\end{tabular} & (Lot BCBH7602V) & 1,000.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & \[
\begin{aligned}
& 6.3046 \\
& 30.3550 \\
& 30.3550
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 20 & 2,4-Dimethylphenol CAS \# 105-67-9 Purity \(99 \%\) & (Lot 10165155) & 1,001.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & +/-
\(+/-\)
\(+/-\) & \[
\begin{aligned}
& 6.3112 \\
& 30.3869 \\
& 30.3869
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 21 & \begin{tabular}{l}
Bis(2-chloroethoxy)methane \\
CAS \# 111-91-1 \\
Purity \(99 \%\)
\end{tabular} & (Lot 3299900) & 1,000.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & +/-
\(+/-\)
\(+/-\) & \begin{tabular}{l}
6.3033 \\
30.3489 \\
30.3489
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed Stressed
\end{tabular} \\
\hline 22 & 2,4-Dichlorophenol CAS \# 120-83-2 Purity \(99 \%\) & (Lot BCBH1617V) & 1,004.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & +/-
\(+/-\)
\(+/-\) & \begin{tabular}{l}
6.3282 \\
30.4688 \\
30.4688
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 23 & \begin{tabular}{l}
1,2,4-Trichlorobenzene \\
CAS \# 120-82-1 \\
Purity \(99 \%\)
\end{tabular} & (Lot 26896BM) & 1,003.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & \begin{tabular}{l}
6.3216 \\
30.4369 \\
30.4369
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 40 & 1,2-Din CAS \# Purity & robenzene 528-29-0 99\% & (Lot MKBK2313V) & 1,000.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/
\end{aligned}
\] & 6.3080 30.3717 30.3717 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 41 & \begin{tabular}{l}
Acenap CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { thene } \\
& 83-32-9 \\
& 99 \%
\end{aligned}
\] & (Lot MKBP0384V) & 1,000.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/ / \\
& +/ \\
& +/
\end{aligned}
\] & \[
\begin{aligned}
& 6.3027 \\
& 30.3459 \\
& 30.3459
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 42 & 3-Nitro CAS \# Purity & iline
99-09-2
\[
99 \%
\] & (Lot MKBQ6338V) & 1,001.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/ \\
& +/
\end{aligned}
\] & 5.8216 30.2875 30.2875 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 43 & \begin{tabular}{l}
2,4-Di \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { rophenol } \\
& 51-28-5 \\
& 99 \%
\end{aligned}
\] & (Lot MKBP5833V) & 1,000.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3058 \\
& 30.3611 \\
& 30.3611
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 44 & Dibenz CAS \# Purity & \[
\begin{aligned}
& 132-64-9 \\
& 99 \%
\end{aligned}
\] & (Lot MKBW2691V) & 1,007.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3496 \\
30.5720 \\
30.5720
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 45 & \begin{tabular}{l}
2,4-Di \\
CAS \# \\
Purity
\end{tabular} & \begin{tabular}{l}
otoluene \\
121-14-2 99\%
\end{tabular} & (Lot MKAA0690V) & 1,004.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/ \\
& +/ \\
& +/
\end{aligned}
\] & 6.3304 30.4794 30.4794 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 46 & 4-Nitro CAS \# Purity & \begin{tabular}{l}
enol
\[
100-02-7
\] \\
99\%
\end{tabular} & (Lot MKBP6945V) & 1,001.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/
\end{aligned}
\] & 6.3087 30.3747 30.3747 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 47 & \begin{tabular}{l}
2,3,4,6 \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { etrachloroph } \\
& 58-90-2 \\
& 99 \%
\end{aligned}
\] & (Lot B16W0112) & 1,003.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 5.8327 30.3450 30.3450 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 48 & \begin{tabular}{l}
2,3,5,6 \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { etrachloroph } \\
& 935-95-5 \\
& 99 \%
\end{aligned}
\] & (Lot 012016) & 1,001.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & +/- & \begin{tabular}{l}
5.8246 \\
30.3026 \\
30.3026
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 49 & Fluore CAS \# Purity & \[
\begin{aligned}
& 86-73-7 \\
& 98 \%
\end{aligned}
\] & (Lot 10174662) & 1,001.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & \begin{tabular}{l}
6.3147 \\
30.4036 \\
30.4036
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 50 & 4-Chlo CAS \# Purity & \[
\begin{aligned}
& \text { phenyl pheny } \\
& 7005-72-3 \\
& 99 \%
\end{aligned}
\] & (Lot MKBM4925V) & 1,004.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/\)
\(+/\)
\(+/-\) & \begin{tabular}{l}
6.3335 \\
30.4946 \\
30.4946
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 51 & Diethy CAS \# Purity & thalate 84-66-2 99\% & (Lot MKBJ3578V) & 1,001.7 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & \begin{tabular}{l}
6.3134 \\
30.3975 \\
30.3975
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 52 & 4-Nitro CAS \# Purity & iline 100-01-6 98\% & (Lot BCBG4702V) & 1,003.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/\)
\(+/-\)
\(+/\) & 5.8340 30.3517 30.3517 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 53 & \begin{tabular}{l}
4,6-Di \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { ro-2-methylp } \\
& 534-52-1 \\
& 99 \%
\end{aligned}
\] & \[
\begin{aligned}
& \text { o-o-cresol) } \\
& (\text { Lot LC18040V) }
\end{aligned}
\] & 1,005.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
+1
+1 & \[
\begin{aligned}
& 6.3392 \\
& 30.5219 \\
& 30.5219
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 54 & Diphen CAS \# Purity & \begin{tabular}{l}
amine
\[
122-39-4
\] \\
99\%
\end{tabular} & (Lot MKBN8295V) & 1,003.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/\)
\(+/\)
\(+/-\) & \begin{tabular}{l}
6.3238 \\
30.4476 \\
30.4476
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 55 & Azobe CAS \# Purity & \[
\begin{aligned}
& 103-33-3 \\
& 99 \%
\end{aligned}
\] & (Lot MKBS2559V) & 1,004.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/-\)
\(+/-\)
\(+/-\) & \begin{tabular}{l}
6.3288 \\
30.4718 \\
30.4718
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 72 & Benzo CAS \# Purity & \[
\begin{aligned}
& \text { fluoranthene } \\
& 207-08-9 \\
& 99 \%
\end{aligned}
\] & (Lot 012012K) & 1,002.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3181 \\
30.4202 \\
30.4202
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 73 & Benzo CAS \# Purity & pyrene 50-32-8 99\% & (Lot ER071309-02) & 1,001.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/ \\
& +/
\end{aligned}
\] & \[
\begin{aligned}
& 6.3105 \\
& 30.3838 \\
& 30.3838
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 74 & Indeno CAS \# Purity & \[
\begin{aligned}
& \text { 2,3-cd)pyre } \\
& 193-39-5 \\
& 99 \%
\end{aligned}
\] & (Lot ER082107-02) & 1,001.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/
\end{aligned}
\] & 6.3099 30.3808 30.3808 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 75 & Dibenz CAS \# Purity & \[
\begin{aligned}
& \text { h)anthracen } \\
& 53-70-3 \\
& 99 \%
\end{aligned}
\] & (Lot ER032211-01) & 1,002.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3203 30.4309 \\
30.4309
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 76 & Benzo CAS \# Purity & \[
\begin{aligned}
& \text {,i) perylene } \\
& 191-24-2 \\
& 99 \%
\end{aligned}
\] & (Lot ER05121401) & 1,000.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 6.3036 30.3504 30.3504 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline
\end{tabular}

Solvent: Methylene Chloride
CAS \# 75-09-2
Purity 99\%

\section*{Column:}
\(30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}\)
Rtx-5 (cat.\#10223)

\section*{Carrier Gas:}
hydrogen-constant pressure 10 psi
Temp. Program:
\(35^{\circ} \mathrm{C}\) (hold 3 min .) to \(330^{\circ} \mathrm{C}\)
@ \(3^{\circ} \mathrm{C} / \mathrm{min}\). (hold 3 min .)
Ind. Temp:
\(250^{\circ} \mathrm{C}\)
Deft. Temp:
\(300^{\circ} \mathrm{C}\)
Deft. Type:
FID


This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.


Date Mixed: \(\quad\) 12-Jul-2016
Balance: 1128360905

\section*{General Certified Reference Material Notes}

\section*{Expiration Notes:}
- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

\section*{Purity Notes:}
- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/ \(\mu E C D\), GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than \(99 \%\) have been weight corrected to compensate for impurities and/or salts. A correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

\section*{Certified Uncertainty Value Notes:}
- The uncertainties are determined in accordance with ISO Guides 34 and 35 . The certified combined stressed uncertainty value ( includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:
\[
U_{\text {combined stressed }}=k \sqrt{U_{g r a v i m e t r i c}^{2}+U_{\text {homogeneity }}^{2}+U_{\text {storage stability }}^{2}+U_{\text {shipping stability }}^{2}}
\]
\(k\) is a coverage factor of 2 , which gives a level of confidence of approximately \(95 \%\).
- It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was stored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstandard temperature conditions.
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions. Apply the certified combined stressed uncertainty value if the product was received under non-standard conditions as specified below.
\begin{tabular}{|c|c|c|}
\hline Label Conditions & Standard Conditions & Non-Standard Conditions \\
\hline \(25^{\circ} \mathrm{C}\) Nominal (Room Temperature) & \(<60^{\circ} \mathrm{C}\) & \(\geq 60^{\circ} \mathrm{C}\) up to 7 days \\
\hline \(10^{\circ} \mathrm{C}\) or colder (Refrigerate) & \(<40^{\circ} \mathrm{C}\) & \(\geq 40^{\circ} \mathrm{C}\) up to 7 days \\
\hline \(0^{\circ} \mathrm{C}\) or colder (Freezer) & \(<25^{\circ} \mathrm{C}\) & \(\geq 25^{\circ} \mathrm{C}\) up to 7 days \\
\hline
\end{tabular}
- Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed, separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us.
- The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

\section*{Manufacturing Notes:}
- Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

\section*{Handling Notes:}
- Samples should be transferred into deactivated vials for handling and storage. Restek supplies deactivated vials along with most standards packed in 2 mL ampules. Due to space constraints, Restek does not supply vials for larger volume ampules. Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions. Restek will also deactivate larger volume vials from our inventory as a custom ordered item. Contact your Restek sales or customer service representative for details.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.
This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 8 & \begin{tabular}{l}
1,4-Dich \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { orobenzene } \\
& 106-46-7 \\
& 99 \%
\end{aligned}
\] & (Lot MKBS1350V) & 1,004.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3335 \\
& 30.4946 \\
& 30.4946
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed Stressed
\end{tabular} \\
\hline 9 & 1,2-Dich CAS \# Purity & orobenzene
\[
\begin{aligned}
& 95-50-1 \\
& 99 \%
\end{aligned}
\] & (Lot SHBD7331V) & 1,004.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3279 \\
& 30.4673 \\
& 30.4673
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 10 & Benzyl CAS \# Purity & cohol
\[
\begin{aligned}
& 100-51-6 \\
& 99 \%
\end{aligned}
\] & (Lot SHBC1850V) & 1,007.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3490 \\
& 30.5689 \\
& 30.5689
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 11 & \begin{tabular}{l}
2,2'-oxy \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { is(1-chloropropane) } \\
& 108-60-1 \\
& 99 \%
\end{aligned}
\] & (Lot 2-KMW-57-8) & 1,002.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3184 \\
& 30.4218 \\
& 30.4218
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 12 & 2-Methy CAS \# Purity & \[
\begin{aligned}
& \text { phenol (o-cresol) } \\
& 95-48-7 \\
& 99 \%
\end{aligned}
\] & (Lot SHBC1479V) & 1,000.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3030 \\
& 30.3474 \\
& 30.3474
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed Stressed
\end{tabular} \\
\hline 13 & Hexachl CAS \# Purity & \[
\begin{aligned}
& \text { roethane } \\
& 67-72-1 \\
& 99 \%
\end{aligned}
\] & (Lot 4H3SF) & 1,003.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3269 \\
& 30.4627 \\
& 30.4627
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed Stressed
\end{tabular} \\
\hline 14 & N-Nitros CAS \# Purity & \begin{tabular}{l}
-di-n-propylamine 621-64-7 \\
99\%
\end{tabular} & (Lot OPAGF) & 1,001.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3121 \\
& 30.3914 \\
& 30.3914
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 15 & \begin{tabular}{l}
4-Methy \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { phenol (p-cresol) } \\
& 106-44-5 \\
& 99 \%
\end{aligned}
\] & (Lot 49396APV) & 500.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 3.1542 \\
& 15.1866 \\
& 15.1866
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 16 & 3-Methy CAS \# Purity & \[
\begin{aligned}
& \text { phenol (m-cresol) } \\
& 108-39-4 \\
& 99 \%
\end{aligned}
\] & (Lot SHBD0627V) & 501.6 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 3.1614 \\
& 15.2215 \\
& 15.2215
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 17 & Nitroben CAS \# Purity & ene
\[
\begin{aligned}
& 98-95-3 \\
& 99 \%
\end{aligned}
\] & (Lot SHBB0246V) & 1,002.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3165 \\
& 30.4127 \\
& 30.4127
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 18 & Isophor CAS \# Purity & \[
\begin{aligned}
& 78-59-1 \\
& 99 \%
\end{aligned}
\] & (Lot MKBG2442V) & 1,004.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3298 \\
& 30.4764 \\
& 30.4764
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric Unstressed Stressed \\
\hline 19 & \begin{tabular}{l}
2-Nitrop \\
CAS \# \\
Purity
\end{tabular} & enol
\[
\begin{aligned}
& 88-75-5 \\
& 99 \%
\end{aligned}
\] & (Lot BCBH7602V) & 1,000.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3036 \\
& 30.3504 \\
& 30.3504
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed Stressed
\end{tabular} \\
\hline 20 & \begin{tabular}{l}
2,4-Dim \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { thylphenol } \\
& 105-67-9 \\
& 99 \%
\end{aligned}
\] & (Lot 10165155) & 1,000.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3033 \\
& 30.3489 \\
& 30.3489
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 21 & \begin{tabular}{l}
Bis(2-ch \\
CAS \# \\
Purity
\end{tabular} & oroethoxy)methane
111-91-1
\[
99 \%
\] & (Lot 3299900) & 1,000.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3033 \\
& 30.3489 \\
& 30.3489
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 22 & \begin{tabular}{l}
2,4-Dich \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { orophenol } \\
& 120-83-2 \\
& 99 \%
\end{aligned}
\] & (Lot BCBH1617V) & 1,000.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3055 \\
& 30.3595 \\
& 30.3595
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 23 & \begin{tabular}{l}
1,2,4-Tr \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { hlorobenzene } \\
& 120-82-1 \\
& 99 \%
\end{aligned}
\] & (Lot 26896BM) & 1,003.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3216 \\
& 30.4369 \\
& 30.4369
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{24} & \multicolumn{3}{|l|}{Naphthalene} & \multirow[t]{3}{*}{1,002.0} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & \multirow[t]{2}{*}{\[
+/-
\]} & 6.3153 & \multirow[t]{2}{*}{\[
\mu \mathrm{g} / \mathrm{mL}
\]} & Gravimetric \\
\hline & CAS \# & 91-20-3 & (Lot MKBH4351V) & & & & 30.4066 & & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.4066 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{25} & \multicolumn{3}{|l|}{4-Chloroaniline} & \multirow[t]{3}{*}{1,002.7} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & & \(\mu \mathrm{g} / \mathrm{mL}\) & \\
\hline & CAS \# & 106-47-8 & \multirow[t]{2}{*}{(Lot BCBJ1580V)} & & & +/- & 30.4278 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.4278 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{26} & \multicolumn{3}{|l|}{Hexachlorobutadiene} & \multirow[t]{3}{*}{1,000.5} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 87-68-3 & \multirow[t]{2}{*}{(Lot J31 X013)} & & & +/- & 30.3605 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 98\% & & & & \(+/\) & 30.3605 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{27} & \multicolumn{3}{|l|}{2-Methylnaphthalene} & \multirow[t]{3}{*}{993.5} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.2618 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & \[
91-57-6
\] & \multirow[t]{2}{*}{(Lot STBF0201V)} & & & +/- & 30.1489 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 95\% & & & & +/- & 30.1489 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{28} & \multicolumn{3}{|l|}{4-Chloro-3-methylphenol} & \multirow[t]{3}{*}{1,000.2} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3039 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & \[
59-50-7
\] & (Lot STBC0769V) & & & +/- & 30.3520 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.3520 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{29} & \multicolumn{3}{|l|}{1-Methylnaphthalene} & \multirow[t]{3}{*}{1,005.3} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3358 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 90-12-0 & (Lot 525000-10) & & & +/- & 30.5052 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.5052 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{30} & \multicolumn{3}{|l|}{Hexachlorocyclopentadiene} & \multirow[t]{3}{*}{1,004.4} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3301 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 77-47-4 & (Lot 4306600) & & & +/- & 30.4779 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.4779 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{31} & \multicolumn{3}{|l|}{2,4,6-Trichlorophenol} & \multirow[t]{3}{*}{1,000.1} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3032 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 88-06-2 & (Lot MKBL4698V) & & & +/- & 30.3486 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 98\% & & & & +/- & 30.3486 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{32} & \multicolumn{3}{|l|}{2,4,5-Trichlorophenol} & \multirow[t]{3}{*}{1,000.3} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3042 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & \[
95-95-4
\] & (Lot 150724JLM) & & & +/- & \[
30.3535
\] & \[
\mu \mathrm{g} / \mathrm{mL}
\] & Unstressed \\
\hline & & 99\% & & & & +/- & 30.3535 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{33} & \multicolumn{3}{|l|}{2-Chloronaphthalene} & \multirow[t]{3}{*}{1,007.8} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3518 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 91-58-7 & (Lot AJ2UI-TE) & & & +/- & 30.5826 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.5826 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{34} & \multicolumn{3}{|l|}{2-Nitroaniline} & \multirow[t]{3}{*}{1,008.6} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 5.8778 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 88-74-4 & (Lot MKBK7597V) & & & +/- & 30.5117 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.5117 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{35} & \multicolumn{3}{|l|}{1,4-Dinitrobenzene} & \multirow[t]{3}{*}{1,000.7} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3068 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 100-25-4 & (Lot S58502V) & & & +/- & 30.3656 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.3656 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{36} & \multicolumn{3}{|l|}{Acenaphthylene} & \multirow[t]{3}{*}{1,001.1} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3098 & \(\mu \mathrm{g} / \mathrm{mL}\) & \\
\hline & CAS \# & 208-96-8 & (Lot Q03P) & & & +/- & 30.3804 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 96\% & & & & +/- & 30.3804 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{37} & \multicolumn{3}{|l|}{1,3-Dinitrobenzene} & \multirow[t]{3}{*}{1,000.5} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3058 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 99-65-0 & (Lot BCBN4329V) & & & +/- & 30.3611 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.3611 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{38} & \multicolumn{3}{|l|}{Dimethylphthalate} & \multirow[t]{3}{*}{1,005.1} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3348 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 131-11-3 & (Lot 10117699) & & & +/- & 30.5007 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.5007 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline \multirow[t]{3}{*}{39} & \multicolumn{3}{|l|}{2,6-Dinitrotoluene} & \multirow[t]{3}{*}{1,000.4} & \multirow[t]{3}{*}{\(\mu \mathrm{g} / \mathrm{mL}\)} & +/- & 6.3052 & \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric \\
\hline & CAS \# & 606-20-2 & (Lot 1437483V) & & & +/- & 30.3580 & \(\mu \mathrm{g} / \mathrm{mL}\) & Unstressed \\
\hline & Purity & 99\% & & & & +/- & 30.3580 & \(\mu \mathrm{g} / \mathrm{mL}\) & Stressed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 40 & \[
\begin{aligned}
& \text { 1,2-Din } \\
& \text { CAS \# } \\
& \text { Purity }
\end{aligned}
\] & obenzene 528-29-0 99\% & (Lot MKBK2313V) & 1,000.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3080 \\
& 30.3717 \\
& 30.3717
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 41 & Acenap CAS \# Purity & \[
\begin{aligned}
& \text { hene } \\
& 83-32-9 \\
& 99 \%
\end{aligned}
\] & (Lot MKBP0384V) & 1,000.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/ \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3027 \\
30.3459 \\
30.3459
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 42 & 3-Nitro CAS \# Purity & \[
\begin{aligned}
& \text { iiline } \\
& 99-09-2 \\
& 99 \%
\end{aligned}
\] & (Lot MKBQ6338V) & 1,008.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 5.8771 30.5079 30.5079 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 43 & \[
\begin{aligned}
& \text { 2,4-Din } \\
& \text { CAS \# } \\
& \text { Purity }
\end{aligned}
\] & \begin{tabular}{l}
ophenol \\
51-28-5 \\
99\%
\end{tabular} & (Lot STBD8351V) & 1,000.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 6.3036 30.3504 30.3504 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 44 & Dibenz CAS \# Purity & \begin{tabular}{l}
132-64-9 \\
99\%
\end{tabular} & (Lot MKBW2691V) & 1,007.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3496 \\
& 30.5720 \\
& 30.5720
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 45 & \[
\begin{aligned}
& \text { 2,4-Din } \\
& \text { CAS \# } \\
& \text { Purity }
\end{aligned}
\] & \begin{tabular}{l}
otoluene \\
121-14-2 99\%
\end{tabular} & (Lot MKAA0690V) & 1,004.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3304 \\
30.4794 \\
30.4794
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 46 & \begin{tabular}{l}
4-Nitro CAS \# \\
Purity
\end{tabular} & enol 100-02-7 99\% & (Lot MKBP6945V) & 1,000.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/ \\
& +/-
\end{aligned}
\] & 6.3046 30.3550 30.3550 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 47 & \[
\begin{aligned}
& 2,3,4,6- \\
& \text { CAS \# } \\
& \text { Purity }
\end{aligned}
\] & \[
\begin{aligned}
& \text { etrachloroph } \\
& 58-90-2 \\
& 99 \%
\end{aligned}
\] & (Lot B16W0112) & 1,008.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
5.8741 \\
30.4928 \\
30.4928
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 48 & \[
\begin{aligned}
& 2,3,5,6- \\
& \text { CAS \# } \\
& \text { Purity }
\end{aligned}
\] & \[
\begin{aligned}
& \text { etrachloroph } \\
& 935-95-5 \\
& 99 \%
\end{aligned}
\] & (Lot 012016) & 1,008.6 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 5.8778 30.5117 30.5117 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 49 & Fluoren CAS \# Purity & \[
\begin{aligned}
& 86-73-7 \\
& 98 \%
\end{aligned}
\] & (Lot 10174662) & 1,001.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3147 \\
30.4036 \\
30.4036
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 50 & 4-Chlo CAS \# Purity & \[
\begin{aligned}
& \text { phenyl pheny } \\
& 7005-72-3 \\
& 99 \%
\end{aligned}
\] & (Lot MKBM4925V) & 1,004.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3335 \\
30.4946 \\
30.4946
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 51 & Diethyl CAS \# Purity & \begin{tabular}{l}
thalate \\
84-66-2 \\
\(99 \%\)
\end{tabular} & (Lot MKBJ3578V) & 1,001.7 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3134 \\
30.3975 \\
30.3975
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 52 & 4-Nitro CAS \# Purity & \[
\begin{aligned}
& \text { iiline } \\
& 100-01-6 \\
& 98 \%
\end{aligned}
\] & (Lot BCBG4702V) & 1,002.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & 5.8416 30.3239 30.3239 & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 53 & \[
\begin{aligned}
& \text { 4,6-Din } \\
& \text { CAS \# } \\
& \text { Purity }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ro-2-methylp } \\
& 534-52-1 \\
& 99 \%
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{o} \text {-o-cresol) } \\
& (\text { Lot LC12394V) }
\end{aligned}
\] & 1,000.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3058 \\
30.3611 \\
30.3611
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 54 & Diphen CAS \# Purity & \[
\begin{aligned}
& \text { amine } \\
& 122-39-4 \\
& 99 \%
\end{aligned}
\] & (Lot MKBN8295V) & 1,003.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3238 \\
30.4476 \\
30.4476
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 55 & Azoben CAS \# Purity & 103-33-3
\[
99 \%
\] & (Lot MKBS2559V) & 1,004.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \begin{tabular}{l}
6.3288 \\
30.4718 \\
30.4718
\end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric Unstressed Stressed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 56 & 4-Brom CAS \# Purity & henyl pheny
\[
\begin{aligned}
& 101-55-3 \\
& 98 \%
\end{aligned}
\] & (Lot STBB9729V) & 1,001.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/= \\
& +/ / \\
& +/ /
\end{aligned}
\] & \[
\begin{aligned}
& 6.3100 \\
& 30.3813 \\
& 30.3813
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 57 & Hexach CAS \# Purity & \[
\begin{aligned}
& \text { robenzene } \\
& 118-74-1 \\
& 99 \%
\end{aligned}
\] & (Lot LC19614V) & 1,000.7 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/ /
\end{aligned}
\] & \[
\begin{aligned}
& 6.3071 \\
& 30.3671 \\
& 30.3671
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 58 & \begin{tabular}{l}
Pentach \\
CAS \# \\
Purity
\end{tabular} & rophenol
\[
\begin{aligned}
& 87-86-5 \\
& 99 \%
\end{aligned}
\] & (Lot 140626JLM) & 1,000.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3042 \\
& 30.3535 \\
& 30.3535
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 59 & Phenant CAS \# Purity & \[
\begin{aligned}
& \text { rene } \\
& 85-01-8 \\
& 99 \%
\end{aligned}
\] & (Lot MKBT8628V) & 1,003.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3263 \\
& 30.4597 \\
& 30.4597
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 60 & Anthrac CAS \# Purity & \[
\begin{aligned}
& 120-12-7 \\
& 99 \%
\end{aligned}
\] & (Lot MKBR2268V) & 1,001.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/= \\
& +/- \\
& +/
\end{aligned}
\] & \[
\begin{aligned}
& 6.3096 \\
& 30.3793 \\
& 30.3793
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 61 & \begin{tabular}{l}
Carbazo \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& 86-74-8 \\
& 98 \%
\end{aligned}
\] & (Lot 3715800) & 995.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.2764 \\
& 30.2193 \\
& 30.2193
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 62 & \begin{tabular}{l}
Di-n-bu \\
CAS \# \\
Purity
\end{tabular} & \begin{tabular}{l}
lphthalate \\
84-74-2 \\
99\%
\end{tabular} & (Lot MKBL8501V) & 1,001.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3109 \\
& 30.3853 \\
& 30.3853
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 63 & \begin{tabular}{l}
Fluoran \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& \text { ene } \\
& 206-44-0 \\
& 98 \%
\end{aligned}
\] & (Lot MKBQ6360V) & 1,001.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/
\end{aligned}
\] & \[
\begin{aligned}
& 6.3116 \\
& 30.3888 \\
& 30.3888
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed Stressed
\end{tabular} \\
\hline 64 & \begin{tabular}{l}
Pyrene \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& 129-00-0 \\
& 99 \%
\end{aligned}
\] & (Lot BCBL6786V) & 1,001.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3090 \\
& 30.3762 \\
& 30.3762
\end{aligned}
\] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 65 & Benzyl CAS \# Purity & tyl phthalat 85-68-7 99\% & (Lot 03027HV) & 1,003.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3216 \\
& 30.4369 \\
& 30.4369
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 66 & Bis(2-et CAS \# Purity & Ihexyl)adip
\[
103-23-1
\]
\[
99 \%
\] & (Lot MKBT7307V) & 1,002.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3178 \\
& 30.4187 \\
& 30.4187
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 67 & Benz(a) CAS \# Purity & thracene
\[
\begin{aligned}
& 56-55-3 \\
& 99 \%
\end{aligned}
\] & (Lot ER031412-01) & 1,003.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3213 \\
& 30.4354 \\
& 30.4354
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 68 & \begin{tabular}{l}
Chrysen \\
CAS \# \\
Purity
\end{tabular} & \[
\begin{aligned}
& 218-01-9 \\
& 99 \%
\end{aligned}
\] & (Lot ER120810-02) & 1,000.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3055 \\
& 30.3595 \\
& 30.3595
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 69 & Bis(2-et CAS \# Purity & \[
\begin{aligned}
& y \text { ylhexyl)phth } \\
& 117-81-7 \\
& 99 \%
\end{aligned}
\] & (Lot MKBK2695V) & 1,001.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3137 \\
& 30.3990 \\
& 30.3990
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 70 & \begin{tabular}{l}
Di-n-oct \\
CAS \# \\
Purity
\end{tabular} & \begin{tabular}{l}
phthalate \\
117-84-0 \\
99\%
\end{tabular} & (Lot 3998900) & 1,001.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3143 \\
& 30.4020 \\
& 30.4020
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline 71 & \begin{tabular}{l}
Benzo(b \\
CAS \# \\
Purity
\end{tabular} & fluoranthene
\[
\begin{aligned}
& 205-99-2 \\
& 99 \%
\end{aligned}
\] & (Lot ER03101401) & 1,002.6 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
\begin{aligned}
& +/- \\
& +/- \\
& +/-
\end{aligned}
\] & \[
\begin{aligned}
& 6.3191 \\
& 30.4248 \\
& 30.4248
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\) \\
\(\mu \mathrm{g} / \mathrm{mL}\)
\end{tabular} & \begin{tabular}{l}
Gravimetric \\
Unstressed \\
Stressed
\end{tabular} \\
\hline
\end{tabular}


Solvent: Methylene Chloride
CAS \# 75-09-2
Purity 99\%

\section*{Column:}
\(30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}\)
Rtx-5 (cat.\#10223)

\section*{Carrier Gas:}
hydrogen-constant pressure 10 psi

\section*{Temp. Program:}
\(35^{\circ} \mathrm{C}\) (hold 3 min.) to \(330^{\circ} \mathrm{C}\)
@ \(3^{\circ} \mathrm{C} / \mathrm{min}\). (hold 3 min .)
Ind. Temp:
\(250^{\circ} \mathrm{C}\)
Deft. Temp: \(300^{\circ} \mathrm{C}\)
Deft. Type:
FID


This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.


Cheryl Graham - Mix Technician


\section*{General Certified Reference Material Notes}

\section*{Expiration Notes:}
- Expiration date valid for unopened ampul stored in compliance with the recommended conditions.
- Uncertainty, concentration, and expiration of the CRM are based on the unopened product being stored according to the recommended condition found in the storage field.

\section*{Purity Notes:}
- Purity and/or chemical identity are determined by one or more of the following techniques: GC/FID, HPLC, GC/ \(\mu \mathrm{ECD}\), GC/MS, LC/MS, RI, and/or melting point.
- Compounds with a listed purity of less than \(99 \%\) have been weight corrected to compensate for impurities and/or salts. A correction factor is used to calculate the amount of compound necessary to achieve the desired concentration of the parent compound in solution.
- Purity of isomeric compounds is reported as the sum of the isomers.
- Purity values are rounded to the nearest whole number.

\section*{Certified Uncertainty Value Notes:}
- The uncertainties are determined in accordance with ISO Guides 34 and 35 . The certified combined stressed uncertainty value ( includes gravimetric uncertainty, homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty and were combined using the following formula:
\[
U_{\text {combined stressed }}=k \sqrt{U_{g r a v i m e t r i c}^{2}+U_{\text {homogeneity }}^{2}+U_{\text {storage stability }}^{2}+U_{\text {shipping stability }}^{2}}
\]
\(k\) is a coverage factor of 2 , which gives a level of confidence of approximately \(95 \%\).
- It is important to note that the shipping stability uncertainty was obtained under temperature extremes for specific time intervals; therefore, the certified combined stressed uncertainty value should only be applied to the product if it was stored at non-standard temperature conditions up to and including 7 days. Contact Restek Technical Service at www.restek.com/Contact-Us for use recommendations if your shipment was in-transit for more than 7 days at nonstandard temperature conditions.
- Apply the certified combined unstressed uncertainty value if the product was received under standard shipping conditions. Apply the certified combined stressed uncertainty value if the product was received under non-standard conditions as specified below.
\begin{tabular}{|c|c|c|}
\hline Label Conditions & Standard Conditions & Non-Standard Conditions \\
\hline \hline \(25^{\circ} \mathrm{C}\) Nominal (Room Temperature) & \(<60^{\circ} \mathrm{C}\) & \(\geq 60^{\circ} \mathrm{C}\) up to 7 days \\
\hline \(10^{\circ} \mathrm{C}\) or colder (Refrigerate) & \(<40^{\circ} \mathrm{C}\) & \(\geq 40^{\circ} \mathrm{C}\) up to 7 days \\
\hline \(0^{\circ} \mathrm{C}\) or colder (Freezer) & \(<25^{\circ} \mathrm{C}\) & \(\geq 25^{\circ} \mathrm{C}\) up to 7 days \\
\hline
\end{tabular}
- Separate (not combined) uncertainty values for gravimetric uncertainty are also displayed on the certificate, if needed, separate homogeneity between-ampul uncertainty, storage stability uncertainty and shipping stability uncertainty values are available by contacting Restek Technical Service at www.restek.com/Contact-Us.
- The packaged amount is the minimum sample size for which uncertainty is valid. The ampules are over-filled to ensure that the minimum packaged amount can be sufficiently transferred.

\section*{Manufacturing Notes:}
- Concentration is based upon gravimetric preparation using either a balance whose calibration has been verified daily using NIST traceable weights, and/or dilutions with Class A glassware.

\section*{Handling Notes:}
- Samples should be transferred into deactivated vials for handling and storage. Restek supplies deactivated vials along with most standards packed in 2 mL ampules. Due to space constraints, Restek does not supply vials for larger volume ampules. Restek sells DMDCS for the purpose of glassware deactivation as catalog number 31861, which includes complete instructions. Restek will also deactivate larger volume vials from our inventory as a custom ordered item. Contact your Restek sales or customer service representative for details.
- If any undissolved material is visible inside the ampul, sonicate the unopened ampul until the material is completely dissolved.

Catalog No: C-216S-H-10X
Description: Aroclor 1016
Lot: 216011018
Solvent: Hexane
Hazards: HIGHLY FLAMMABLE - Refer to SDS for safety info


Date Certified: Jan 4, 2016
Expiration: Jan 4, 2026
Sample Size: 1 mL
Components: 1
Storage Condition: Ambient ( \(>5^{\circ} \mathrm{C}\) )
Included on ISO/IEC 17025 Scope of Accreditation: Yes
Included on ISO Guide 34 Scope of Accreditation: Yes
\begin{tabular}{lcrrr}
\hline Component & CAS \# & Purity \% & \begin{tabular}{r} 
Prepared \\
Concentration \\
\((\mu \mathrm{g} / \mathrm{mL})\)
\end{tabular} & \begin{tabular}{r} 
Certified Analyte \\
Concentration \\
\((\mu \mathrm{g} / \mathrm{mL})\)
\end{tabular} \\
\hline Aroclor 1016 & \(12674-11-2\) & Tech Mix & 1005 & 1005
\end{tabular}

\footnotetext{
A product with a suffix ( \(-1 \mathrm{~A},-2 \mathrm{~B}\), etc. or \(-01,-02\), etc.) on its lot number has had its expiration date extended and is identical to the same lot number without the suffix.
\({ }^{1}\) All weights are traceable through NIST, Test No. 822-275872-11
\({ }^{2}\) Certified Analyte Concentration \(=\) Purity \(\times\) Prepared Concentration. The Uncertainty associated with the gravimetric values reported on this certificate is \(\pm 0.24 \%\). The CRM Uncertainty calculated for this product is \(\pm 5 \%\). These values are the expanded uncertainty and represent an estimated standard deviation equal to the positive square root of the total variation of the uncertainty of components. A normal distribution is assumed and a coverage factor of \(\mathrm{K}=2\) is chosen using approximately a 95\% confidence level.

Labels and certificates follow U.S. Conventions in reporting numerical values: A comma () is used to separate units of one-thousand or greater. A period (.) is used as a decimal place marker.
See reverse side for additional information
}

Certified By:


\section*{CERTIFICATION REPORT}
1. Quality Documentation: This certificate is designed in accordance with ISO Guide 31 (Reference Materials - Contents of Certificates and Labels) and ISO Guide 35 (Reference Materials - General and Statistical Principles for Certification).
2. Quality Standards:

ISO Guide 34-General Requirements for the Competence of Reference Material Producers ACLASS Certificate Number AR-1463


AR-1463
ISO/IEC 17025:2005 - General Requirements for the Competence of Testing and Calibration Laboratories ACLASS Certificate Number AT-1339


ISO 9001:2008 Quality Management System - Requirements Eagle Registrations Certificate Number 3774
3. Intended Use: The product covered by this certificate is designed for calibration or for use in quality control procedures for the specified chemical compounds listed on the reverse side. This product can be used for quantification and/or identification. This product can also be used as a reference material to validate analytical procedures, subject to the conditions under Section 11. If dilution is required, use only Class A glassware and diluent compatible with all certified analytes in this preparation. All solutions should be thoroughly mixed prior to use.
4. Raw Materials: Reference standards are prepared from the highest quality starting materials with defined purities. All analytes and solvents are obtained from pre-qualified vendors and then analyzed or evaluated prior to use.
5. Manufacturing: All balances are calibrated daily using an in-house procedure with weights that are compared annually to master weights and traceable to NIST. The balances are also calibrated annually by an ISO/IEC 17025 accredited calibration laboratory. Please refer to the NIST test number listed on the front of this certificate. Class A glassware is used in the manufacture and quality control of all standards and calibrated using an in-house procedure. Good Laboratory Practices have been used throughout the preparation of this CRM.
6. Homogeneity Assessment: Homogeneity of the finished product is assessed by analyzing sample batches or by other methods consistent with the intended use of the product and by procedures that comply with the appropriate Quality System requirements, and ISO Guide 35.
7. Stability Assessment: The manufacturer guarantees the stability of this solution through the expiration date stated on the label, when handled and stored according to the conditions stated on the label. To ensure a uniform solution, mix the contents of the sealed container thoroughly prior to use. Care should be taken not to contaminate the contents of the original container.
8. Analytical Quality Control: Products are tested by validated analytical methods specified in the manufacturer's quality system.
9. Uncertainty Statistics and Confidence Limits: The uncertainty values as stated on the face of this certificate have been determined using the EURACHEM/CITAC Guide (Quantifying Uncertainty in Analytical Measurement). We have evaluated both Type A (based on a series of observations) and Type B (manufacturers specifications and calibration data) factors and report a combined expanded uncertainty equal to the positive square root of the total variance of the uncertainty of the components using the following formula: \(u_{\mathrm{m}}=\sqrt{(u(\mathrm{P}))^{2}+(u(\mathrm{~m}))^{2}+(u(\mathrm{~V}))^{2}}\). The expanded uncertainty, U , assumes a normal distribution and a coverage factor of \(\mathrm{k}=2\) is chosen using approximately a \(95 \%\) confidence level. Laboratories accredited to ISO/IEC 17025 and ISO Guide 34 are required to estimate uncertainty budgets associated with the measurements they make. However, for analysis, the certified value should be used as the actual value.
10. Warranties: The manufacturer warrants that its products shall conform to the description of such products as provided in its catalog or on the specific product label. This warranty is exclusive, and the manufacturer makes no other warranty, express or implied, including any implied warranty of merchantability or fitness for any particular purpose.
11. Legal Notice and Limit of Liability: This product is for routine laboratory analysis and research purposes only. Due to the hazardous nature, only trained personnel should handle this product. The company's liability will be limited to replacement of product or refund of purchase price. Notice of claims must be made within thirty (30) days from date of delivery.

\section*{ADDENDUM}

\section*{Subcontract Work}

SDG\# ARS1-17-00216
COC SOLID SAMPLES

\title{
Type I Data Package
}

\author{
Prepared for:
}

ARS International, LLC
2609 North River Road
Port Allen LA 70769

Project: 161115 SL
Soil Samples
Collected on 01/17/17-01/18/17

\section*{SDG\# AIL01}
\begin{tabular}{cc} 
GROUP & SAMPLE NUMBERS \\
1759120 & \(8807304-8807306\)
\end{tabular}
```

PA Cert. \# 36-00037
NY Cert. \# 10670
NJ Cert. \# PA011
NC Cert. \# 521
TX Cert. \# T104704194-13-10
AZ Cert. \# Az0780

```

Through our technical processes and second person review of data, we have established that our data/deliverables are in compliance with the methods and project requirements unless otherwise noted or previously resolved with the client.

Authorized by:


Date: 03/03/2017
Dana M. Kauffman
Manager

Any questions or concerns you might have regarding this data package should be directed to your client representative, Stacy Hess at (717) 556-7236.

\section*{Table of Contents for SDG\# AILO1}
1. Sample Reference List ..... 3
2. Methodology Summary/Reference ..... 4
3. Analysis Reports / Field Chain of Custody ..... 5
4. Dioxins/Furans by HRMS Data ..... 25
a. Case Narrative/Conformance Summary ..... 26
b. Quality Control and Calibration Summary Forms ..... 28
c. Sample Data ..... 57
d. Standards Data ..... 160
e. Raw QC Data ..... 474
f. Extraction Logs ..... 556
5. Moisture Data ..... 559

\title{
Sample Reference List for SDG Number AIL01 with a Data Package Type of I \\ 37646 - ARS International, LLC \\ Project: 161115 SL
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Lab} \\
\hline Sample & & & \\
\hline Number & Client Sample ID & Collection Date & Date Received \\
\hline 8807304 & ARS1-17-00216-007 & 01/17/2017 12:00 & 01/26/2017 09:30 \\
\hline 8807305 & ARS1-17-00216-004 & 01/18/2017 12:00 & 01/26/2017 09:30 \\
\hline 8807306 & ARS1-17-00216-002 & 01/17/2017 12:00 & 01/26/2017 09:30 \\
\hline
\end{tabular}

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425-717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

\section*{12937 Dioxins/Furans in Solids-8290}

The method provides procedures for the detection and quantitative measurement of polychlorinated dibenzo-p-dioxins (tetra- through octachlorinated homologues; PCDDs), and polychlorinated dibenzofurans (tetra- through octachlorinated homologues; PCDFs) in a variety of environmental matrices and at part-per-trillion (ppt) to part-per-quadrillion. The method requires the use of high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS) on purified sample extracts.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 8290A, Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)

\section*{11030 Dioxins/Furans in Solids - Sox}

The samples are extracted with toluene in a Soxhlet - Dean Stark extractor. The extract is concentrated for clean-up or instrumental analysis.
Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 8290A, Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)

\section*{00111 Moisture}

A well-mixed sample is placed in a tared container and dried to a constant weight in an oven at 103-105C. The increase in weight is the total solids.

Reference: Standard Methods for the Examination of Water and Wastewater, 22nd Edition, 2012, Method 2540 G-1997

\title{
Analysis Reports / Field Chain of Custody
}

2425 New Holland Pike, Lancaster, PA 17601 - 717-850-2300 - Fax: 717-656-2B81 * www, LancasterLabs,com

ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:
ARS International, LLC
2609 North River Road
Port Allen LA 70769

Report Date: February 09, 2017
Project: 161115 SL
Submittal Date: 01/26/2017
Group Number: 1759120
SDG: AIL01
PO Number: 17-0043
\begin{tabular}{lc} 
Client Sample Description & \(\underline{(L L) ~ \# ~}\) \\
\hline ARS1-17-00216-007 Soil & 8807304 \\
ARS1-17-00216-004 Soil & \(\mathbf{8 8 0 7 3 0 5}\) \\
ARS1-17-00216-002 Soil & \(\mathbf{8 8 0 7 3 0 6}\)
\end{tabular}

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/ . To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To ARS International, LLC Attn: Susan Leese

Respectfully Submitted,

(717) 556-7236

2425 New Holland Pike, Lancaster, PA 17601 - 717-656-2300 • Fax: 717-656-2681 - www.LancasterLabs.com


\footnotetext{
*=This limit was used in the evaluation of the final result
}

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com
\begin{tabular}{lll} 
Sample Description: ARS1-17-00216-007 Soil & LL Sample \# SW 8807304 \\
& 161115 SL & LL Group \# 1759120
\end{tabular}

Project Name: 161115 SL
\begin{tabular}{ll} 
Collected: 01/17/2017 12:00 & ARS International, LLC \\
& \\
Submitted: \(01 / 26 / 2017\) North River Road
\end{tabular}

Reported: 02/09/2017 12:58
-007- SDG\#: AILO1-01
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { CAT } \\
& \text { NO. }
\end{aligned}
\] & Analysia Name & CAS Number & Dry
Result & & \[
\begin{gathered}
\text { Dry } \\
\text { EDL** }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Dry } \\
& \text { MRL }
\end{aligned}
\] & Dilution Factor \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Dioxins/Furans}} & SW-846 8290A Feb 2007 & \(\mathrm{ng} / \mathrm{kg}\) & & ng/kg & ng/kg & \\
\hline & & \multicolumn{6}{|l|}{Rev 1} \\
\hline 12937 & 2378-TCDD & 1746-01-6 & 0.0698 & JQ & 0.0154 & 1.10 & 1 \\
\hline 12937 & 12378-PeCDD & 40321-76-4 & 0.420 & JBQ & 0.0267 & 5.50 & 1 \\
\hline 12937 & 123478-HxCDD & 39227-28-6 & 0.324 & JBQ & 0.0260 & 5.50 & 1 \\
\hline 12937 & 123678-HxCDD & 57653-85-7 & 0.931 & JB & 0.0252 & 5.50 & 1 \\
\hline 12937 & 123789 - \({ }^{\text {HxCDD }}\) & 19408-74-3 & 0.450 & JB & 0.0247 & 5.50 & 1 \\
\hline 12937 & 1234678-HpCDD & 35822-46-9 & 13.6 & B & 0.0422 & 5.50 & 1 \\
\hline 12937 & OCDD & 3268-87-9 & 195 & B & 0.0422 & 11.0 & 1 \\
\hline 12937 & 2378-TCDF & 51207-31-9 & 0.360 & JQ & 0.0424 & 1.10 & 1 \\
\hline 12937 & 12378-PeCDF & 57117-41-6 & 0.576 & JB & 0.0226 & 5.50 & 1 \\
\hline 12937 & 23478-PeCDF & 57117-31-4 & 0.947 & JBQ & 0.0202 & 5.50 & 1 \\
\hline 12937 & 123478-HxCDF & 70648-26-9 & 0.500 & JB & 0.0252 & 5.50 & 1 \\
\hline 12937 & 123678-HxCDF & 57117-44-9 & 0.486 & JB & 0.0220 & 5.50 & 1 \\
\hline 12937 & 123789-HxCDF & 72918-21-9 & 0.402 & JB & 0.0299 & 5.50 & 1 \\
\hline 12937 & 234678-HxCDF & 60851-34-5 & 0.475 & JB & 0.0237 & 5.50 & 1 \\
\hline 12937 & 1234678-HpCDF & 67562-39-4 & 2.32 & JB & 0.0134 & 5.50 & 1 \\
\hline 12937 & 1234789-HpCDF & 55673-89-7 & 0.340 & JB & 0.0208 & 5.50 & 1 \\
\hline 12937 & OCDF & 39001-02-0 & 5.55 & JB & 0.0198 & 11.0 & 1 \\
\hline \multicolumn{3}{|l|}{D/F Toxic Equivalents SW-846 8290A Feb 2007} & \multicolumn{2}{|l|}{ng/kg} & \(\mathrm{ng} / \mathrm{kg}\) & \multicolumn{2}{|l|}{תg/kg} \\
\hline
\end{tabular}

D/F Toxic Equivalents SW-846 8290A Feb 2007 ng/kg
Rev 1
12937 TEQ WHO 2005 - EDLxO.0 \(\quad\) n.a. 0.564
\begin{tabular}{|c|c|c|}
\hline Labeled Compounds & \%Rec & Windows \\
\hline 13C12-2378-TCDD & 74 & 40-135 \\
\hline 13C12-12378-PeCDD & 86 & 40-135 \\
\hline 13C12-123478-HxCDD & 87 & 40-135 \\
\hline 13C12-123678-HxCDD & 85 & 40-135 \\
\hline 13C12-123789-HxCDD & 87 & 40-135 \\
\hline 13C12-1234678-HpCDD & 92 & 40-135 \\
\hline 13C12-OCDD & 92 & 40-135 \\
\hline 13C12-2378-TCDF & 73 & 40-135 \\
\hline 13C12-12378-PeCDF & 89 & 40-135 \\
\hline 13C12-23478-PeCDF & 84 & 40-135 \\
\hline 13C12-123478-HxCDF & 80 & 40-135 \\
\hline 13C12-123678-HxCDF & 89 & 40-135 \\
\hline 13C12-234678-HxCDF & 80 & 40-135 \\
\hline 13C12-123789-HxCDF & 74 & 40-135 \\
\hline 13C12-1234678-HpCDF & 103 & 40-135 \\
\hline 13C12-1234789-HpCDF & 77 & 40-135 \\
\hline 13C12-OCDF & 75 & 40-135 \\
\hline
\end{tabular}

\footnotetext{
Dioxins/Furans Data Qualifiers:
\(B \quad\) Detected in Method Blank
U Undetected
}

\section*{Lancaster Laboratories \\ Environmental \\ Analysis Report}

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com


2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com


\section*{Sample Comments}

The temperature of the sample bottle(s) upon receipt at the lab was
6.6-16.2 C using an IR thermometer.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

\section*{Laboratory Sample Analysis Record}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline CAT & Analysia Name & Method & Trial\# & Batch\# & \multicolumn{2}{|l|}{Analyaia} & \multirow[t]{2}{*}{Analyst} & Dilution \\
\hline No. & & & & & \multicolumn{2}{|l|}{Date and Time} & & Factor \\
\hline 12937 & Dioxins/Furans in & SW-846 8290A Feb & 1 & 17031003 & 02/08/2017 & 01:20 & Joseph D Anderson & 1 \\
\hline & Solids-8290 & 2007 Rev 1 & & & & & & \\
\hline 11030 & Dioxins/Furans in Solids & SW-846 8290A Feb & 1 & 17031003 & 01/31/2017 & 10:45 & Deborah M & 1 \\
\hline & - Sox & 2007 Rev 1 & & & & & Zimmerman & \\
\hline 00111 & Moisture & SM 2540 G-1997 & 1 & 17033820006 A & 02/02/2017 & 19:39 & Scott W Freisher & 1 \\
\hline
\end{tabular}

\section*{Analysis Report}

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com


\footnotetext{
*=This limit was used in the evaluation of the final result
}

\section*{Analysis Report}

2425 New Holland Pike, Lancaster, PA 17601 - 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com
\begin{tabular}{lll} 
Sample Description: ARS1-17-00216-004 Soil & LL Sample \# SW 8807305 \\
& L61115 SL & LL Group \(\# 1759120\) \\
& Account & \# 37646
\end{tabular}

Project Name: 161115 SL
\begin{tabular}{ll} 
Collected: \(01 / 18 / 201712: 00\) & ARS International, LLC \\
& 2609 North River Road
\end{tabular}

Submitted: 01/26/2017 09:30
Port Allen LA 70769
Reported: 02/09/2017 12:58
-004- SDG\#: AIL01-02


12937 TEQ WHO 2005 - EDLx0.0 1.14
\begin{tabular}{|c|c|c|}
\hline Labeled Compounds & \%Rec & Windows \\
\hline 13C12-2378-TCDD & 85 & 40-135 \\
\hline 13C12-12378-PeCDD & 99 & 40-135 \\
\hline 13C12-123478-HxCDD & 92 & 40-135 \\
\hline 13C12-123678-HxCDD & 89 & 40-135 \\
\hline 13C12-123789-HxCDD & 89 & 40-135 \\
\hline 13C12-1234678-HpCDD & 95 & 40-135 \\
\hline 13C12-OCDD & 98 & 40-135 \\
\hline 13C12-2378-TCDF & 86 & 40-135 \\
\hline 13C12-12378-PeCDF & 99 & 40-135 \\
\hline 13C12-23478-PeCDF & 97 & 40-135 \\
\hline 13C12-123478-HxCDF & 88 & 40-135 \\
\hline 13C12-123678-HxCDF & 94 & 40-135 \\
\hline 13C12-234678-HxCDF & 88 & 40-135 \\
\hline 13C12-123789-HxCDF & 89 & 40-135 \\
\hline 13C12-1234678-HpCDF & 101 & 40-135 \\
\hline 13C12-1234789-HpCDF & 87 & 40-135 \\
\hline 13C12-OCDF & 85 & 40-135 \\
\hline
\end{tabular}

\section*{Dioxins/Furans Data Qualifiers:}
\(B \quad\) Detected in Method Blank
U Undetected

2425 New Holland Pike, Lancaster, PA 17601 * 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com


Lancaster Laboratories Environmental

\section*{Analysis Report}

2425 New Holland Pike, Lancaster, PA 17604 • 747-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com
```

Sample Description: ARS1-17-00216-004 Soil
LL Sample \# SW 8807305
161115 SL
LL Group \# 1759120
Account \# 37646

```

Project Name: 161115 SL
```

Collected: 01/18/2017 12:00 ARS International, LLC
2609 North River Road
Port Allen LA }7076
Submitted: 01/26/2017 09:30

```
Reported: 02/09/2017 12:58
-004- SDG\#: AIL01-02

\section*{Sample Comments}

The temperature of the sample bottle(s) upon receipt at the lab was
6.6-16.2 C using an IR thermometer.

All QC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline CAT & Analyais Name & Methad & \multirow[t]{2}{*}{Trial\#} & Batch\# & \multicolumn{2}{|l|}{Analyais} & \multirow[t]{2}{*}{Analyst} & \multirow[t]{2}{*}{Dilution Factor} \\
\hline Na. & & & & & \multicolumn{2}{|l|}{Date and Time} & & \\
\hline 12937 & Dioxins/Furans in & SW-846 8290A Feb & 1 & 17031003 & 02/08/2017 & 02:16 & Joseph D Anderson & 1 \\
\hline & Solids-8290 & 2007 Rev 1 & & & & & & \\
\hline 11030 & Dioxins/Furans in Solids & SW-846 8290A Feb & 1 & 17031003 & 01/31/2017 & 10:45 & Deborah M & 1 \\
\hline & - Sox & 2007 Rev 1 & & & & & Zimmerman & \\
\hline 00111 & Moisture & SM 2540 G-1997 & 1 & 17033820006 A & 02/02/2017 & 19:39 & Scott W Freisher & 1 \\
\hline
\end{tabular}

\section*{Analysis Report}

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax. 717-656-2681 • www.LancasterLabs.com


\footnotetext{
*=This limit was used in the evaluation of the final result
}

2425 New Holland Pike, Lancaster, PA 17601 • 747-656-2300 - Fax: 717-656-2681 • www.LancasterLabs.com
\begin{tabular}{ll} 
Sample Description: ARS1-17-00216-002 Soil & LI Sample \# SW 8807306 \\
161115 SL & LI Group \# 1759120 \\
& Account \\
& \#7646
\end{tabular}

Project Name: 161115 SL
\begin{tabular}{ll} 
Collected: \(01 / 17 / 201712: 00\) & ARS International, LLC \\
Submitted: \(01 / 26 / 201709: 30\) & 2609 North River Road \\
& Port Allen LA 70769
\end{tabular}

Reported: 02/09/2017 12:58
-002- SDG\#: AIL01-03
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
CAT \\
No.
\end{tabular} & Analysis Name & & CAS Number & \begin{tabular}{l}
Dry \\
Reault
\end{tabular} & & \[
\begin{aligned}
& \text { Dry } \\
& \text { EDL* }
\end{aligned}
\] & Dry
MRL & Dilution Factor \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Dioxins/Furans}} & SW-846 & 8290A Feb 2007 & ng/kg & & \(\mathrm{ng} / \mathrm{kg}\) & ng/ lcg & \\
\hline & & \multicolumn{7}{|l|}{Rev 1} \\
\hline 12937 & 2378-TCDD & & 1746-01-6 & 0.0277 & JQ & 0.0185 & 1.12 & 1 \\
\hline 12937 & 12378-PeCDD & & 40321-76-4 & 0.179 & JBQ & 0.0427 & 5.60 & 1 \\
\hline 12937 & 123478-HxCDD & & 39227-28-6 & 0.240 & JB & 0.0263 & 5.60 & 1 \\
\hline 12937 & 123678-HxCDD & & 57653-85-7 & 0.502 & JBQ & 0.0245 & 5.60 & 1 \\
\hline 12937 & 123789-HxCDD & & 19408-74-3 & 0.448 & JB & 0.0243 & 5.60 & 1 \\
\hline 12937 & 1234678 -HpCDD & & 35822-46-9 & 10.3 & B & 0.0368 & 5.60 & 1 \\
\hline 12937 & OCDD & & 3268-87-9 & 91.5 & B & 0.0281 & 11.2 & 1 \\
\hline 12937 & 2378-TCDF & & 51207-31-9 & 0.617 & J & 0.0418 & 1.12 & 1 \\
\hline 12937 & 12378-PeCDF & & 57117-41-6 & 1.08 & JB & 0.0199 & 5.60 & 1 \\
\hline 12937 & 23478 - PeCDF & & 57117-31-4 & 0.408 & JB & 0.0177 & 5.60 & 1 \\
\hline 12937 & 123478-HxCDF & & 70648-26-9 & 0.336 & JBQ & 0.0204 & 5.60 & 1 \\
\hline 12937 & 123678-HxCDF & & 57117-44-9 & 0.224 & JB & 0.0198 & 5.60 & 1 \\
\hline 12937 & 123789-HxCDF & & 72918-21-9 & 0.155 & JB & 0.0215 & 5.60 & 1 \\
\hline 12937 & 234678 -HxCDF & & 60851-34-5 & 0.264 & JB & 0.0211 & 5.60 & 1 \\
\hline 12937 & 1234678 -HpCDF & & 67562-39-4 & 2.19 & JB & 0.0321 & 5.60 & 1 \\
\hline 12937 & 1234789 -HpCDF & & 55673-89-7 & 0.225 & JB & 0.0402 & 5.60 & 1 \\
\hline 12937 & OCDF & & 39001-02-0 & 3.88 & JB & 0.0186 & 11.2 & 1 \\
\hline D/F T & \(x i c\) Equival & SW-846 & 8290A Feb 2007 & \(\mathrm{ng} / \mathrm{kg}\) & & ng/ kg & ng/kg & \\
\hline
\end{tabular}

\section*{Rev 1}
12937 TEQ WHO 2005-EDLx0.0 n.a. 0.505
\begin{tabular}{lcl} 
Labeled Compounds & \%Rec & \multicolumn{1}{l}{ Windows } \\
\(13 C 12-2378-\) TCDD & 92 & \(40-135\) \\
\(13 C 12-12378-\mathrm{PeCDD}\) & 97 & \(40-135\) \\
\(13 C 12-123478-\mathrm{HxCDD}\) & 94 & \(40-135\) \\
\(13 C 12-123678-\mathrm{HxCDD}\) & 92 & \(40-135\) \\
\(13 C 12-123789-\mathrm{HxCDD}\) & 94 & \(40-135\) \\
\(13 C 12-1234678-\mathrm{HpCDD}\) & 99 & \(40-135\) \\
\(13 C 12-0 C D D\) & 100 & \(40-135\) \\
\(13 C 12-2378-\mathrm{TCDF}\) & 91 & \(40-135\) \\
\(13 C 12-12378-\mathrm{PeCDF}\) & 100 & \(40-135\) \\
\(13 C 12-23478-\mathrm{PeCDF}\) & 97 & \(40-135\) \\
\(13 C 12-123478-\mathrm{HxCDF}\) & 91 & \(40-135\) \\
\(13 C 12-123678-\mathrm{HxCDF}\) & 93 & \(40-135\) \\
\(13 C 12-234678-\mathrm{HxCDF}\) & 91 & \(40-135\) \\
\(13 C 12-123789-\mathrm{HxCDF}\) & 96 & \(40-135\) \\
\(13 C 12-1234678-\mathrm{HpCDF}\) & 105 & \(40-135\) \\
\(13 C 12-1234789-\mathrm{HPCDF}\) & 91 & \(40-135\) \\
\(13 C 12-0 C D F\) & 91 & \(40-135\)
\end{tabular}

\section*{Dioxins/Furans Data Qualifiers:}
\(B \quad\) Detected in Method Blank
U Undetected

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com


Lancaster Laboratories
Environmental

\section*{Analysis Report}

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681•www.LancasterLabs.com


\title{
Quality Control Summary
}

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these
 in the method.
 on the Analysis Report.

\section*{Method Blank}
Analysis Name
Batch number: 17031003
\(2378-\mathrm{TCDD}\)
\(12378-\mathrm{PeCDD}\)
\(123478-\mathrm{HxCDD}\)
\(123678-\mathrm{HxCDD}\)
\(123789-\mathrm{HxCDD}\)
\(1234678-\mathrm{HpCDD}\)
oCDD
\(2378-\mathrm{TCDF}\)
\(12378-\mathrm{PeCDF}\)
\(23478-\mathrm{PeCDF}\)
\(123478-\mathrm{HxCDF}\)
\(123678-\mathrm{HxCDF}\)
\(123789-\mathrm{HxCDF}\)
\(234678-\mathrm{HxCDF}\)
\(1234678-\mathrm{HpCDF}\)
\(1234789-\mathrm{HpCDF}\)
OCDF
TEQ WHO \(2005-\) EDLx 0.0
\begin{tabular}{lll} 
Result & EDL** & MRL \\
ng/kg & ng/kg & ng/kg
\end{tabular}

Sample number(s): 8807304-8807306
2378-TCDD
N D 0.0117
\begin{tabular}{lll}
N .0. & 0.0117 & 5.00 \\
0.0463 & 0.0185 & 5.00
\end{tabular}
\(0.0288 \mathrm{~J} \quad 0.0116 \quad 5.00\)
123478 -HxCDD
\(.0116 \quad 5.00\)
\[
-2
\]
\(0.0115 \quad 5.00\)
123789-HxCDD
\(0.0110 \quad 5.00\)
4678-HpCDD
\(0.00895 \quad 5.00\)
2378-TCDF
\(0.0197 \quad 10.0\)
12378-PeCDF
\(0.0108 \quad 1.00\)
23478-PeCDF
\(0.00866 \quad 5.00\)
123478 -HxCDF
\(0.00763 \quad 5.00\)
123678-HxCDF
\(0.00685 \quad 5.00\)
123789-HxCDF
\(0.00803 \quad 5.00\)
234678 -HxCDF
\(0.00749 \quad 5.00\)
1234789
\(0.00652 \quad 5.00\)
OCDF
TEQ WHO 2005 - EDLx0.0
\(\begin{array}{ll}0.00983 & 5.00 \\ 0.0135 & 10.0\end{array}\)

LCS/LCSD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analysis Name & LCS Spike Added \% & \begin{tabular}{l}
LCS \\
Conc \(\%\)
\end{tabular} & LCSD Spike Added \% & \begin{tabular}{l}
LCSD \\
Conc \(\%\)
\end{tabular} & \[
\begin{aligned}
& \text { LCS } \\
& \text { \%REC }
\end{aligned}
\] & \begin{tabular}{l}
LCSD \\
\%REC
\end{tabular} & \[
\begin{gathered}
\text { LCS/LCSD } \\
\text { Limita }
\end{gathered}
\] & RPD & \begin{tabular}{l}
RPD \\
Max
\end{tabular} \\
\hline Batch number: 17033820006 A & Sample numb & s) \(: 880\) & 4-8807306 & & & & & & \\
\hline Moisture & 89.5 & 89.47 & & & 100 & & 99-101 & & \\
\hline Analysis Name & OPR Spike Added ng/kg & \begin{tabular}{l}
OPR \\
Conc ng/kg
\end{tabular} & OPRD Spike Added ng/kg & \begin{tabular}{l}
OPRD \\
Conc ng/kg
\end{tabular} & \[
\begin{aligned}
& \text { OPR } \\
& \text { \%REC }
\end{aligned}
\] & \begin{tabular}{l}
OPRD \\
\%REC
\end{tabular} & OPR/OPRD Limita & RPD & \begin{tabular}{l}
RPD \\
Max
\end{tabular} \\
\hline Batch number: 17031003 & Sample numb & s) : 880 & 4-8807306 & & & & & & \\
\hline 2378-TCDD & 20 & 19.14 & & & 96 & & 67-158 & & \\
\hline 12378 - PeCDD & 100 & 95.31 & & & 95 & & 70-142 & & \\
\hline 123478 -HxCDD & 100 & 96.71 & & & 97 & & 70-164 & & \\
\hline 123678 -HxCDD & 100 & 91.49 & & & 91 & & 76-134 & & \\
\hline 123789 -HxCDD & 100 & 94.51 & & & 95 & & 64-162 & & \\
\hline
\end{tabular}
*- Outside of specification
**-This limit was used in the evaluation of the final result for the blank
(1) The result for one or both determinations was less than five times the LOQ / MRL.
(2) The unspiked result was more than four times the spike added.
\(\mathrm{P} \# \# \# \# \# \#\) is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

\section*{Quality Control Summary}


\section*{Laboratory Duplicate}

Background (BKG) = the sample used in conjunction with the duplicate
\begin{tabular}{|c|c|c|c|c|c|}
\hline Analysie Name & \[
\begin{gathered}
\text { BKG Conc } \\
\text { \% }
\end{gathered}
\] & \[
\begin{gathered}
\text { DUP Conc } \\
\%
\end{gathered}
\] & DUP RPD & DUP R & \\
\hline Batch number: 17033820006A & Sample number & 304-8807306 & P807415 & & \\
\hline Moisture & 11.02 & 11.07 & 0 & & 5 \\
\hline
\end{tabular}

\section*{Surrogate Quality Control}

Surrogate recoveries which are outside of the \(Q C\) window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.
Analysis Name: Dioxins/Furans in Solids-8290
Batch number: 17031003
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 13C12-2378-TCDD & 13C12-12378-PeCDD & 13C12-123478-HxCDD & 13C12-123678-HxCDD & 13C12-123789-HxCDD & 13C12-1234678-HpCDD \\
\hline 8807304 & 74 & 86 & 87 & 85 & 87 & 92 \\
\hline 8807305 & 85 & 99 & 92 & 89 & 89 & 95 \\
\hline 8807306 & 92 & 97 & 94 & 92 & 94 & 99 \\
\hline Blank & 82 & 95 & 85 & 85 & 86 & 93 \\
\hline OPR & 64 & 84 & 85 & 83 & 84 & 90 \\
\hline Limits: & 40-135 & 40-135 & 40-135 & 40-135 & 40-135 & 40-135 \\
\hline & 13C12-OCDD & 13C12-2378-TCDF & 13C12-12378-PeCDF & 13C12-23478-PeCDF & 13C12-123478-HxCDF & 13C12-123678-HxCDF \\
\hline 8807304 & 92 & 73 & 89 & 84 & 80 & 89 \\
\hline 8807305 & 98 & 86 & 99 & 97 & 88 & 94 \\
\hline 8807306 & 100 & 91 & 100 & 97 & 91 & 93 \\
\hline
\end{tabular}
*- Outside of specification
**-This limit was used in the evaluation of the final result for the blank
(1) The result for one or both determinations was less than five times the LOQ / MRL.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Lancaster Laboratories
Environmental

\section*{Analysis Report}

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

\section*{Quality Control Summary}

Client Name: ARS International, LLC
Group Number: 1759120
Reported: 02/09/2017 12:58

\section*{Surrogate Quality Control (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report} \\
\hline \multicolumn{7}{|l|}{```
Analysis Name: Dioxins/Furans in Solids-8290
Batch number: 17031003
```} \\
\hline & 13C12-OCDD & 13C12-2378-TCDF & 13C12-12378-PeCDF & 13C12-23478-PeCDF & 13C12-123478-HxCDF & 13C12-123678-HxCDF \\
\hline Blank & 94 & 69 & 96 & 87 & 78 & 88 \\
\hline OPR & 93 & 62 & 84 & 78 & 74 & 84 \\
\hline \multirow[t]{2}{*}{Limits:} & 40-135 & 40-135 & 40-135 & 40-135 & 40-135 & 40-135 \\
\hline & 13C12-234678-HxCDF & 13C12-123789-HxCDF & 13C12-1234678-HpCDF & 13C12-1234789-HpCDF & 13C12-OCDF & \\
\hline 8807304 & 80 & 74 & 103 & 77 & 75 & \\
\hline 8807305 & 88 & 89 & 101 & 87 & 85 & \\
\hline 8807306 & 91 & 96 & 105 & 91 & 91 & \\
\hline Blank & 79 & 83 & 101 & 77 & 74 & \\
\hline OPR & 76 & 72 & 98 & 73 & 73 & \\
\hline Limits: & 40-135 & 40-135 & 40-135 & 40-135 & 40-135 & \\
\hline
\end{tabular}

\footnotetext{
*- Outside of specification
\({ }^{* *}\)-This limit was used in the evaluation of the final result for the blank
(1) The result for one or both determinations was less than five times the LOQ / MRL.
(2) The unspiked result was more than four times the spike added.
\(\mathrm{P} \# \# \# \# \# \#\) is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.
}

\section*{ARS}

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\\
\hline
\end{tabular}

\(17-37646\)
\(6-1754120\)
\(5-8807304-06\)
Purchase Order
 Buy_ Fax:

*Types of sample:
S: solids, L: liquid, DW: Drinking Water, Sm: Smear, LT: Leak Test, AF: Air Filter, Si: Silica Gel, VG: vegetation, Bio: Bioassay AlLO1 Page 22 of 560
Page 17 of 19
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Date } \\
1-17-17
\end{gathered}
\] & Time & Sample iD & Matrix Type* & \# of Cont. \\
\hline 1 & \(1-1847\) & 12.20 & 71651-17-00216-007 & 50 & 1 \\
\hline 2 & \(1-18-17\) & 1200 & \(17851-17-0216-004\) & 50 & 1 \\
\hline 3 & \(1-17-17\) & 12 Cl & ACS - 17-0216-N7 & 50 & 1 \\
\hline 4 & & & & & \\
\hline 5 & & & & & \\
\hline 6 & & & & & \\
\hline 7 & & & & & \\
\hline 8 & & & & & \\
\hline 9 & & & & & \\
\hline 10 & & & & & \\
\hline 11 & & & \[
A / r a p
\] & 1 & \\
\hline 12 & & & & 7 & \\
\hline 13 & & & \(\rightarrow 17\) & & \\
\hline 14. & & & 771 & & \\
\hline 15 & & & & & \\
\hline 16 & & & IEHE/ H & & \\
\hline 17 & & & FIEVET T & & 1 \\
\hline 18 & & & & & \\
\hline 19 & & & & & \\
\hline 20 & & & & & \\
\hline 21 & & & & & \\
\hline
\end{tabular}

4
0
0
0
0
0
6

Sample Administration
Receipt Documentation Log
Doc Log ID:
174066

Client: ARS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Delivery and Receipt Information} \\
\hline Delivery Method: UPS & & Arrival Timestamp: \(\underline{01 / 26 / 2017}\) & \\
\hline Number of Packages: 1 & & Number of Projects: 1 & \\
\hline \multicolumn{4}{|c|}{Arrival Condition Summary} \\
\hline Shipping Container Sealed: & Yes & Sample IDs on COC match Containers: & No \\
\hline Custody Seal Present: & No & Sample Date/Times match COC: & Yes \\
\hline Samples Chilled: & No & VOA Vial Headspace \(\geq 6 \mathrm{~mm}\) : & N/A \\
\hline Paperwork Enclosed: & Yes & Total Trip Blank Qty: & 0 \\
\hline Samples Intact: & Yes & Air Quality Samples Present: & No \\
\hline Missing Samples: & No & & \\
\hline Extra Samples: & No & & \\
\hline Discrepancy in Container Qty on COC: & No & & \\
\hline \multicolumn{4}{|l|}{Unpacked by Melvin Sanchez (8943) at 16:46 on 01/26/2017} \\
\hline
\end{tabular}

\section*{Elevated Temperature Details}

All Temperatures in \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Cooler \# & \[
\frac{\text { Thermometer }}{\text { ID }}
\] & Top Left Temp & \[
\frac{\text { Top Right }}{\text { Iemp }}
\] & Bottom Left Temp & Bottom Right Temp & \[
\frac{\text { Center }}{\text { Temp }}
\] & Factors Contributing to Elevated Temp & Comments \\
\hline 1 & 32170023 & 10.9 & 16.2 & & & 6.6 & & \\
\hline \multicolumn{9}{|c|}{Sample ID Discrepancy Details} \\
\hline \multicolumn{3}{|c|}{Sample ID on COC} & Sample ID on L & & \multicolumn{3}{|c|}{Comments} & \\
\hline \multicolumn{3}{|l|}{ARS 1-17-00216-002 or-007} & BB17 or BB1 & & \multicolumn{3}{|l|}{both coll. 01/17/17 per the botlles} & \\
\hline \multicolumn{3}{|c|}{ARS1-17-00216-004} & BB19M & & \multicolumn{3}{|l|}{both coll. 01/18/17 per the bottle} & \\
\hline
\end{tabular}
T. 717-656-2300

F 717-656-2681
www.LancasterLabs.cor
545 of 1081

\section*{Explanation of Symbols and Abbreviations}

The following defines common symbols and abbreviations used in reporting technical data:
\begin{tabular}{|c|c|c|c|}
\hline BMQL & Below Minimum Quantitation Level & mg & milligram(s) \\
\hline C & degrees Celsius & mL & milliliter(s) \\
\hline cfu & colony forming units & MPN & Most Probable Number \\
\hline CP Units & cobalt-chloroplatinate units & N.D. & none detected \\
\hline F & degrees Fahrenheit & ng & nanogram(s) \\
\hline \(g\) & gram(s) & NTU & nephelometric turbidity units \\
\hline IU & International Units & pg/L & picogram/liter \\
\hline kg & kilogram(s) & RL & Reporting Limit \\
\hline L & liter (s) & TNTC & Too Numerous To Count \\
\hline lb. & pound(s) & \(\boldsymbol{\mu g}\) & microgram(s) \\
\hline m3 & cubic meter(s) & \(\mu \mathrm{L}\) & microliter(s) \\
\hline meq & milliequivalents & umhos/cm & micromhos/cm \\
\hline \(<\) & less than & & \\
\hline \(>\) & greater than & & \\
\hline ppm & parts per million - One ppm is equiv aqueous liquids, ppm is usually tak very close to a kilogram. For gases & milligram uivalent to mil one ppm is & kilogram (\(\mathrm{mg} / \mathrm{kg}\)) or one gram rams per liter (mg/l), because ivalent to one microliter per lit \\
\hline ppb & parts per billion & & \\
\hline Dry weight basis & Results printed under this heading concentration to approximate the valu as-received basis. & adjusted for in a similar & sture content. This increases mple without moisture. All oth \\
\hline
\end{tabular}

C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
\(J\) (or G, I, X) - estimated value \(\geq\) the Method Detection Limit (MDL or DL) and \(<\) the Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column \(>40 \%\). The lower result is reported.
\(U\) - Analyte was not detected at the value indicated
\(V\) - Concentration difference between the primary and confirmation column \(>100 \%\). The reporting limit is raised due to this disparity and evident interference...
W - The dissolved oxygen uptake for the unseeded blank is greater than \(0.20 \mathrm{mg} / \mathrm{L}\).
Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.
Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

\section*{Dioxins/Furans by HRMS Data}

\title{
Case Narrative/Conformance Summary
}

\section*{Dioxins/Furans by HRMS}

Lancaster Laboratories
Environmental

\title{
Case Narrative/Conformance Summary
}

\author{
CLIENT: ARS International, LLC \\ SDG: AIL01
}

\section*{Specialty Services Group}

Fraction: Dioxins/Furans by HRMS
\begin{tabular}{llcccc}
& & \multicolumn{3}{c}{ Matrix } & \\
Sample \# & Client ID & Liquid & Solid & DF & Comments \\
\hline 8807304 & ARSI-17-00216-007 & & X & 1 & \\
8807305 & ARS1-17-00216-004 & X & 1 & \\
8807306 & ARS1-17-00216-002 & & X & 1 &
\end{tabular}

LABORATORY SUBMITTED QC:
Sample \#
Matrix
BLK031003
OPR031003
Liquid Solid

SAMPLE PREPARATION:

No problems were encountered with the extraction of these samples.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:
All QC is within specifications.

SAMPLE ANALYSIS:
```

All samples were analyzed by SW846 Method 8290A.
No problems were encountered with the analysis of the samples.

```

\section*{DATA INTERPRETATION:}

Data was processed and interpreted using standard operating procedures.

\title{
Quality Control and Calibration Summary Forms
}

\section*{Dioxins/Furans by HRMS}

Matrix: SOIL
Sample (wt): 10.0 (g)
Water Sample Prep: N/A
Concentration Extract Volume: 20.0 (uL)
Injection Volume: 1.00 (uL) \% Solid/Lipids: 0.0 GC Column: DB5MS ID: 0.25 (mm)

Lab Sample ID: OPR031003
Lab File ID: 17FEB07-15
Date Received: N/A
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/07/2017 22:30
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Analyte & Selected Ions & Peak RT & \[
\begin{gathered}
\text { Ion } \\
\text { Ratio }
\end{gathered}
\] & Concentration & Qual. & EDL \\
\hline 2378-TCDF & 304/306 & 30.98 & 0.76 & 19.4 & & 0.0187 \\
\hline 2378-TCDD & 320/322 & 32.02 & 0.81 & 19.1 & & 0.0170 \\
\hline 12378-PeCDF & 340/342 & 36.54 & 1.57 & 98.2 & B & 0.0133 \\
\hline 23478-PeCDF & 340/342 & 37.76 & 1.57 & 90.7 & B & 0.0121 \\
\hline 12378-PeCDD & 356/358 & 38.14 & 1.63 & 95.3 & B & 0.0298 \\
\hline 123478-HxCDF & 374/376 & 41.33 & 1.26 & 91.2 & B & 0.0331 \\
\hline 123678-HxCDF & \(374 / 376\) & 41.48 & 1.23 & 90.9 & B & 0.0280 \\
\hline \(234678-\mathrm{HxCDF}\) & 374/376 & 42.17 & 1.27 & 93.9 & B & 0.0312 \\
\hline 123478-HxCDD & 390/392 & 42.36 & 1.27 & 96.7 & B & 0.0262 \\
\hline 123678-HxCDD & 390/392 & 42.47 & 1.25 & 91.5 & B & 0.0253 \\
\hline 123789-HxCDD & 390/392 & 42.78 & 1.24 & 94.5 & B & 0.0244 \\
\hline 123789-HxCDF & 374/376 & 43.17 & 1.25 & 91.3 & B & 0.0371 \\
\hline 1234678-HpCDF & 408/410 & 44.86 & 1.04 & 96.1 & B & 0.0292 \\
\hline 1234678-HpCDD & 424/426 & 46.04 & 1.04 & 92.3 & B & 0.0365 \\
\hline 1234789-HpCDF & 408/410 & 46.61 & 1.03 & 95.4 & B & 0.0465 \\
\hline OCDD & 458/460 & 49.05 & 0.89 & 188 & B & 0.0375 \\
\hline OCDF & 442/444 & 49.25 & 0.91 & 181 & B & 0.0253 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Labeled Compounds & Selected Ions & Peak RT & \begin{tabular}{l}
Ion \\
Ratio
\end{tabular} & Ion Ratio Limits & \% REC & \begin{tabular}{l}
Recovery \\
Limits
\end{tabular} \\
\hline 13C12-1278-TCDD (CRS) & 332/334 & 32.38 & 0.83 & 0.65-0.90 & 37 & 31-191 \\
\hline 13C12-2378-TCDF & 316/318 & 30.94 & 0.79 & 0.65-0.90 & 62 & 40-135 \\
\hline 13C12-2378-TCDD & 332/334 & 31.99 & 0.79 & 0.65-0.90 & 64 & 40-135 \\
\hline 13C12-12378-PeCDF & 352/354 & 36.52 & 1.60 & 1.32-1.79 & 84 & 40-135 \\
\hline 13C12-23478-PeCDF & 352/354 & 37.74 & 1.61 & 1.32-1.79 & 78 & 40-135 \\
\hline 13C12-12378-PeCDD & \(368 / 370\) & 38.13 & 1.62 & 1.32-1.79 & 84 & 40-135 \\
\hline 13C12-123478-HxCDF & 384/386 & 41.32 & 0.53 & 0.43-0.60 & 74 & 40-135 \\
\hline 13C12-123678-HxCDF & \(384 / 386\) & 41.47 & 0.53 & 0.43-0.60 & 84 & 40-135 \\
\hline 13C12-234678-HxCDF & 384/386 & 42.16 & 0.52 & 0.43-0.60 & 76 & 40-135 \\
\hline 13C12-123478-HxCDD & 402/404 & 42.33 & 1.26 & 1.05-1.44 & 85 & 40-135 \\
\hline 13C12-123678-HxCDD & 402/404 & 42.45 & 1.27 & 1.05-1.44 & 83 & 40-135 \\
\hline 13C12-123789-HxCDD & 402/404 & 42.76 & 1.26 & 1.05-1.44 & 84 & 40-135 \\
\hline 13C12-123789-HxCDF & 384/386 & 43.15 & 0.52 & 0.43-0.60 & 72 & 40-135 \\
\hline 13C12-1234678-HpCDF & 418/420 & 44.85 & 0.45 & 0.37-0.52 & 98 & 40-135 \\
\hline 13C12-1234678-HpCDD & 436/438 & 46.03 & 1.07 & 0.88-1.21 & 90 & 40-135 \\
\hline 13C12-1234789-HpCDF & 418/420 & 46.59 & 0.44 & 0.37-0.52 & 73 & 40-135 \\
\hline 13C12-OCDD & 470/472 & 49.03 & 0.91 & 0.76-1.03 & 93 & 40-135 \\
\hline
\end{tabular}

\section*{Abbreviations:}
B = Detected in Method Blank
U \(=\) Undetected
\(J=\) Estimated concentration between EDL and LOQ
\(C\) = Concentration confirmed on second column
Q = Estimated Maximum Possible Concentration
```

E = Exceeds calibration range
F = Interference is present
N = See comment in Case Narrative
S = The detector is saturated

* = Outside QC Limits

```

Lancaster Laboratonies Envirommental

CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION

SDG No.: AIL01

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Labeled \\
Compounds
\end{tabular} & \begin{tabular}{c}
Selected \\
Ions
\end{tabular} & \begin{tabular}{c}
Peak \\
RT
\end{tabular} & \begin{tabular}{c}
Ion \\
Ratio
\end{tabular} & \begin{tabular}{c}
Ion Ratio \\
Limits
\end{tabular} & \% REC & \begin{tabular}{c}
Recovery \\
Limits
\end{tabular} \\
\hline \(13 \mathrm{Cl12-OCDF}\) & \(454 / 456\) & 49.23 & 0.89 & \(0.76-1.03\) & 73 & \(40-135\) \\
\hline
\end{tabular}
\begin{tabular}{|cll|}
\hline Abbreviations: & & \\
\(B=\) Detected in Method Blank & \(E\) Exceeds calibration range \\
\(U=\) Undetected & \(F=\) Interference is present \\
\(J=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(C=\) Concentration confirmed on second column & \(S=\) The detector is saturated \\
\(Q=\) Estimated Maximum Possible Concentration & \(*=\) Outside QC Limits \\
\hline
\end{tabular}

FORM 01A
Page 2 of 2

Lancaster Laboratories Envirommental

CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION
SDG No.: AILO1

Matrix: SOIL
Sample (wt): 10.0 (g)
Water Sample Prep: N/A
Concentration Extract Volume: 20.0 (uL)
Injection Volume: 1.00 (uL) \% Solid/Lipids: 0.0
GC Column: DB5MS
Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Analyte & Selected Ions & \begin{tabular}{l}
Peak \\
RT
\end{tabular} & Ion Ratio & Concentration & Qual. & EDL \\
\hline 2378-TCDF & 304/306 & 31.02 & 0.05 * & & U & 0.0108 \\
\hline 2378-TCDD & 320/322 & 32.03 & 48.60 * & & U & 0.0117 \\
\hline 12378-PeCDF & 340/342 & 36.55 & 2.16 * & 0.0902 & JQ & 0.00866 \\
\hline 23478-PeCDF & 340/342 & 37.76 & 1.97 * & 0.0589 & JQ & 0.00813 \\
\hline 12378-PeCDD & 356/358 & 38.16 & 1.40 & 0.0463 & J & 0.0185 \\
\hline 123478-HxCDF & 374/376 & 41.36 & 1.16 & 0.0341 & J & 0.00763 \\
\hline 123678-HxCDF & 374/376 & 41.49 & 2.05 * & 0.0406 & JQ & 0.00685 \\
\hline \(234678-\mathrm{HxCDF}\) & 374/376 & 42.18 & 5.94 * & 0.0489 & JQ & 0.00749 \\
\hline 123478-HxCDD & 390/392 & 42.35 & 3.61 * & 0.0288 & JQ & 0.0116 \\
\hline 123678-HxCDD & 390/392 & 42.47 & 4.10 * & 0.0516 & JQ & 0.0115 \\
\hline 123789-HxCDD & 390/392 & 42.78 & 0.90 * & 0.0485 & JQ & 0.0110 \\
\hline 123789-HxCDF & 374/376 & 43.16 & 1.07 & 0.112 & J & 0.00803 \\
\hline 1234678-HPCDF & 408/410 & 44.86 & 0.90 & 0.0605 & J & 0.00652 \\
\hline 1234678-HpCDD & 424/426 & 46.04 & 1.37 * & 0.0716 & JQ & 0.00895 \\
\hline 1234789-HpCDF & 408/410 & 46.60 & 0.98 & 0.0578 & J & 0.00983 \\
\hline OCDD & 458/460 & 49.04 & 0.99 & 0.129 & J & 0.0197 \\
\hline OCDF & 442/444 & 49.26 & 3.03 * & 0.0854 & JQ & 0.0135 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Labeled \\
Compounds
\end{tabular} & \begin{tabular}{c}
Selected \\
Ions
\end{tabular} & \begin{tabular}{c}
Peak \\
RT
\end{tabular} & \begin{tabular}{c}
Ion \\
Ratio
\end{tabular} & \begin{tabular}{c}
Ion Ratio \\
Limits
\end{tabular} & \% REC & \begin{tabular}{c}
Recovery \\
Limits
\end{tabular} \\
\hline 13C12-1278-TCDD (CRS) & \(332 / 334\) & 32.39 & 0.78 & \(0.65-0.90\) & 44 & \(35-197\) \\
\hline 13C12-2378-TCDF & \(316 / 318\) & 30.95 & 0.79 & \(0.65-0.90\) & 69 & \(40-135\) \\
\hline 13C12-2378-TCDD & \(332 / 334\) & 32.00 & 0.82 & \(0.65-0.90\) & 82 & \(40-135\) \\
\hline 13C12-12378-PeCDF & \(352 / 354\) & 36.53 & 1.58 & \(1.32-1.79\) & 96 & \(40-135\) \\
\hline 13C12-23478-PeCDF & \(352 / 354\) & 37.75 & 1.58 & \(1.32-1.79\) & 87 & \(40-135\) \\
\hline 13C12-12378-PeCDD & \(368 / 370\) & 38.13 & 1.59 & \(1.32-1.79\) & 95 & \(40-135\) \\
\hline 13C12-123478-HxCDF & \(384 / 386\) & 41.33 & 0.51 & \(0.43-0.60\) & 78 & \(40-135\) \\
\hline 13C12-123678-HxCDF & \(384 / 386\) & 41.48 & 0.52 & \(0.43-0.60\) & 88 & \(40-135\) \\
\hline \(13 C 12-234678-\mathrm{HxCDF}\) & \(384 / 386\) & 42.15 & 0.53 & \(0.43-0.60\) & 79 & \(40-135\) \\
\hline 13C12-123478-HxCDD & \(402 / 404\) & 42.34 & 1.25 & \(1.05-1.44\) & 85 & \(40-135\) \\
\hline 13C12-123678-HxCDD & \(402 / 404\) & 42.46 & 1.25 & \(1.05-1.44\) & 85 & \(40-135\) \\
\hline 13C12-123789-HxCDD & \(402 / 404\) & 42.77 & 1.26 & \(1.05-1.44\) & 86 & \(40-135\) \\
\hline 13C12-123789-HxCDF & \(384 / 386\) & 43.16 & 0.54 & \(0.43-0.60\) & 83 & \(40-135\) \\
\hline 13C12-1234678-HpCDF & \(418 / 420\) & 44.85 & 0.45 & \(0.37-0.52\) & 101 & \(40-135\) \\
\hline 13C12-1234678-HpCDD & \(436 / 438\) & 46.04 & 1.05 & \(0.88-1.21\) & 93 & \(40-135\) \\
\hline 13C12-1234789-HpCDF & \(418 / 420\) & 46.60 & 0.45 & \(0.37-0.52\) & 77 & \(40-135\) \\
\hline 13C12-0CDD & \(470 / 472\) & 49.04 & 0.92 & \(0.76-1.03\) & 94 & \(40-135\) \\
\hline
\end{tabular}

Abbreviations:
\begin{tabular}{ll}
\(\mathrm{B}=\) Detected in Method Blank & \(\mathrm{E}=\) Exceeds calibration range \\
\(\mathrm{U}=\) Undetected & \(\mathrm{F}=\) Interference is present \\
\(\mathrm{J}=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(\mathrm{C}=\) Concentration confirmed on second column & \(\mathrm{S}=\) The detector is saturated \\
\(\mathrm{Q}=\) Estimated Maximum Possible Concentration & \(\star=\) Outside QC Limits \\
\hline
\end{tabular}
\(B=\) Detected in Method Blank
E = Exceeds calibration range
U = Undetected
\(J=\) Estimated concentration between EDL and LOQ
C = Concentration confirmed on second column
S = The detector is saturated
Q = Estimated Maximum Possible Concentration
eurofins
Lancaster Laboratories Environmental

FORM 01A
CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION
SDG No.: AIL01

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Labeled \\
Compounds
\end{tabular} & \begin{tabular}{c}
Selected \\
Ions
\end{tabular} & \begin{tabular}{c}
Peak \\
RT
\end{tabular} & \begin{tabular}{c}
Ion \\
Ratio
\end{tabular} & \begin{tabular}{c}
Ion Ratio \\
Limits
\end{tabular} & \(\%\) REC & \begin{tabular}{c}
Recovery \\
Limits
\end{tabular} \\
\hline 13C12-OCDF & \(454 / 456\) & 49.23 & 0.92 & \(0.76-1.03\) & 74 & \(40-135\) \\
\hline
\end{tabular}
```

Abbreviations:
B = Detected in Method Blank E = Exceeds calibration range
U = Undetected F = Interference is present
J = Estimated concentration between EDL and LOQ N = See comment in Case Narrative
C = Concentration confirmed on second column S = The detector is saturated
Q = Estimated Maximum Possible Concentration _ * = Outside QC Limits

```

FORM 01A

Lancaster Laboratories Envirommental

CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION

SDG No.: AIL01

Matrix: SOIL
Sample (wt): 10.3 (g)
Water Sample Prep: N/A
Concentration Extract Volume: 20.0 (uL)
Injection Volume: 1.00 (uL) \% Solid/Lipids: 88.3
GC Column: DB5MS

Instrument ID: DF18471

ID: 0.25 (mm)

Lab Sample ID: 8807304
Lab File ID: 17FEB07-18
Date Received: 01/26/2017 09:30
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/08/2017 01:20
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Analyte & Selected Ions & \[
\begin{gathered}
\hline \text { Peak } \\
\text { RT } \\
\hline
\end{gathered}
\] & Ion Ratio & Concentration & Qual. & EDL \\
\hline 2378-TCDF & 304/306 & 30.98 & 0.99 * & 0.360 & JQ & 0.0424 \\
\hline 2378-TCDD & \(320 / 322\) & 32.03 & 0.49 * & 0.0698 & JQ & 0.0154 \\
\hline 12378-PeCDF & \(340 / 342\) & 36.54 & 1.44 & 0.576 & BJ & 0.0226 \\
\hline 23478-PeCDF & 340/342 & 37.76 & 1.90 * & 0.947 & BJQ & 0.0202 \\
\hline 12378-PeCDD & 356/358 & 38.15 & 2.23 * & 0.420 & BJQ & 0.0267 \\
\hline 123478-HxCDF & 374/376 & 41.34 & 1.25 & 0.500 & BJ & 0.0252 \\
\hline 123678-HxCDF & \(374 / 376\) & 41.50 & 1.42 & 0.486 & BJ & 0.0220 \\
\hline 234678-HxCDF & 374/376 & 42.17 & 1.38 & 0.475 & BJ & 0.0237 \\
\hline 123478-HxCDD & 390/392 & 42.35 & 1.69 * & 0.324 & BJQ & 0.0260 \\
\hline 123678-HxCDD & 390/392 & 42.47 & 1.08 & 0.931 & BJ & 0.0252 \\
\hline 123789-HxCDD & 390/392 & 42.79 & 1.30 & 0.450 & BJ & 0.0247 \\
\hline 123789-HxCDF & 374/376 & 43.17 & 1.35 & 0.402 & BJ & 0.0299 \\
\hline 1234678-HpCDF & 408/410 & 44.87 & 1.09 & 2.32 & BJ & 0.0134 \\
\hline 1234678-HpCDD & 424/426 & 46.04 & 1.07 & 13.6 & B & 0.0422 \\
\hline 1234789-HpCDF & 408/410 & 46.61 & 1.17 & 0.340 & BJ & 0.0208 \\
\hline OCDD & 458/460 & 49.05 & 0.90 & 195 & B & 0.0422 \\
\hline OCDF & 442/444 & 49.25 & 0.79 & 5.55 & BJ & 0.0198 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Labeled Compounds & Selected Ions & \begin{tabular}{l}
Peak \\
RT
\end{tabular} & \begin{tabular}{l}
Ion \\
Ratio
\end{tabular} & Ion Ratio Limits & \% REC & \begin{tabular}{l}
Recovery \\
Limits
\end{tabular} \\
\hline 13C12-1278-TCDD (CRS) & 332/334 & 32.39 & 0.82 & 0.65-0.90 & 38 & 35-197 \\
\hline 13C12-2378-TCDF & 316/318 & 30.97 & 0.80 & 0.65-0.90 & 73 & 40-135 \\
\hline 13C12-2378-TCDD & 332/334 & 31.99 & 0.81 & 0.65-0.90 & 74 & 40-135 \\
\hline 13C12-12378-PeCDF & 352/354 & 36.53 & 1.62 & 1.32-1.79 & 89 & 40-135 \\
\hline 13C12-23478-PeCDF & 352/354 & 37.75 & 1.57 & 1.32-1.79 & 84 & 40-135 \\
\hline 13C12-12378-PeCDD & 368/370 & 38.13 & 1.62 & 1.32-1.79 & 86 & 40-135 \\
\hline 13C12-123478-HxCDF & 384/386 & 41.32 & 0.53 & 0.43-0.60 & 80 & 40-135 \\
\hline 13C12-123678-HxCDF & 384/386 & 41.47 & 0.53 & 0.43-0.60 & 89 & 40-135 \\
\hline 13C12-234678-HxCDF & 384/386 & 42.16 & 0.54 & 0.43-0.60 & 80 & 40-135 \\
\hline 13C12-123478-HxCDD & 402/404 & 42.35 & 1.27 & 1.05-1.44 & 87 & 40-135 \\
\hline 13C12-123678-HxCDD & 402/404 & 42.45 & 1.25 & 1.05-1.44 & 85 & 40-135 \\
\hline 13C12-123789-HxCDD & 402/404 & 42.76 & 1.24 & 1.05-1.44 & 87 & 40-135 \\
\hline 13C12-123789-HxCDF & 384/386 & 43.16 & 0.54 & 0.43-0.60 & 74 & 40-135 \\
\hline 13C12-1234678-HpCDF & 418/420 & 44.85 & 0.46 & 0.37-0.52 & 103 & 40-135 \\
\hline 13C12-1234678-HpCDD & 436/438 & 46.03 & 1.05 & 0.88-1.21 & 92 & 40-135 \\
\hline 13C12-1234789-HpCDF & 418/420 & 46.60 & 0.47 & 0.37-0.52 & 77 & 40-135 \\
\hline 13C12-OCDD & 470/472 & 49.05 & 0.89 & 0.76-1.03 & 92 & 40-135 \\
\hline
\end{tabular}

Abbreviations:
\begin{tabular}{ll}
\(\mathrm{B}=\) Detected in Method Blank & \(\mathrm{E}=\) Exceeds calibration range \\
\(\mathrm{U}=\) Undetected & \(\mathrm{F}=\) Interference is present \\
\(\mathrm{J}=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(\mathrm{C}=\) Concentration confirmed on second column & \(\mathrm{S}=\) The detector is saturated \\
\(\mathrm{Q}=\) Estimated Maximum Possible Concentration & \(\star=\) Outside QC Limits \\
\hline
\end{tabular}

Concentration Units: ng/kg
\(\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Labeled } \\
\text { Compounds }\end{array} & \begin{array}{c}\text { Selected } \\
\text { Ions }\end{array} & \begin{array}{c}\text { Peak } \\
\text { RT }\end{array} & \begin{array}{c}\text { Ion } \\
\text { Ratio }\end{array} & \begin{array}{c}\text { Ion Ratio } \\
\text { Limits }\end{array} & \text { \% REC }\end{array} \begin{array}{c}\text { Recovery } \\
\text { Limits }\end{array}\right]\)\begin{tabular}{|c|c|c|}
\hline 13 C12-OCDF & \(454 / 456\) & 49.23 \\
\hline
\end{tabular}
```

Abbreviations:
B = Detected in Method Blank E = Exceeds calibration range
U = Undetected F = Interference is present
J = Estimated concentration between EDL and LOQ N = See comment in Case Narrative
C = Concentration confirmed on second column S = The detector is saturated
Q = Estimated Maximum Possible Concentration _ * = Outside QC Limits

```

FORM 01A
Lancaster Laboratories
CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION
SDG No.: AILO1

Matrix: SOIL
Sample (wt): 10.2 (g)
Water Sample Prep: N/A
Concentration Extract Volume: 20.0 (uL)
Injection Volume: 1.00 (uL) \% Solid/Lipids: 58.3
GC Column: DB5MS ID: 0.25 (mm)
\begin{tabular}{lll}
Lab Sample ID: & 8807305 & \\
Lab File ID: & 17 FEB07-19 & \\
Date Received: & \(01 / 26 / 2017\) & \(09: 30\) \\
Date Extracted: & \(01 / 31 / 2017\) & \(10: 45\) \\
Date Analyzed: & \(02 / 08 / 2017\) & \(02: 16\) \\
Dilution Factor: & 1.0 &
\end{tabular}

Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Analyte & Selected Ions & Peak RT & \[
\begin{gathered}
\text { Ion } \\
\text { Ratio }
\end{gathered}
\] & Concentration & Qual. & EDL \\
\hline 2378-TCDF & 304/306 & 30.99 & 0.83 & 0.0731 & J & 0.0286 \\
\hline 2378-TCDD & 320/322 & 32.03 & 0.33 * & 0.0300 & JQ & 0.0256 \\
\hline 12378-PeCDF & 340/342 & 36.53 & 1.68 & 0.247 & BJ & 0.0190 \\
\hline 23478-PeCDF & 340/342 & 37.76 & 1.53 & 0.241 & BJ & 0.0169 \\
\hline 12378-PeCDD & 356/358 & 38.15 & 1.29 * & 0.303 & BJQ & 0.0517 \\
\hline 123478-HxCDF & 374/376 & 41.34 & 1.17 & 0.352 & BJ & 0.0350 \\
\hline 123678-HxCDF & 374/376 & 41.49 & 1.32 & 0.487 & BJ & 0.0319 \\
\hline \(234678-\mathrm{HxCDF}\) & 374/376 & 42.18 & 1.45 * & 0.666 & BJQ & 0.0350 \\
\hline 123478-HxCDD & 390/392 & 42.37 & 1.29 & 0.479 & BJ & 0.0365 \\
\hline 123678-HxCDD & 390/392 & 42.47 & 1.16 & 2.21 & BJ & 0.0356 \\
\hline 123789-HxCDD & 390/392 & 42.78 & 1.16 & 0.791 & BJ & 0.0354 \\
\hline 123789-HxCDF & 374/376 & 43.17 & 1.43 & 0.261 & BJ & 0.0388 \\
\hline 1234678-HpCDF & 408/410 & 44.86 & 1.10 & 8.62 & B & 0.0340 \\
\hline 1234678-HpCDD & 424/426 & 46.05 & 0.99 & 41.5 & B & 0.0622 \\
\hline 1234789-HpCDF & 408/410 & 46.62 & 1.27 * & 0.891 & BJQ & 0.0427 \\
\hline OCDD & 458/460 & 49.05 & 0.88 & 297 & B & 0.0567 \\
\hline OCDF & 442/444 & 49.24 & 0.85 & 18.2 & B & 0.0255 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Labeled Compounds & Selected Ions & \begin{tabular}{l}
Peak \\
RT
\end{tabular} & Ion Ratio & Ion Ratio Limits & \% REC & \begin{tabular}{l}
Recovery \\
Limits
\end{tabular} \\
\hline 13C12-1278-TCDD (CRS) & 332/334 & 32.39 & 0.77 & 0.65-0.90 & 40 & 35-197 \\
\hline 13C12-2378-TCDF & 316/318 & 30.97 & 0.80 & 0.65-0.90 & 86 & 40-135 \\
\hline 13C12-2378-TCDD & 332/334 & 32.00 & 0.81 & 0.65-0.90 & 85 & 40-135 \\
\hline 13C12-12378-PeCDF & 352/354 & 36.53 & 1.64 & 1.32-1.79 & 99 & 40-135 \\
\hline 13C12-23478-PeCDF & 352/354 & 37.75 & 1.59 & 1.32-1.79 & 97 & 40-135 \\
\hline 13C12-12378-PeCDD & 368/370 & 38.13 & 1.60 & 1.32-1.79 & 99 & 40-135 \\
\hline 13C12-123478-HxCDF & 384/386 & 41.33 & 0.52 & 0.43-0.60 & 88 & 40-135 \\
\hline 13C12-123678-HxCDF & \(384 / 386\) & 41.48 & 0.52 & 0.43-0.60 & 94 & 40-135 \\
\hline 13C12-234678-HxCDF & 384/386 & 42.16 & 0.54 & 0.43-0.60 & 88 & 40-135 \\
\hline 13C12-123478-HxCDD & 402/404 & 42.34 & 1.29 & 1.05-1.44 & 92 & 40-135 \\
\hline 13C12-123678-HxCDD & 402/404 & 42.46 & 1.25 & 1.05-1.44 & 89 & 40-135 \\
\hline 13C12-123789-HxCDD & 402/404 & 42.77 & 1.24 & 1.05-1.44 & 89 & 40-135 \\
\hline 13C12-123789-HxCDF & \(384 / 386\) & 43.16 & 0.53 & 0.43-0.60 & 88 & 40-135 \\
\hline 13C12-1234678-HpCDF & 418/420 & 44.85 & 0.45 & 0.37-0.52 & 101 & 40-135 \\
\hline 13C12-1234678-HpCDD & 436/438 & 46.04 & 1.05 & 0.88-1.21 & 95 & 40-135 \\
\hline 13C12-1234789-HpCDF & 418/420 & 46.60 & 0.45 & 0.37-0.52 & 87 & 40-135 \\
\hline 13C12-OCDD & 470/472 & 49.04 & 0.89 & 0.76-1.03 & 98 & 40-135 \\
\hline
\end{tabular}

Abbreviations:
\(B=\) Detected in Method Blank
U = Undetected
\(J=\) Estimated concentration between EDL and LOQ
\(\mathrm{C}=\) Concentration confirmed on second column
Q = Estimated Maximum Possible Concentration
```

E = Exceeds calibration range
F = Interference is present
N = See comment in Case Narrative
S = The detector is saturated

* = Outside QC Limits

```

\section*{Lancaster Laboratonies \\ Environmental}
```

FORM 01A
CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION

```

SDG No.: AILO1
\begin{tabular}{|c|c|c|c|c|}
\hline Matrix: SOIL & Instrument ID: DF18471 & Lab Sample ID: & 8807305 & \\
\hline Sample (wt): 10.2 (g) & & Lab File ID: & 17FEB07-19 & \\
\hline Water Sample Prep: N/A & & Date Received: & 01/26/2017 & 09:30 \\
\hline Concentration Extract Volume : & : 20.0 (uL) & Date Extracted: & 01/31/2017 & 10:45 \\
\hline Injection Volume: 1.00 (uL) & \% Solid/Lipids: 58.3 & Date Analyzed: & 02/08/2017 & 02:16 \\
\hline GC Column: DB5MS & ID: 0.25 (mm) & Dilution Factor: & & \\
\hline
\end{tabular}

Concentration Units: ng/kg
\(\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Labeled } \\
\text { Compounds }\end{array} & \begin{array}{c}\text { Selected } \\
\text { Ions }\end{array} & \begin{array}{c}\text { Peak } \\
\text { RT }\end{array} & \begin{array}{c}\text { Ion } \\
\text { Ratio }\end{array} & \begin{array}{c}\text { Ion Ratio } \\
\text { Limits }\end{array} & \text { \% REC }\end{array} \begin{array}{c}\text { Recovery } \\
\text { Limits }\end{array}\right]\)\begin{tabular}{|c|c|c|}
\hline \(13 \mathrm{Cl}-\) OCDF & \(454 / 456\) & 49.23 \\
\hline
\end{tabular}
```

Abbreviations:
$B=$ Detected in Method Blank $\quad E=$ Exceeds calibration range
$\mathrm{U}=$ Undetected $\quad \mathrm{F}=$ Interference is present
$J=$ Estimated concentration between EDL and LOQ $N=$ See comment in Case Narrative
$C=$ Concentration confirmed on second column $\quad S=$ The detector is saturated
$Q=$ Estimated Maximum Possible Concentration $\quad * \quad=$ Outside QC Limits

```

Lancaster Laboratories Envirommental

CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION

SDG No.: AIL01

Matrix: SOIL
Sample (wt): 10.1 (g)
Water Sample Prep: N/A
Concentration Extract Volume: 20.0 (uL)
Injection Volume: 1.00 (uL) \% Solid/Lipids: 88.8
GC Column: DB5MS ID: 0.25 (mm)

Lab Sample ID: 8807306
Lab File ID: 17FEB07-20
Date Received: 01/26/2017 09:30
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/08/2017 03:13
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Analyte & Selected Ions & Peak RT & \begin{tabular}{l}
Ion \\
Ratio
\end{tabular} & Concentration & Qual. & EDL \\
\hline 2378-TCDF & 304/306 & 31.00 & 0.69 & 0.617 & J & 0.0418 \\
\hline 2378-TCDD & 320/322 & 32.01 & 1.88 * & 0.0277 & JQ & 0.0185 \\
\hline 12378-PeCDF & 340/342 & 36.55 & 1.42 & 1.08 & BJ & 0.0199 \\
\hline 23478-PeCDF & 340/342 & 37.79 & 1.61 & 0.408 & BJ & 0.0177 \\
\hline 12378-PeCDD & 356/358 & 38.16 & 1.83 * & 0.179 & BJQ & 0.0427 \\
\hline 123478-HxCDF & 374/376 & 41.35 & 1.51 * & 0.336 & BJQ & 0.0204 \\
\hline 123678-HxCDF & 374/376 & 41.48 & 1.20 & 0.224 & BJ & 0.0198 \\
\hline 234678 -HxCDF & 374/376 & 42.18 & 1.14 & 0.264 & BJ & 0.0211 \\
\hline 123478-HxCDD & 390/392 & 42.36 & 1.37 & 0.240 & BJ & 0.0263 \\
\hline 123678-HxCDD & 390/392 & 42.48 & 1.01 * & 0.502 & BJQ & 0.0245 \\
\hline 123789-HxCDD & 390/392 & 42.79 & 1.35 & 0.448 & BJ & 0.0243 \\
\hline 123789-HxCDF & 374/376 & 43.18 & 1.36 & 0.155 & BJ & 0.0215 \\
\hline 1234678-HpCDF & 408/410 & 44.87 & 1.03 & 2.19 & BJ & 0.0321 \\
\hline 1234678-HpCDD & 424/426 & 46.05 & 1.09 & 10.3 & B & 0.0368 \\
\hline 1234789-HpCDF & 408/410 & 46.61 & 1.17 & 0.225 & BJ & 0.0402 \\
\hline OCDD & 458/460 & 49.06 & 0.90 & 91.5 & B & 0.0281 \\
\hline OCDF & 442/444 & 49.25 & 0.89 & 3.88 & BJ & 0.0186 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Labeled Compounds & \[
\begin{gathered}
\text { Selected } \\
\text { Ions } \\
\hline
\end{gathered}
\] & Peak RT & \[
\begin{gathered}
\text { Ion } \\
\text { Ratio } \\
\hline
\end{gathered}
\] & Ion Ratio Limits & \% REC & Recovery Limits \\
\hline 13C12-1278-TCDD (CRS) & 332/334 & 32.40 & 0.83 & 0.65-0.90 & 45 & 35-197 \\
\hline 13C12-2378-TCDF & 316/318 & 30.96 & 0.79 & 0.65-0.90 & 91 & 40-135 \\
\hline 13C12-2378-TCDD & \(332 / 334\) & 32.01 & 0.80 & 0.65-0.90 & 92 & 40-135 \\
\hline 13C12-12378-PeCDF & \(352 / 354\) & 36.54 & 1.57 & 1.32-1.79 & 100 & 40-135 \\
\hline 13C12-23478-PeCDF & 352/354 & 37.76 & 1.58 & 1.32-1.79 & 97 & 40-135 \\
\hline 13C12-12378-PeCDD & 368/370 & 38.14 & 1.59 & 1.32-1.79 & 97 & 40-135 \\
\hline 13C12-123478-HxCDF & 384/386 & 41.33 & 0.52 & 0.43-0.60 & 91 & 40-135 \\
\hline 13C12-123678-HxCDF & \(384 / 386\) & 41.48 & 0.53 & 0.43-0.60 & 93 & 40-135 \\
\hline 13C12-234678-HxCDF & 384/386 & 42.17 & 0.53 & 0.43-0.60 & 91 & 40-135 \\
\hline 13C12-123478-HxCDD & 402/404 & 42.35 & 1.25 & 1.05-1.44 & 94 & 40-135 \\
\hline 13C12-123678-HxCDD & 402/404 & 42.47 & 1.26 & 1.05-1.44 & 92 & 40-135 \\
\hline 13C12-123789-HxCDD & 402/404 & 42.78 & 1.23 & 1.05-1.44 & 94 & 40-135 \\
\hline 13C12-123789-HxCDF & 384/386 & 43.17 & 0.53 & 0.43-0.60 & 96 & 40-135 \\
\hline 13C12-1234678-HpCDF & 418/420 & 44.85 & 0.46 & 0.37-0.52 & 105 & 40-135 \\
\hline 13C12-1234678-HpCDD & 436/438 & 46.04 & 1.04 & 0.88-1.21 & 99 & 40-135 \\
\hline 13C12-1234789-HpCDF & 418/420 & 46.61 & 0.45 & 0.37-0.52 & 91 & 40-135 \\
\hline 13C12-OCDD & 470/472 & 49.05 & 0.91 & 0.76-1.03 & 100 & 40-135 \\
\hline
\end{tabular}

\section*{Abbreviations:}
\begin{tabular}{ll}
\(\mathrm{B}=\) Detected in Method Blank & E = Exceeds calibration range \\
\(\mathrm{U}=\) Undetected & \(\mathrm{F}=\) Interference is present \\
\(\mathrm{J}=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(\mathrm{C}=\) Concentration confirmed on second column & \(\mathrm{S}=\) The detector is saturated \\
\(\mathrm{Q}=\) Estimated Maximum Possible Concentration & \(*=\) Outside QC Limits \\
\hline
\end{tabular}

B = Detected in Method Blank
\(J=\) Estimated concentration between EDL and LOQ
C = Concentration confirmed on second column
* = Outside QC Limits

FORM 01A
CDD/CDF SAMPLE DATA SUMMARY
HIGH RESOLUTION

SDG No.: AILO1
\begin{tabular}{|c|c|c|c|c|}
\hline Matrix: SOIL & Instrument ID: DF18471 & Lab Sample ID: & 8807306 & \\
\hline Sample (wt): 10.1 (g) & & Lab File ID: & 17FEB07-20 & \\
\hline Water Sample Prep: N/A & & Date Received: & 01/26/2017 & 09:30 \\
\hline Concentration Extract Volume & : 20.0 (uL) & Date Extracted: & 01/31/2017 & 10:45 \\
\hline Injection Volume: 1.00 (uL) & \% Solid/Lipids: 88.8 & Date Analyzed: & 02/08/2017 & 03:13 \\
\hline GC Column: DB5MS & ID: 0.25 (mm) & Dilution Facto & . 0 & \\
\hline
\end{tabular}

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Labeled \\
Compounds
\end{tabular} & \begin{tabular}{c}
Selected \\
Ions
\end{tabular} & \begin{tabular}{c}
Peak \\
RT
\end{tabular} & \begin{tabular}{c}
Ion \\
Ratio
\end{tabular} & \begin{tabular}{c}
Ion Ratio \\
Limits
\end{tabular} & \% REC & \begin{tabular}{c}
Recovery \\
Limits
\end{tabular} \\
\hline 13 C12-OCDF & \(454 / 456\) & 49.25 & 0.90 & \(0.76-1.03\) & 91 & \(40-135\) \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Abbreviations: & \\
\(B=\) Detected in Method Blank & \(E=\) Exceeds calibration range \\
\(U=\) Undetected & \(F=\) Interference is present \\
\(J=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(C=\) Concentration confirmed on second Column & \(S=\) The detector is saturated \\
\(Q=\) Estimated Maximum Possible Concentration & \(\star=\) Outside QC Limits \\
\hline
\end{tabular}

Lancaster Laboratories Ewvironmental

FORM 01B
CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

SDG No.: AILO1

Matrix: SOIL
Sample (wt): 10.0 (g)
Water Sample Prep: N/A
Concentrated Extract Volume: 20.0 (uL)
Injection Volume 1.00 (uL) \% Solid/Lipids: N/A
GC Column: DB5MS ID: 0.25 (mm)

Instrument ID: DF18471
Lab Sample ID: BLK031003
Lab File ID:
17FEB07-17
Date Received: N/A
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/08/2017 00:23
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Target Analyte & Concentration & Qual. & TEF* & EDL & DLF** & TEF-Adjusted Concentration \\
\hline 2378-TCDF & & U & 0.1 & 0.0108 & 0 & 0 \\
\hline 2378-TCDD & & U & 1 & 0.0117 & 0 & 0 \\
\hline 12378-PeCDF & 0.0902 & JQ & 0.03 & 0.00866 & 0 & 0 \\
\hline 23478-PeCDF & 0.0589 & JQ & 0.3 & 0.00813 & 0 & 0 \\
\hline 12378-PeCDD & 0.0463 & J & 1 & 0.0185 & & 0.0463 \\
\hline 123478-HxCDF & 0.0341 & J & 0.1 & 0.00763 & & 0.00341 \\
\hline 123678-HxCDF & 0.0406 & JQ & 0.1 & 0.00685 & 0 & 0 \\
\hline \(234678-\mathrm{HxCDF}\) & 0.0489 & JQ & 0.1 & 0.00749 & 0 & 0 \\
\hline 123478-HxCDD & 0.0288 & JQ & 0.1 & 0.0116 & 0 & 0 \\
\hline 123678-HxCDD & 0.0516 & JQ & 0.1 & 0.0115 & 0 & 0 \\
\hline 123789-HxCDD & 0.0485 & JQ & 0.1 & 0.0110 & 0 & 0 \\
\hline 123789-HxCDF & 0.112 & J & 0.1 & 0.00803 & & 0.0112 \\
\hline 1234678-HpCDF & 0.0605 & J & 0.01 & 0.00652 & & 0.000605 \\
\hline 1234678-HpCDD & 0.0716 & JQ & 0.01 & 0.00895 & 0 & 0 \\
\hline 1234789-HpCDF & 0.0578 & J & 0.01 & 0.00983 & & 0.000578 \\
\hline OCDD & 0.129 & J & 0.0003 & 0.0197 & & 0.0000390 \\
\hline
\end{tabular}

Total TEQ (excluding EMPC):
0.0622
* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.
Abbreviations:
\begin{tabular}{ll}
\(\mathrm{B}=\) Detected in Method Blank & \(\mathrm{E}=\) Exceeds calibration range \\
\(\mathrm{U}=\) Undetected & \(\mathrm{F}=\) Interference is present \\
\(\mathrm{J}=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(\mathrm{C}=\) Concentration confirmed on second column & \(\mathrm{S}=\) The detector is saturated \\
\(\mathrm{Q}=\) Estimated Maximum Possible Concentration &
\end{tabular}

FORM 01B
CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

SDG No.: AIL01
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{x: SOIL} & Instrument ID: & DF18471 \\
\hline Sample (wt): 10.0 (g) & & Lab Sample ID: & BLK031003 \\
\hline Water Sample Prep: N/A & & Lab File ID: & 17FEB07-17 \\
\hline Concentrated Extract Volume: & 20.0 (uL) & Date Received: & N/A \\
\hline Injection Volume 1.00 (uL) & \% Solid/Lipids: N/A & Date Extracted: & 01/31/2017 \\
\hline GC Column: DB5MS & ID: 0.25 (mm) & Date Analyzed: & 02/08/2017 \\
\hline
\end{tabular}

Concentration Units: ng/kg
\(\left.\begin{array}{|l|c|c|c|c|r|r|}\hline & \text { Target Analyte } & \text { Concentration } & \text { Qual. } & \text { TEF* } & \text { EDL } & \text { DLF** }\end{array} \begin{array}{c}\text { TEF-Adjusted } \\ \text { Concentration }\end{array}\right]\)

Total TEQ (excluding EMPC):
* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.
```

Abbreviations:
B = Detected in Method Blank E = Exceeds calibration range
U = Undetected F = Interference is present
J = Estimated concentration between EDL and LOQ N = See comment in Case Narrative
C = Concentration confirmed on second column S = The detector is saturated
Q = Estimated Maximum Possible Concentration

```

Lancaster Laboratories Environmental

FORM 01B
CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

Matrix: SOIL
Sample (wt): 10.3 (g)
Water Sample Prep: N/A
Concentrated Extract Volume: 20.0 (uL)
Injection Volume 1.00 (uL) \% Solid/Lipids: 88.3
GC Column: DB5MS ID: 0.25 (mm)
\begin{tabular}{lll}
Instrument ID: & DF18471 \\
Lab Sample ID: & 8807304 & \\
Lab File ID: & \(17 \mathrm{FEB} 07-18\) & \\
Date Received: & \(01 / 26 / 2017\) & \(09: 30\) \\
Date Extracted: & \(01 / 31 / 2017\) & \(10: 45\) \\
Date Analyzed: & \(02 / 08 / 2017\) & \(01: 20\) \\
Dilution Factor: & 1.0 &
\end{tabular}

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Target Analyte & Concentration & Qual. & TEF* & EDL & DLF** & TEF-Adjusted Concentration \\
\hline 2378-TCDF & 0.360 & JQ & 0.1 & 0.0424 & 0 & 0 \\
\hline 2378-TCDD & 0.0698 & JQ & 1 & 0.0154 & 0 & 0 \\
\hline 12378-PeCDF & 0.576 & BJ & 0.03 & 0.0226 & & 0.0173 \\
\hline 23478-PeCDF & 0.947 & BJQ & 0.3 & 0.0202 & 0 & 0 \\
\hline 12378-PeCDD & 0.420 & BJQ & 1 & 0.0267 & 0 & 0 \\
\hline 123478-HxCDF & 0.500 & BJ & 0.1 & 0.0252 & & 0.0500 \\
\hline 123678-HxCDF & 0.486 & BJ & 0.1 & 0.0220 & & 0.0486 \\
\hline \(234678-\mathrm{HxCDF}\) & 0.475 & BJ & 0.1 & 0.0237 & & 0.0475 \\
\hline 123478-HxCDD & 0.324 & BJQ & 0.1 & 0.0260 & 0 & 0 \\
\hline 123678-HxCDD & 0.931 & BJ & 0.1 & 0.0252 & & 0.0931 \\
\hline 123789-HxCDD & 0.450 & BJ & 0.1 & 0.0247 & & 0.0450 \\
\hline 123789-HxCDF & 0.402 & BJ & 0.1 & 0.0299 & & 0.0402 \\
\hline 1234678-HpCDF & 2.32 & BJ & 0.01 & 0.0134 & & 0.0232 \\
\hline 1234678-HpCDD & 13.6 & B & 0.01 & 0.0422 & & 0.136 \\
\hline 1234789-HpCDF & 0.340 BJ & BJ & 0.01 & 0.0208 & & 0.00340 \\
\hline OCDD & 195 & B & 0.0003 & 0.0422 & & 0.0586 \\
\hline
\end{tabular}

Total TEQ (excluding EMPC):
0.564
* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.

\section*{Abbreviations:}
\begin{tabular}{ll}
\(B=\) Detected in Method Blank & \(E=\) Exceeds calibration range \\
\(U=\) Undetected & \(\mathrm{F}=\) Interference is present \\
\(J=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(C=\) Concentration confirmed on second column & \(S=\) The detector is saturated \\
\(Q=\) Estimated Maximum Possible concentration &
\end{tabular}

\section*{Lancaster Laboratories} Environmental

FORM 01B
CDD/CDF TOXICITY EQUIVALENCE SUMMARY
HIGH RESOLUTION
SDG No.: AILO1
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(\mathrm{x}:\) SOIL} & Instrument ID: & DF18471 & \\
\hline Sample (wt): 10.3 (g) & & Lab Sample ID: & 8807304 & \\
\hline Water Sample Prep: N/A & & Lab File ID: & 17FEB07-18 & \\
\hline Concentrated Extract Volume: & 20.0 (uL) & Date Received: & 01/26/2017 & 09:30 \\
\hline Injection Volume 1.00 (uL) & \% Solid/Lipids: 88.3 & Date Extracted: & 01/31/2017 & 10:45 \\
\hline GC Column: DB5MS & ID: 0.25 (mm) & Date Analyzed: & 02/08/2017 & 01:20 \\
\hline
\end{tabular}

Concentration Units: ng/kg
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Target Analyte & Concentration & Qual. & TEF* & EDL & DLF** & \begin{tabular}{c}
TEF-Adjusted \\
Concentration
\end{tabular} \\
\hline OCDF & 5.55 & BJ & 0.0003 & 0.0198 & 0.00166 \\
\hline
\end{tabular}
* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.
\begin{tabular}{|cl|}
\hline Abbreviations: & \(E=\) Exceeds calibration range \\
\(B=\) Detected in Method Blank & \(\mathrm{F}=\) Interference is present \\
\(\mathrm{U}=\) Undetected & \(\mathrm{N}=\) See comment in Case Narrative \\
\(J=\) Estimated concentration between EDL and LOQ & \(\mathrm{S}=\) The detector is saturated \\
\(C=\) Concentration confirmed on second column & \\
\(Q=\) Estimated Maximum Possible Concentration & \\
\hline
\end{tabular}

Lancaster Laboratories Environmental

FORM 01B
CDD/CDF TOXICITY EQUIVALENCE SUMMARY
HIGH RESOLUTION

SDG No.: AILO1

Matrix: SOIL
Sample (wt): 10.2 (g)
Water Sample Prep: N/A
Concentrated Extract Volume: 20.0 (uL)
Injection Volume 1.00 (uL) \% Solid/Lipids: 58.3
GC Column: DB5MS ID: 0.25 (mm)
\begin{tabular}{ll}
Instrument ID: & DF18471 \\
Lab Sample ID: & 8807305 \\
Lab File ID: & 17 FEB07-19 \\
Date Received: & \(01 / 26 / 2017\) 09:30 \\
Date Extracted: & \(01 / 31 / 2017\) 10:45 \\
Date Analyzed: & \(02 / 08 / 201702: 16\) \\
Dilution Factor: & 1.0
\end{tabular}

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Target Analyte & Concentration & Qual. & TEF* & EDL & DLF** & TEF-Adjusted Concentration \\
\hline 2378-TCDF & 0.0731 & J & 0.1 & 0.0286 & & 0.00731 \\
\hline 2378-TCDD & 0.0300 & JQ & 1 & 0.0256 & 0 & 0 \\
\hline 12378-PeCDF & 0.247 & BJ & 0.03 & 0.0190 & & 0.00743 \\
\hline 23478-PeCDF & 0.241 & BJ & 0.3 & 0.0169 & & 0.0724 \\
\hline 12378-PeCDD & 0.303 & BJQ & 1 & 0.0517 & 0 & 0 \\
\hline 123478-HxCDF & 0.352 & BJ & 0.1 & 0.0350 & & 0.0352 \\
\hline 123678-HxCDF & 0.487 & BJ & 0.1 & 0.0319 & & 0.0487 \\
\hline \(234678-\mathrm{HxCDF}\) & 0.666 & BJQ & 0.1 & 0.0350 & 0 & 0 \\
\hline 123478-HxCDD & 0.479 & BJ & 0.1 & 0.0365 & & 0.0479 \\
\hline 123678-HxCDD & 2.21 & BJ & 0.1 & 0.0356 & & 0.221 \\
\hline 123789-HxCDD & 0.791 & BJ & 0.1 & 0.0354 & & 0.0791 \\
\hline 123789 - HxCDF & 0.261 & BJ & 0.1 & 0.0388 & & 0.0261 \\
\hline 1234678-HpCDF & 8.62 & B & 0.01 & 0.0340 & & 0.0862 \\
\hline 1234678-HpCDD & 41.5 & B & 0.01 & 0.0622 & & 0.415 \\
\hline 1234789-HpCDF & 0.891 & BJQ & 0.01 & 0.0427 & 0 & 0 \\
\hline OCDD & 297 & B & 0.0003 & 0.0567 & & 0.0892 \\
\hline
\end{tabular}
```

* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.

```

Abbreviations:
B = Detected in Method Blank
E = Exceeds calibration range
U = Undetected
\(J=\) Estimated concentration between EDL and LOQ
F = Interference is present
\(\mathrm{C}=\) Concentration confirmed on second column
\(\mathrm{N}=\) See comment in Case Narrative
Q = Estimated Maximum Possible Concentration

\section*{\(\%\) eurofins}

Lancaster Laboratories Environmental

FORM 01B
CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

SDG No.: AILO1
```

Matrix: SOIL Instrument ID: DF18471
Sample (wt): 10.2 (g)
Water Sample Prep: N/A
Concentrated Extract Volume: 20.0 (uL)
Injection Volume 1.00 (uL) % Solid/Lipids: 58.3
GC Column: DB5MS ID: 0.25 (mm)

```

Instrument ID: DF18471
Lab Sample ID: 8807305
Lab File ID: 17FEB07-19
Date Received: 01/26/2017 09:30
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/08/2017 02:16
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline Target Analyte & Concentration & Qual. & TEF* & EDL & DLF** & \begin{tabular}{c}
TEF-Adjusted \\
Concentration
\end{tabular} \\
\hline OCDF & 18.2 & \(B\) & 0.0003 & 0.0255 & & 0.00545 \\
\hline
\end{tabular}

Total TEQ (excluding EMPC):
* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.

\section*{Abbreviations:}
```

    B = Detected in Method Blank
    E = Exceeds calibration range
U = Undetected
J = Estimated concentration between EDL and LOQ
F = Interference is present
$\mathrm{N}=$ See comment in Case Narrative
$C=$ Concentration confirmed on second column
$S=$ The detector is saturated
Q = Estimated Maximum Possible Concentration

```

Lancaster Laboratories Environmental

CDD/CDF TOXICITY EQUIVALENCE SUMMARY HIGH RESOLUTION

SDG No.: AILO1

Matrix: SOIL
Sample (wt): 10.1 (g)
Water Sample Prep: N/A
Concentrated Extract Volume: 20.0 (uL)
Injection Volume 1.00 (uL) \% Solid/Lipids: 88.8
GC Column: DB5MS ID: 0.25 (mm)

Instrument ID: DF18471
Lab Sample ID: 8807306
Lab File ID: 17FEB07-20
Date Received: 01/26/2017 09:30
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/08/2017 03:13
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Target Analyte & Concentration & Qual. & TEF* & EDL & DLF** & TEF-Adjusted Concentration \\
\hline 2378-TCDF & 0.617 & J & 0.1 & 0.0418 & & 0.0617 \\
\hline 2378-TCDD & 0.0277 & JQ & 1 & 0.0185 & 0 & 0 \\
\hline 12378-PeCDF & 1.08 & BJ & 0.03 & 0.0199 & & 0.0324 \\
\hline 23478-PeCDF & 0.408 & BJ & 0.3 & 0.0177 & & 0.122 \\
\hline 12378-PeCDD & 0.179 & BJQ & 1 & 0.0427 & 0 & 0 \\
\hline 123478-HxCDF & 0.336 & BJQ & 0.1 & 0.0204 & 0 & 0 \\
\hline 123678-HxCDF & 0.224 & BJ & 0.1 & 0.0198 & & 0.0224 \\
\hline \(234678-\mathrm{HxCDF}\) & 0.264 & B J & 0.1 & 0.0211 & & 0.0264 \\
\hline 123478-HxCDD & 0.240 & BJ & 0.1 & 0.0263 & & 0.0240 \\
\hline 123678-HxCDD & 0.502 & BJQ & 0.1 & 0.0245 & 0 & 0 \\
\hline 123789-HxCDD & 0.448 & BJ & 0.1 & 0.0243 & & 0.0448 \\
\hline 123789-HxCDF & 0.155 & BJ & 0.1 & 0.0215 & & 0.0155 \\
\hline 1234678-HPCDF & 2.19 & BJ & 0.01 & 0.0321 & & 0.0219 \\
\hline 1234678-HpCDD & 10.3 & B & 0.01 & 0.0368 & & 0.103 \\
\hline 1234789-HpCDF & 0.225 & BJ & 0.01 & 0.0402 & & 0.00225 \\
\hline OCDD & 91.5 & B & 0.0003 & 0.0281 & & 0.0274 \\
\hline
\end{tabular}

Total TEQ (excluding EMPC):
0.505
* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.
Abbreviations:
\begin{tabular}{ll}
\(B=\) Detected in Method Blank & \(E=\) Exceeds calibration range \\
\(U=\) Undetected & \(F=\) Interference is present \\
\(J=\) Estimated concentration between EDL and LOQ & \(\mathrm{N}=\) See comment in Case Narrative \\
\(C=\) Concentration confirmed on second column & \(S=\) The detector is saturated \\
\(Q=\) Estimated Maximum Possible Concentration & \\
\hline
\end{tabular}

FORM 01B
CDD/CDF TOXICITY EQUIVALENCE SUMMARY
HIGH RESOLUTION

SDG No.: AILO1

Matrix: SOIL Instrument ID: DF18471
Sample (wt): 10.1 (g)
Water Sample Prep: N/A
Concentrated Extract Volume: 20.0 (uL)
Injection Volume 1.00 (uL) \% Solid/Lipids: 88.8
GC Column: DB5MS ID: 0.25 (mm)

Lab Sample ID: 8807306
Lab File ID: 17FEB07-20
Date Received: 01/26/2017 09:30
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/08/2017 03:13
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline Target Analyte & Concentration & Qual. & TEF* & EDL & DLF** & \begin{tabular}{c}
TEF-Adjusted \\
Concentration
\end{tabular} \\
\hline OCDF & 3.88 & BJ & 0.0003 & 0.0186 & & 0.00116 \\
\hline
\end{tabular}

Total TEQ (excluding EMPC):
* TEF - Toxicity Equivalent Factors from World Health Organization (WHO), 2005
** DLF - Detection Limit Factors applied to the EDL.
```

Abbreviations:
B = Detected in Method Blank E = Exceeds calibration range
U = Undetected F = Interference is present
J = Estimated concentration between EDI and LOQ N = See comment in Case Narrative
C = Concentration confirmed on second column S = The detector is saturated
Q = Estimated Maximum Possible Concentration

```

SDG No.: AILO1

Matrix: SOIL
Sample wt: 10.0 (g)
Water Sample PREP: N/A
Concentrated Extract Volume: 20.0 (uL)
Injection Volume: 1.00 (uL)
GC Column: DB5MS
Method Reference: SW-846 8290A Feb 2007 Rev 1

Instrument ID: DF18471
Lab Sample ID: OPR031003
Lab File ID: 17FEB07-15
Date Received: N/A
Date Extracted: 01/31/2017 10:45
Date Analyzed: 02/07/2017 22:30
Dilution Factor: 1.0

Concentration Units: ng/kg
\begin{tabular}{|l|r|r|r|r|}
\hline Spike Analyte & \begin{tabular}{c}
Spike \\
Added
\end{tabular} & \begin{tabular}{c}
Amount \\
Recovered
\end{tabular} & \begin{tabular}{c}
Percent \\
Recovery
\end{tabular} & QC Limits \\
\hline \(2378-\mathrm{TCDF}\) & 20.0 & 19.4 & 97 & \(75-158\) \\
\hline \(2378-\mathrm{TCDD}\) & 20.0 & 19.1 & 96 & \(67-158\) \\
\hline \(12378-\mathrm{PeCDF}\) & 100 & 98.2 & 98 & \(80-134\) \\
\hline \(23478-\mathrm{PeCDF}\) & 100 & 90.7 & 91 & \(68-160\) \\
\hline \(12378-\mathrm{PeCDD}\) & 100 & 95.3 & 95 & \(70-142\) \\
\hline \(123478-\mathrm{HxCDF}\) & 100 & 91.2 & 91 & \(72-134\) \\
\hline \(123678-\mathrm{HxCDF}\) & 100 & 90.9 & 91 & \(84-130\) \\
\hline \(234678-\mathrm{HxCDF}\) & 100 & 93.9 & 94 & \(70-156\) \\
\hline \(123478-\mathrm{HxCDD}\) & 100 & 96.7 & 97 & \(70-164\) \\
\hline \(123678-\mathrm{HxCDD}\) & 100 & 91.5 & 91 & \(76-134\) \\
\hline \(123789-\mathrm{HxCDD}\) & 100 & 94.5 & 95 & \(64-162\) \\
\hline \(123789-\mathrm{HxCDF}\) & 100 & 91.3 & 91 & \(78-130\) \\
\hline \(1234678-\mathrm{HpCDF}\) & 100 & 96.1 & 96 & \(82-122\) \\
\hline \(1234678-\mathrm{HpCDD}\) & 100 & 92.3 & 92 & \(70-140\) \\
\hline \(1234789-\mathrm{HpCDF}\) & 100 & 95.4 & 95 & \(78-138\) \\
\hline OCDD & 200 & 188 & 94 & \(78-144\) \\
\hline OCDF & 200 & 181 & 91 & \(63-170\) \\
\hline
\end{tabular}

\footnotetext{
* Outside Quality Control (QC) limits.
}

\section*{\(\$\) eurofins}

Lancaster Laboratories Environmental

FORM 04
CDD/CDF METHOD BLANK SUMMARY
HIGH RESOLUTION

SDG No.: AILO1

Matrix: SOIL
Water Sample Prep: N/A
Sample wt: 10.0 (g)
GC Column: DB5MS ID: \(0.25(\mathrm{~mm})\) Date Analyzed: 02/08/2017 00:23

This Method Blank applies to Samples:
\begin{tabular}{|l|c|c|}
\hline Lab Sample ID & Lab File ID & Date Analyzed \\
\hline OPR031003 & 17FEB07-15 & \(02 / 07 / 2017 \quad 22: 30\) \\
\hline 8807304 & 17FEB07-18 & \(02 / 08 / 2017 \quad 01: 20\) \\
\hline 8807305 & 17FEB07-19 & \(02 / 08 / 2017 \quad 02: 16\) \\
\hline 8807306 & 17FEB07-20 & \(02 / 08 / 2017 \quad 03: 13\) \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Instrument ID & Lab File ID & Sample ID & \begin{tabular}{c}
Analysis \\
Date/Time
\end{tabular} & Compound Name & \% Valley & \begin{tabular}{c}
QC \\
\((\%)\) \\
\((\%)\)
\end{tabular} \\
\hline DF18471 & 17JAN31-02 & CPS01 & \(01 / 31 / 201721: 06\) & \(2378-\) TCDD & 10.821 & 25 \\
\hline DF18471 & 17FEB07-13 & CPS03 & \(02 / 07 / 2017 \quad 20: 39\) & \(2378-\) TCDD & 11.049 & 25 \\
\hline
\end{tabular}

Lancaster Laboratories
Environmental

CDD/CDF ANALYTICAL SEQUENCE SUMMARY HIGH RESOLUTION

SDG No.: AILO1
GC Column: DB5MS ID: 0.25 (mm) Instrument ID: DF18471
Init. Calib. Date/Times: 01/31/2017 22:57 02/01/2017 06:29
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Lab Sample ID } & \multicolumn{1}{c|}{\begin{tabular}{c}
Late/Time \\
Analyzed
\end{tabular}} \\
\hline CPS01 & 17JAN31-02 & \(01 / 31 / 2017 \quad 21: 06\) \\
\hline CSL01 & 17JAN31-04 & \(01 / 31 / 2017 \quad 22: 57\) \\
\hline CS101 & 17JAN31-08 & \(02 / 01 / 2017 \quad 02: 43\) \\
\hline CS201 & 17JAN31-09 & \(02 / 01 / 2017 \quad 03: 39\) \\
\hline CS301 & 17JAN31-10 & \(02 / 01 / 2017 \quad 04: 36\) \\
\hline CS401 & 17JAN31-11 & \(02 / 01 / 2017 \quad 05: 32\) \\
\hline CS501 & 17JAN31-12 & \(02 / 01 / 2017 \quad 06: 29\) \\
\hline CPS03 & 17FEB07-13 & \(02 / 07 / 2017 \quad 20: 39\) \\
\hline CS3CC03 & 17FEB07-14 & \(02 / 07 / 2017 \quad 21: 33\) \\
\hline OPR031003 & 17FEB07-15 & \(02 / 07 / 2017 \quad 22: 30\) \\
\hline BLK031003 & 17FEB07-17 & \(02 / 08 / 2017 \quad 00: 23\) \\
\hline 8807304 & 17FEB07-18 & \(02 / 08 / 201701: 20\) \\
\hline 8807305 & 17FEB07-19 & \(02 / 08 / 2017 \quad 02: 16\) \\
\hline 8807306 & 17 FEB07-20 & \(02 / 08 / 2017 \quad 03: 13\) \\
\hline CS3CC04 & 17FEB07-28 & \(02 / 08 / 2017 \quad 10: 03\) \\
\hline
\end{tabular}

\section*{\%}

Lancaster Laboratories Envirommental

FORM 06A - SW-846 8290A Feb 2007 Rev 1
CDD/CDF INITIAL CALIBRATION RESPONSE FACTOR SUMMARY HIGH RESOLUTION

SDG No.: AIL01
GC Column: DB5MS
ID: 0.25 (mm)
Instrument ID: DF18471

Init. Calib. Date/Times: 01/31/2017 22:57 02/01/2017 06:29
Lab File Names: CSL = 17JAN31-04; CS1 = 17JAN31-08; CS2 = 17JAN31-09;
CS3 \(=17\) JAN \(31-10 ; ~ C S 4=17 J A N 31-11 ; ~ C S 5=17 J A N 31-12 ;\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Analyte} & \multirow[b]{2}{*}{Type} & \multicolumn{6}{|c|}{RF} & \multirow[b]{2}{*}{Mean RF} & \multirow[b]{2}{*}{\%RSD} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { QC Limits } \\
\hline(\%) \\
\hline
\end{array}
\]} \\
\hline & & CSL & CS1 & CS2 & CS3 & CS 4 & CS5 & & & \\
\hline 2378-TCDF & TARGET & 1.269 & 0.943 & 0.985 & 0.992 & 1.021 & 1.000 & 1.035 & 11.33 & \(\pm 20\) \\
\hline 2378-TCDD & TARGET & 1.096 & 1.279 & 1.322 & 1.255 & 1.234 & 1.216 & 1.234 & 6.23 & \(\pm 20\) \\
\hline 12378-PeCDF & TARGET & 1.011 & 0.995 & 0.948 & 0.959 & 0.979 & 0.928 & 0.970 & 3.17 & \(\pm 20\) \\
\hline 23478-PeCDF & TARGET & 1.109 & 1.047 & 1.099 & 1.095 & 1.089 & 1.033 & 1.079 & 2.86 & \(\pm 20\) \\
\hline 12378-PeCDD & TARGET & 1.118 & 1.049 & 1.040 & 1.044 & 1.071 & 1.033 & 1.059 & 3.01 & \(\pm 20\) \\
\hline 123478-HxCDF & TARGET & 1.174 & 1.133 & 1.179 & 1.187 & 1.228 & 1.149 & 1.175 & 2.81 & \(\pm 20\) \\
\hline 123678-HxCDF & TARGET & 1.227 & 1.140 & 1.149 & 1.134 & 1.161 & 1.093 & 1.151 & 3.80 & \(\pm 20\) \\
\hline \(234678-\mathrm{HxCDF}\) & TARGET & 1.167 & 1.256 & 1.205 & 1.223 & 1.246 & 1.167 & 1.211 & 3.17 & \(\pm 20\) \\
\hline 123478-HxCDD & TARGET & 0.959 & 1.048 & 1.026 & 1.067 & 1.044 & 1.001 & 1.024 & 3.80 & \(\pm 20\) \\
\hline 123678-HxCDD & TARGET & 1.093 & 1.026 & 0.995 & 1.001 & 1.043 & 0.969 & 1.021 & 4.26 & \(\pm 20\) \\
\hline 123789-HxCDD & TARGET & 1.146 & 1.013 & 1.102 & 1.088 & 1.106 & 1.048 & 1.084 & 4.34 & \(\pm 20\) \\
\hline 123789-HxCDF & TARGET & 1.241 & 1.142 & 1.143 & 1.120 & 1.173 & 1.101 & 1.153 & 4.29 & \(\pm 20\) \\
\hline 1234678-HpCDF & TARGET & 1.217 & 1.304 & 1.292 & 1.292 & 1.352 & 1.236 & 1.282 & 3.81 & \(\pm 20\) \\
\hline 1234678-HpCDD & TARGET & 1.044 & 1.116 & 1.054 & 1.054 & 1.072 & 1.013 & 1.059 & 3.24 & \(\pm 20\) \\
\hline 1234789-HpCDF & TARGET & 1.358 & 1.274 & 1.366 & 1.352 & 1.329 & 1.260 & 1.323 & 3.44 & \(\pm 20\) \\
\hline OCDD & TARGET & 1.018 & 1.014 & 1.040 & 1.026 & 1.041 & 0.990 & 1.021 & 1.87 & \(\pm 20\) \\
\hline OCDF & TARGET & 0.961 & 0.939 & 0.925 & 0.921 & 0.955 & 0.897 & 0.933 & 2.51 & \(\pm 20\) \\
\hline 13C12-1278-TCDD (CRS) & LABELED & & 1.371 & 1.300 & 1.247 & 1.230 & 1.274 & 1.284 & 4.31 & \(\pm 20\) \\
\hline 13C12-2378-TCDF & LABELED & 1.854 & 1.810 & 1.909 & 1.867 & 1.842 & 1.927 & 1.868 & 2.31 & \(\pm 20\) \\
\hline 13C12-2378-TCDD & LABELED & 0.970 & 0.956 & 1.002 & 0.963 & 1.003 & 1.016 & 0.985 & 2.52 & \(\pm 20\) \\
\hline 13C12-12378-PeCDF & LABELED & 1.687 & 1.596 & 1.724 & 1.764 & 1.782 & 1.810 & 1.727 & 4.50 & \(\pm 20\) \\
\hline 13C12-23478-PECDF & LABELED & 1.648 & 1.585 & 1.705 & 1.753 & 1.810 & 1.849 & 1.725 & 5.75 & \(\pm 20\) \\
\hline 13C12-12378-PeCDD & LABELED & 0.951 & 0.889 & 0.956 & 1.011 & 1.015 & 1.028 & 0.975 & 5.41 & \(\pm 20\) \\
\hline 13C12-123478-HxCDF & LABELED & 1.264 & 1.262 & 1.275 & 1.266 & 1.265 & 1.379 & 1.285 & 3.60 & \(\pm 20\) \\
\hline 13C12-123678-HxCDF & LABELED & 1.309 & 1.304 & 1.334 & 1.345 & 1.323 & 1.498 & 1.352 & 5.40 & \(\pm 20\) \\
\hline 13C12-234678-HxCDF & LABELED & 1.215 & 1.214 & 1.239 & 1.235 & 1.257 & 1.367 & 1.254 & 4.59 & \(\pm 20\) \\
\hline 13C12-123478-HxCDD & LABELED & 0.916 & 0.899 & 0.949 & 0.910 & 0.953 & 1.051 & 0.946 & 5.87 & \(\pm 20\) \\
\hline 13C12-123678-HxCDD & LABELED & 0.940 & 0.924 & 0.939 & 0.971 & 0.983 & 1.099 & 0.976 & 6.55 & \(\pm 20\) \\
\hline 13C12-123789-HxCDD & LABELED & 0.922 & 0.886 & 0.921 & 0.928 & 0.925 & 1.024 & 0.934 & 4.98 & \(\pm 20\) \\
\hline 13C12-123789-HxCDF & LABELED & 1.165 & 1.123 & 1.156 & 1.166 & 1.188 & 1.307 & 1.184 & 5.40 & \(\pm 20\) \\
\hline 13C12-1234678-HpCDF & LABELED & 1.080 & 1.036 & 1.075 & 1.114 & 1.111 & 1.215 & 1.105 & 5.51 & \(\pm 20\) \\
\hline 13C12-1234678-HpCDD & LABELED & 0.836 & 0.793 & 0.828 & 0.874 & 0.901 & 0.958 & 0.865 & 6.79 & \(\pm 20\) \\
\hline 13C12-1234789-HpCDF & LABELED & 0.917 & 0.851 & 0.891 & 0.939 & 1.001 & 1.063 & 0.944 & 8.15 & \(\pm 20\) \\
\hline 13C12-OCDD & LABELED & 0.773 & 0.691 & 0.738 & 0.785 & 0.808 & 0.881 & 0.779 & 8.25 & \(\pm 20\) \\
\hline 13C12-OCDF & LABELED & 1.144 & 0.996 & 1.071 & 1.152 & 1.211 & 1.316 & 1.149 & 9.65 & \(\pm 20\) \\
\hline
\end{tabular}

\footnotetext{
* Outside QC Limits.
}

\section*{eurofins}

Lancaster Laboratories Environmental

FORM 06B
CDD/CDF INITIAL CALIBRATION ION ABUNDANCE RATIO SUMMARY HIGH RESOLUTION

SDG No.: AIL01
GC Column: DB5MS
ID: 0.25 (mm)
Instrument ID: DF18471
Init. Calib. Date/Times: 01/31/2017 22:57 02/01/2017 06:29
Lab File Names: CSL = 17JAN31-04; CS1 = 17JAN31-08; CS2 = 17JAN31-09;
CS3 \(=17 J A N 31-10 ; ~ C S 4=17 J A N 31-11 ; ~ C S 5=17 J A N 31-12 ;\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Analytes} & \multirow[b]{2}{*}{Type} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Se1ected } \\
\text { Ion }
\end{gathered}
\]} & \multicolumn{6}{|c|}{Ion Abundance Ratio} & Ion Ratio \\
\hline & & & CSL & CS1 & CS2 & CS3 & CS4 & CS5 & QC Limits \\
\hline 2378-TCDF & TARGET & 304/306 & 0.65 & 0.75 & 0.75 & 0.80 & 0.78 & 0.78 & 0.65-0.90 \\
\hline 2378-TCDD & TARGET & 320/322 & 0.68 & 0.65 & 0.78 & 0.77 & 0.79 & 0.78 & 0.65-0.90 \\
\hline 12378-PECDF & TARGET & 340/342 & 1.61 & 1.53 & 1.59 & 1.58 & 1.57 & 1.55 & 1.32-1.79 \\
\hline 23478-PECDF & TARGET & 340/342 & 1.63 & 1.52 & 1.63 & 1.58 & 1.56 & 1.56 & 1.32-1.79 \\
\hline 12378-PeCDD & TARGET & 356/358 & 1.78 & 1.49 & 1.63 & 1.56 & 1.59 & 1.53 & 1.32-1.79 \\
\hline 123478-HxCDF & TARGET & 374/376 & 1.34 & 1.29 & 1.28 & 1.24 & 1.27 & 1.24 & 1.05-1.44 \\
\hline 123678-HxCDF & TARGET & 374/376 & 1.25 & 1.21 & 1.24 & 1.24 & 1.24 & 1.26 & 1.05-1.44 \\
\hline 234678 - HxCDF & TARGET & 374/376 & 1.31 & 1.12 & 1.21 & 1.25 & 1.26 & 1.25 & 1.05-1.44 \\
\hline 123478-HxCDD & TARGET & 390/392 & 1.09 & 1.29 & 1.29 & 1.25 & 1.27 & 1.24 & 1.05-1.44 \\
\hline 123678-HxCDD & TARGET & 390/392 & 1.06 & 1.25 & 1.25 & 1.28 & 1.26 & 1.24 & 1.05-1.44 \\
\hline 123789-HxCDD & TARGET & 390/392 & 1.22 & 1.18 & 1.20 & 1.27 & 1.24 & 1.23 & 1.05-1.44 \\
\hline 123789-HxCDF & TARGET & 374/376 & 1.42 & 1.30 & 1.23 & 1.25 & 1.25 & 1.25 & 1.05-1.44 \\
\hline 1234678-HpCDF & TARGET & 408/410 & 1.05 & 0.96 & 1.03 & 1.05 & 1.04 & 1.04 & 0.88-1.21 \\
\hline 1234678-HpCDD & TARGET & 424/426 & 0.92 & 1.06 & 1.02 & 1.05 & 1.04 & 1.04 & 0.88-1.21 \\
\hline 1234789-HpCDF & TARGET & 408/410 & 0.91 & 1.00 & 1.01 & 1.08 & 1.05 & 1.04 & 0.88-1.21 \\
\hline OCDD & TARGET & \(458 / 460\) & 0.85 & 1.01 & 0.86 & 0.89 & 0.90 & 0.89 & 0.76-1.03 \\
\hline OCDF & TARGET & 442/444 & 0.94 & 0.98 & 0.90 & 0.91 & 0.91 & 0.90 & 0.76-1.03 \\
\hline 13C12-1278-TCDD (CRS) & LABELED & 332/334 & & 0.84 & 0.67 & 0.88 & 0.80 & 0.81 & 0.65-0.90 \\
\hline 13C12-2378-TCDE & LABELED & 316/318 & 0.78 & 0.79 & 0.82 & 0.79 & 0.80 & 0.81 & 0.65-0.90 \\
\hline 13C12-2378-TCDD & LABELED & 332/334 & 0.78 & 0.78 & 0.82 & 0.81 & 0.80 & 0.77 & 0.65-0.90 \\
\hline 13C12-12378-PeCDF & LABELED & 352/354 & 1.57 & 1.61 & 1.59 & 1.60 & 1.56 & 1.60 & 1.32-1.79 \\
\hline 13C12-23478-PeCDF & LABELED & 352/354 & 1.56 & 1.58 & 1.55 & 1.60 & 1.55 & 1.58 & 1.32-1.79 \\
\hline 13C12-12378-PeCDD & LABELED & 368/370 & 1.59 & 1.62 & 1.60 & 1.62 & 1.59 & 1.60 & 1.32-1.79 \\
\hline 13C12-123478-HxCDF & LABELED & 384/386 & 0.51 & 0.52 & 0.52 & 0.52 & 0.51 & 0.53 & 0.43-0.60 \\
\hline 13C12-123678-HxCDE & LABELED & 384/386 & 0.54 & 0.53 & 0.54 & 0.54 & 0.54 & 0.52 & 0.43-0.60 \\
\hline 13C12-234678-HxCDF & LABELED & 384/386 & 0.53 & 0.53 & 0.53 & 0.54 & 0.54 & 0.52 & 0.43-0.60 \\
\hline 13C12-123478-HxCDD & LABELED & 402/404 & 1.24 & 1.26 & 1.30 & 1.28 & 1.26 & 1.30 & 1.05-1.44 \\
\hline 13C12-123678-HxCDD & LABELED & 402/404 & 1.24 & 1.25 & 1.25 & 1.27 & 1.28 & 1.25 & 1.05-1.44 \\
\hline 13C12-123789-HxCDD & LABELED & 402/404 & 1.22 & 1.31 & 1.24 & 1.23 & 1.29 & 1.21 & 1.05-1.44 \\
\hline 13C12-123789-HxCDF & LABELED & 384/386 & 0.53 & 0.54 & 0.52 & 0.51 & 0.53 & 0.53 & 0.43-0.60 \\
\hline 13C12-1234678-HpCDF & LABELED & 418/420 & 0.46 & 0.45 & 0.46 & 0.46 & 0.45 & 0.45 & 0.37-0.52 \\
\hline 13C12-1234678-HpCDD & LABELED & 436/438 & 1.08 & 1.06 & 1.06 & 1.09 & 1.05 & 1.07 & 0.88-1.21 \\
\hline 13C12-1234789-HpCDF & LABELED & 418/420 & 0.45 & 0.45 & 0.46 & 0.46 & 0.45 & 0.45 & 0.37-0.52 \\
\hline 13C12-OCDD & LABELED & 470/472 & 0.90 & 0.89 & 0.90 & 0.88 & 0.90 & 0.90 & 0.76-1.03 \\
\hline 13C12-OCDF & LABELED & 454/456 & 0.91 & 0.90 & 0.91 & 0.90 & 0.90 & 0.91 & 0.76-1.03 \\
\hline
\end{tabular}
* Outside QC Limits.

\section*{eurofins}

Lancaster Laboratopies Environmental

FORM 07AD
CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION

SDG No.: AILO1

GC Column: DB5MS ID: 0.25 (mm)
Lab File ID: 17FEB07-14
Init. Calib. Date/Times: 01/31/2017 22:57 02/01/2017 06:29
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analytes & Type & Selected Ions & RF & Mean RF & \% D & ```
%D
``` & \[
\begin{gathered}
\text { Ion } \\
\text { Ratio }
\end{gathered}
\] & Ion Ratio QC Limits \\
\hline 2378-TCDF & TARGET & 304/306 & 1.066 & 1.035 & 2.97 & 20 & 0.82 & 0.65-0.90 \\
\hline 2378-TCDD & TARGET & 320/322 & 1.270 & 1.234 & 2.96 & 20 & 0.75 & 0.65-0.90 \\
\hline 12378-PeCDF & TARGET & 340/342 & 0.979 & 0.970 & 0.97 & 20 & 1.58 & 1.32-1.79 \\
\hline 23478-PeCDF & TARGET & 340/342 & 1.091 & 1.079 & 1.19 & 20 & 1.58 & 1.32-1.79 \\
\hline 12378-PeCDD & TARGET & 356/358 & 1.053 & 1.059 & 0.62 & 20 & 1.58 & 1.32-1.79 \\
\hline 123478-HxCDF & TARGET & 374/376 & 1.172 & 1.175 & 0.28 & 20 & 1.25 & 1.05-1.44 \\
\hline 123678-HxCDF & TARGET & 374/376 & 1.139 & 1.151 & 1.01 & 20 & 1.25 & 1.05-1.44 \\
\hline \(234678-\mathrm{HxCDF}\) & TARGET & 374/376 & 1.242 & 1.211 & 2.55 & 20 & 1.26 & 1.05-1.44 \\
\hline 123478-HxCDD & TARGET & 390/392 & 1.040 & 1.024 & 1.50 & 20 & 1.26 & 1.05-1.44 \\
\hline 123678-HxCDD & TARGET & 390/392 & 1.046 & 1.021 & 2.39 & 20 & 1.25 & 1.05-1.44 \\
\hline 123789-HxCDD & TARGET & 390/392 & 1.102 & 1.084 & 1.72 & 20 & 1.29 & 1.05-1.44 \\
\hline 123789-HxCDF & TARGET & 374/376 & 1.088 & 1.153 & 5.69 & 20 & 1.25 & 1.05-1.44 \\
\hline \(1234678-\mathrm{HpCDF}\) & TARGET & 408/410 & 1.296 & 1.282 & 1.06 & 20 & 1.03 & 0.88-1.21 \\
\hline \(1234678-\mathrm{HpCDD}\) & TARGET & 424/426 & 1.057 & 1.059 & 0.20 & 20 & 1.05 & 0.88-1.21 \\
\hline 1234789-HpCDF & TARGET & 408/410 & 1.300 & 1.323 & 1.73 & 20 & 1.04 & 0.88-1.21 \\
\hline OCDD & TARGET & \(458 / 460\) & 1.035 & 1.021 & 1.35 & 20 & 0.89 & 0.76-1.03 \\
\hline OCDF & TARGET & 442/444 & 0.917 & 0.933 & 1.73 & 20 & 0.90 & 0.76-1.03 \\
\hline 13C12-1278-TCDD (CRS) & LABELED & 332/334 & 1.217 & 1.284 & 5.24 & 20 & 0.72 & 0.65-0.90 \\
\hline 13C12-2378-TCDF & LABELED & 316/318 & 1.888 & 1.868 & 1.08 & 30 & 0.81 & 0.65-0.90 \\
\hline 13C12-2378-TCDD & LABELED & 332/334 & 0.997 & 0.985 & 1.19 & 30 & 0.81 & 0.65-0.90 \\
\hline 13C12-12378-PeCDF & LABELED & 352/354 & 1.814 & 1.727 & 5.01 & 30 & 1.58 & 1.32-1.79 \\
\hline 13C12-23478-PeCDF & LABELED & 352/354 & 1.878 & 1.725 & 8.88 & 30 & 1.57 & 1.32-1.79 \\
\hline 13C12-12378-PeCDD & LABELED & 368/370 & 1.019 & 0.975 & 4.50 & 30 & 1.58 & 1.32-1.79 \\
\hline 13C12-123478-HxCDF & LABELED & 384/386 & 1.258 & 1.285 & 2.14 & 30 & 0.52 & 0.43-0.60 \\
\hline 13C12-123678-HxCDF & LABELED & 384/386 & 1.315 & 1.352 & 2.75 & 30 & 0.54 & 0.43-0.60 \\
\hline 13C12-234678-HxCDF & LABELED & 384/386 & 1.214 & 1.254 & 3.21 & 30 & 0.52 & 0.43-0.60 \\
\hline 13C12-123478-HxCDD & LABELED & 402/404 & 0.951 & 0.946 & 0.55 & 30 & 1.27 & 1.05-1.44 \\
\hline 13C12-123678-HxCDD & LABELED & 402/404 & 0.964 & 0.976 & 1.26 & 30 & 1.25 & 1.05-1.44 \\
\hline 13C12-123789-HxCDD & LABELED & 402/404 & 0.920 & 0.934 & 1.49 & 30 & 1.24 & 1.05-1.44 \\
\hline 13C12-123789-HxCDF & LABELED & 384/386 & 1.188 & 1.184 & 0.33 & 30 & 0.53 & 0.43-0.60 \\
\hline 13C12-1234678-HpCDF & LABELED & 418/420 & 1.173 & 1.105 & 6.13 & 30 & 0.47 & 0.37-0.52 \\
\hline 13C12-1234678-HpCDD & LABELED & \(436 / 438\) & 0.929 & 0.865 & 7.37 & 30 & 1.08 & 0.88-1.21 \\
\hline 13C12-1234789-HpCDF & LABELED & 418/420 & 0.972 & 0.944 & 2.99 & 30 & 0.46 & 0.37-0.52 \\
\hline 13C12-OCDD & LABELED & 470/472 & 0.862 & 0.779 & 10.55 & 30 & 0.90 & 0.76-1.03 \\
\hline 13C12-OCDF & LABELED & \(454 / 456\) & 1.185 & 1.149 & 3.16 & 30 & 0.90 & 0.76-1.03 \\
\hline
\end{tabular}
* Outside QC Limits.
eurofins
Lancaster Laboratories Environmental

\author{
FORM 07AD \\ CDD/CDF CONTINUING CALIBRATION SUMMARY HIGH RESOLUTION
}
SDG No.: AILO1
GC Column: DB5MS ID: 0.25 (mm
Lab File ID: 17FEB07-28 Lab Sample ID: CS3CC04
Init. Calib. Date/Times: 01/31/2017.22:57 02/01/2017 06:29
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analytes & Type &  & RF & \[
\begin{gathered}
\hline \text { Mean } \\
\text { RF }
\end{gathered}
\] & \% D & \[
\begin{gathered}
\circ \mathrm{D} \\
\text { Limit }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ion } \\
\text { Ratio }
\end{gathered}
\] & Ion Ratio QC Limits \\
\hline 2378-TCDF & TARGET & 304/306 & 1.038 & 1.035 & 0.26 & 20 & 0.77 & 0.65-0.90 \\
\hline 2378-TCDD & TARGET & 320/322 & 1.268 & 1.234 & 2.74 & 20 & 0.77 & 0.65-0.90 \\
\hline 12378-PeCDF & TARGET & 340/342 & 0.992 & 0.970 & 2.33 & 20 & 1.59 & 1.32-1.79 \\
\hline 23478-PeCDF & TARGET & 340/342 & 1.088 & 1.079 & 0.86 & 20 & 1.56 & 1.32-1.79 \\
\hline 12378-PeCDD & TARGET & 356/358 & 1.070 & 1.059 & 0.99 & 20 & 1.57 & 1.32-1.79 \\
\hline 123478-HxCDF & TARGET & 374/376 & 1.188 & 1.175 & 1.13 & 20 & 1.24 & 1.05-1.44 \\
\hline 123678-HxCDF & TARGET & 374/376 & 1.134 & 1.151 & 1.41 & 20 & 1.24 & 1.05-1.44 \\
\hline \(234678-\mathrm{HxCDF}\) & TARGET & 374/376 & 1.222 & 1.211 & 0.92 & 20 & 1.26 & 1.05-1.44 \\
\hline 123478-HxCDD & TARGET & 390/392 & 1.039 & 1.024 & 1.46 & 20 & 1.26 & 1.05-1.44 \\
\hline 123678-HxCDD & TARGET & 390/392 & 1.043 & 1.021 & 2.18 & 20 & 1.26 & 1.05-1.44 \\
\hline 123789-HxCDD & TARGET & 390/392 & 1.107 & 1.084 & 2.16 & 20 & 1.27 & 1.05-1.44 \\
\hline 123789-HxCDF & TARGET & 374/376 & 1.136 & 1.153 & 1.51 & 20 & 1.28 & 1.05-1.44 \\
\hline 1234678-HpCDF & TARGET & 408/410 & 1.265 & 1.282 & 1.31 & 20 & 1.03 & 0.88-1.21 \\
\hline 1234678-HpCDD & TARGET & 424/426 & 1.073 & 1.059 & 1.36 & 20 & 1.05 & 0.88-1.21 \\
\hline 1234789-HpCDF & TARGET & 408/410 & 1.322 & 1.323 & 0.12 & 20 & 1.04 & 0.88-1.21 \\
\hline OCDD & TARGET & 458/460 & 1.043 & 1.021 & 2.15 & 20 & 0.89 & 0.76-1.03 \\
\hline OCDF & TARGET & 442/444 & 0.918 & 0.933 & 1.64 & 20 & 0.89 & 0.76-1.03 \\
\hline 13C12-1278-TCDD (CRS) & LABELED & 332/334 & 1.225 & 1.284 & 4.65 & 20 & 0.82 & 0.65-0.90 \\
\hline 13C12-2378-TCDF & LABELED & 316/318 & 1.845 & 1.868 & 1.21 & 30 & 0.79 & 0.65-0.90 \\
\hline 13C12-2378-TCDD & LABELED & 332/334 & 0.952 & 0.985 & 3.31 & 30 & 0.79 & 0.65-0.90 \\
\hline 13C12-12378-PeCDF & LABELED & 352/354 & 1.791 & 1.727 & 3.68 & 30 & 1.61 & 1.32-1.79 \\
\hline 13C12-23478-PeCDF & LABELED & 352/354 & 1.829 & 1.725 & 6.01 & 30 & 1.59 & 1.32-1.79 \\
\hline 13C12-12378-PeCDD & LABELED & 368/370 & 1.020 & 0.975 & 4.63 & 30 & 1.61 & 1.32-1.79 \\
\hline 13C12-123478-HxCDF & LABELED & 384/386 & 1.200 & 1.285 & 6.62 & 30 & 0.53 & 0.43-0.60 \\
\hline 13C12-123678-HxCDF & LABELED & 384/386 & 1.252 & 1.352 & 7.37 & 30 & 0.52 & 0.43-0.60 \\
\hline 13C12-234678-HxCDF & LABELED & 384/386 & 1.134 & 1.254 & 9.57 & 30 & 0.54 & 0.43-0.60 \\
\hline 13C12-123478-HxCDD & LABELED & 402/404 & 0.873 & 0.946 & 7.73 & 30 & 1.29 & 1.05-1.44 \\
\hline 13C12-123678-HxCDD & LABELED & 402/404 & 0.869 & 0.976 & 10.97 & 30 & 1.29 & 1.05-1.44 \\
\hline 13C12-123789-HxCDD & LABELED & 402/404 & 0.843 & 0.934 & 9.81 & 30 & 1.24 & 1.05-1.44 \\
\hline 13C12-123789-HxCDF & LABELED & 384/386 & 1.059 & 1.184 & 10.58 & 30 & 0.53 & 0.43-0.60 \\
\hline 13C12-1234678-HpCDF & LABELED & 418/420 & 0.995 & 1.105 & 9.91 & 30 & 0.45 & 0.37-0.52 \\
\hline 13C12-1234678-HpCDD & LABELED & 436/438 & 0.763 & 0.865 & 11.81 & 30 & 1.05 & 0.88-1.21 \\
\hline 13C12-1234789-HpCDF & LABELED & 418/420 & 0.790 & 0.944 & 16.24 & 30 & 0.44 & 0.37-0.52 \\
\hline 13C12-OCDD & LABELED & 470/472 & 0.659 & 0.779 & 15.40 & 30 & 0.91 & 0.76-1.03 \\
\hline 13C12-OCDF & LABELED & 454/456 & 0.921 & 1.149 & 19.84 & 30 & 0.89 & 0.76-1.03 \\
\hline
\end{tabular}

\footnotetext{
* Outside QC Limits.
}
```

* eurofins
Lancaster Labocatories
Environmental
FORM 07B
CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION
SDG No.: AIL01
GC Column: DB5MS
ID:
0.25 (mm)
Instrument ID:
DF18471
Lab File ID: 17FEB07-14 Lab Sample ID: CS3CC03 Date/Time Analyzed: 02/07/2017 21:33
Init. Calib. Date/Times: 01/31/2017 22:57 02/01/2017 06:29

```
\begin{tabular}{|c|c|c|c|c|}
\hline Analytes & Type & RT & RRT & \[
\begin{array}{ll}
\hline & \text { RRT } \\
\text { QC } & \text { Limits }
\end{array}
\] \\
\hline 2378-TCDF & TARGET & 30.98 & 1.001 & 0.999-1.003 \\
\hline 2378-TCDD & TARGET & 32.01 & 1.001 & 0.999-1.002 \\
\hline 12378-PeCDF & TARGET & 36.54 & 1.001 & 0.999-1.002 \\
\hline 23478-PeCDF & TARGET & 37.76 & 1.000 & 0.999-1.002 \\
\hline 12378-PeCDD & TARGET & 38.15 & 1.001 & 0.999-1.002 \\
\hline 123478-HxCDF & TARGET & 41.34 & 1.000 & 0.999-1.001 \\
\hline 123678-HxCDF & TARGET & 41.49 & 1.000 & 0.997-1.005 \\
\hline \(234678-\mathrm{HxCDF}\) & TARGET & 42.16 & 1.000 & 0.999-1.001 \\
\hline 123478-HxCDD & TARGET & 42.35 & 1.000 & 0.999-1.001 \\
\hline 123678-HxCDD & TARGET & 42.47 & 1.000 & 0.998-1.004 \\
\hline 123789-HxCDD & TARGET & 42.78 & 1.000 & 1.000-1.019 \\
\hline 123789-HxCDF & TARGET & 43.17 & 1.000 & 0.999-1.001 \\
\hline 1234678 -HpCDF & TARGET & 44.86 & 1.000 & 0.999-1.001 \\
\hline 1234678-HpCDD & TARGET & 46.05 & 1.000 & 0.999-1.001 \\
\hline 1234789-HpCDF & TARGET & 46.61 & 1.000 & 0.999-1.001 \\
\hline OCDD & TARGET & 49.05 & 1.000 & 0.999-1.001 \\
\hline OCDF & TARGET & 49.24 & 1.000 & 0.999-1.008 \\
\hline 13C12-1278-TCDD (CRS) & LABELED & 32.37 & 1.036 & 0.988-1.056 \\
\hline 13C12-2378-TCDF & LABELED & 30.95 & 0.991 & 0.923-1.103 \\
\hline 13C12-2378-TCDD & LABELED & 31.99 & 1.024 & 0.976-1.043 \\
\hline 13C12-12378-PeCDF & LABELED & 36.51 & 1.169 & 1.000-1.425 \\
\hline 13C12-23478-PeCDF & LABELED & 37.75 & 1.208 & 1.011-1.526 \\
\hline 13C12-12378-PeCDD & LABELED & 38.12 & 1.220 & 1.000-1.567 \\
\hline 13C12-123478-HxCDF & LABELED & 41.32 & 1.002 & 0.989-1.015 \\
\hline 13C12-123678-HxCDF & LABELED & 41.47 & 1.006 & 0.993-1.019 \\
\hline 13C12-234678-HxCDF & LABELED & 42.15 & 1.022 & 0.992-1.053 \\
\hline 13C12-123478-HxCDD & LABELED & 42.33 & 1.027 & 1.016-1.039 \\
\hline 13C12-123678-HxCDD & LABELED & 42.46 & 1.030 & 1.019-1.041 \\
\hline 13C12-123789-HxCDD & LABELED & 42.77 & 1.037 & 1.027-1.049 \\
\hline 13C12-123789-HxCDF & LABELED & 43.16 & 1.047 & 1.012-1.082 \\
\hline 13C12-1234678-HpCDF & LABELED & 44.84 & 1.088 & 1.067-1.109 \\
\hline 13C12-1234678-HpCDD & LABELED & 46.03 & 1.116 & 1.105-1.129 \\
\hline 13C12-1234789-HpCDF & LABELED & 46.60 & 1.130 & 1.084-1.178 \\
\hline 13C12-OCDD & LABELED & 49.04 & 1.189 & 1.051-1.330 \\
\hline 13C12-OCDF & LABELED & 49.22 & 1.194 & 1.056-1.335 \\
\hline
\end{tabular}

RRT \(=\) (RT of analyte) / (RT of appropriate labeled compound).
* RRT exceeds the acceptable range

FORM 07B
Lancaster Laboratories Environmental

CDD/CDF CONTINUING CALIBRATION RETENTION TIME SUMMARY HIGH RESOLUTION

SDG No.: AIL01

GC Column: DB5MS
ID:
0.25 (mm)

Instrument ID:
DF18471
Lab File ID: 17FEB07-28
Lab Sample ID: CS3CC04
Date/Time Analyzed: 02/08/2017 10:03
Init. Calib. Date/Times: 01/31/2017 22:57
02/01/2017 06:29
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Analytes } & & & \\
\hline
\end{tabular}

RRT \(=\) (RT of analyte) / (RT of appropriate labeled compound).
* RRT exceeds the acceptable range

\section*{Sample Data}

\section*{Dioxins/Furans by HRMS}

\section*{Quantitation Settings}

\section*{Data File Parameter}

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/08 01:20
269
S:11030:12937:15831
103
SW-846 8290A Feb 2007 Rev 117031003 BB17 ARS1-17-00216-007 Soil
8807304
DF18471-17FEB07
ARS International LLC
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
17031003
y:117feb07\17feb07-18.quan
\(y: 117\) feb07117feb07-18.raw
y:Iresponsefiles\df18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.3
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & OM Retention Time & Status Overview & \[
\begin{aligned}
& \text { Amount } \\
& \text { Status }
\end{aligned}
\] & RM1 Time Status & Ratio 1 Status & Recovery Status & Native vs Labeled Time Status & Status Info & \\
\hline 1 & 2378-TCDF & 30.98 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1A \\
\hline 2 & 2378-TCDD & 32.03 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1A \\
\hline 3 & 12378-PeCDF & 36.54 & passed & passed & passed & passed & passed & passed & & \\
\hline 4 & 23478-PeCDF & 37.76 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1A \\
\hline 5 & 12378-PeCDD & 38.15 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1A \\
\hline 6 & \(123478-\mathrm{HxCDF}\) & 41.34 & passed & passed & passed & passed & passed & passed & & \\
\hline 7 & 123678-HxCDF & 41.50 & passed & passed & passed & passed & passed & passed & & \\
\hline 8 & 234678-HxCDF & 42.17 & passed & passed & passed & passed & passed & passed & & \\
\hline 9 & 123478-HxCDD & 42.35 & falled & passed & passed & failed & passed & passed & & Failed on: Ratio1A \\
\hline 10 & 123678-HxCDD & 42.47 & passed & passed & passed & passed & passed & passed & & \\
\hline 11 & 123789-HxCDD & 42.79 & passed & passed & passed & passed & passed & passed & & \\
\hline 12 & 123789-HxCDF & 43.17 & passed & passed & passed & passed & passed & passed & & \\
\hline 13 & 1234678-HpCDF & 44.87 & passed & passed & passed & passed & passed & passed & & \\
\hline 14 & 1234678-HpCDD & 46.04 & passed & passed & passed & passed & passed & passed & & \\
\hline 15 & 1234789-HpCDF & 46.61 & passed & passed & passed & passed & passed & passed & & \\
\hline 16 & OCDD & 49.05 & passed & passed & passed & passed & passed & passed & & \\
\hline 17 & OCDF & 49.25 & passed & passed & passed & passed & passed & passed & & \\
\hline 18 & 13C12-1278-TCDD (CRS) & 32.39 & passed & passed & passed & passed & passed & passed & & \\
\hline 19 & 13C12-1234-TCDD & 31.24 & passed & passed & passed & passed & passed & passed & & \\
\hline 20 & 13C12-123468-HxCDD & 41.23 & passed & passed & passed & passed & passed & passed & & \\
\hline 21 & 13C12-2378-TCDF & 30.97 & passed & passed & passed & passed & passed & passed & & \\
\hline 22 & 13C12-2378-TCDD & 31.99 & passed & passed & passed & passed & passed & passed & & \\
\hline 23 & 13C12-12378-PeCDF & 36.53 & passed & passed & passed & passed & passed & passed & & \\
\hline 24 & 13C12-23478-PeCDF & 37.75 & passed & passed & passed & passed & passed & passed & & \\
\hline 25 & 13C12-12378-PeCDD & 38.13 & passed & passed & passed & passed & passed & passed & & \\
\hline 26 & 13C12-123478-HxCDF & 41.32 & passed & passed & passed & passed & passed & passed & & \\
\hline 27 & 13C12-123678-HxCDF & 41.47 & passed & passed & passed & passed & passed & passed & & \\
\hline 28 & 13C12-234678-HxCDF & 42.16 & passed & passed & passed & passed & passed & passed & & \\
\hline 29 & 13C12-123478-HxCDD & 42.35 & passed & passed & passed & passed & passed & passed & & \\
\hline 30 & 13C12-123678-HxCDD & 42.45 & passed & passed & passed & passed & passed & passed & & \\
\hline 31 & 13C12-123789-HxCDD & 42.76 & passed & passed & passed & passed & passed & passed & & \\
\hline 32 & 13C12-123789-HxCDF & 43.16 & passed & passed & passed & passed & passed & passed & & \\
\hline 33 & 13C12-1234678-HpCDF & 44.85 & passed & passed & passed & passed & passed & passed & & \\
\hline 34 & 13C12-1234678-HpCDD & 46.03 & passed & passed & passed & passed & passed & passed & & , \\
\hline 35 & 13C12-1234789-HpCDF & 46.60 & passed & passea & passed & passed & passed & passed & & \\
\hline 36 & 13C12-OCDD & 49.05 & passed & passed & passed & passed & passed & passed & & \\
\hline 37 & 13C12-OCDF & 49.23 & passed & passed & passed & passed & passed & passed & & \\
\hline
\end{tabular}

\section*{Quantitation Settings}
\begin{tabular}{ll} 
Data File Parameter & \\
Acq. Data & \(2017 / 02 / 08\) 01:20 \\
Number of Entries & 269 \\
Comment & \(\mathrm{S}: 11030: 12937: 15831\) \\
Vial & 103 \\
Sample Name & SW-846 8290A Feb 2007 Rev 1 17031003 BB17 ARS1-17-00216-007 Soil \\
Sample ID & 8807304 \\
Inst ID & DF18471-17FEB07 \\
Client & ARS International LLC \\
Analyst & jda02741 \\
GC Column & DB5MS 60 M x 0.25um x 0.25mm \\
BatchNo & 17031003 \\
Barcode & \\
& \\
Files Parameter & y:117feb07\17feb07-18.quan \\
Quan & y:I17feb07\17feb07-18.raw \\
Data & y:Iresponsefiles ldf18471-17jan31dfical.resp \\
Response & C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC \\
Script & \\
Mass Ref & \\
& \\
Quan Parameter & Compatibility off \\
QualBrowser Compatibility & Sum QM RM1 \\
Sum Area/Height & Dependend on Area \\
Quantitation Status & 1.0 \\
Injection Volume [hIJV] & 20.0 \\
Sample Volume [hSV] & 10.3 \\
Sample Weight [hSWT] & 1.0 \\
Dilution Factor [hDF] & 2.5 \\
Det. Limit Factor [hDLF] & Average RF \\
Response Factor Mode & Linear Fit \\
Fit Calc. Mode & Non weighted Regression \\
Regression Mode & 1.0 \\
Weighted Regression Factor & \\
\hline
\end{tabular}

\section*{Chromatogram}

RT: 30.00-32.00 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & 2378 -TCDF \\
QM Retention Time & 30.98 \\
QM Area & 1911 \\
QM Integration Mode & A \\
RM1 Area & 1891 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0375 \\
Unqualified Amount (A) & 0.318014 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 21 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(2378-\) TCDD \\
QM Retention Time & 32.03 \\
QM Area & 318 \\
QM Integration Mode & A \\
RM1 Area & 154 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0136 \\
Unqualified Amount (A) & 0.061598 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 14 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}

RT: 35.56-37.56 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(12378-\mathrm{PeCDF}\) \\
QM Retention Time & 36.54 \\
QM Area & 2633 \\
QM Integration Mode & A \\
RM1 Area & 3784 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0199 \\
Unqualified Amount (A) & 0.508956 \\
Adjusted Amount (A) & 0.5090 \\
Signal-to-Noise & 61 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 36.76-38.76 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(23478-\mathrm{PeCDF}\) \\
QM Retention Time & 37.76 \\
QM Area & 3832 \\
QM Integration Mode & A \\
RM1 Area & 7279 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0179 \\
Unqualified Amount (A) & 0.835875 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 80 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}
RT: 37.16-39.16 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(12378-P e C D D\) \\
QM Retention Time & 38.15 \\
QM Area & 863 \\
QM Integration Mode & A \\
RM1 Area & 1922 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0236 \\
Unqualified Amount (A) & 0.370481 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 45 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}

RT: 40.34-42.34 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123478-\mathrm{HxCDF}\) \\
QM Retention Time & 41.34 \\
QM Area & 2494 \\
QM Integration Mode & A \\
RM1 Area & 3111 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0222 \\
Unqualified Amount (A) & 0.441547 \\
Adjusted Amount (A) & 0.4415 \\
Signal-to-Noise & 49 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123678-\mathrm{HxCDF}\) \\
QM Retention Time & 41.50 \\
QM Area & 2589 \\
QM Integration Mode & A \\
RM1 Area & 3674 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0194 \\
Unqualified Amount (A) & 0.429490 \\
Adjusted Amount (A) & 0.4295 \\
Signal-to-Noise & 59 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.17-43.17 SM: 3G

\begin{tabular}{ll} 
Entry Parameters & \\
& \\
Compound Name & \(234678-\mathrm{HxCDF}\) \\
QM Retention Time & 42.17 \\
QM Area & 2244 \\
QM Integration Mode & A \\
RM1 Area & 3108 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0209 \\
Unqualified Amount (A) & 0.419003 \\
Adjusted Amount (A) & 0.4190 \\
Signal-to-Noise & 50 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.36-43.36 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123478-H x C D D\) \\
QM Retention Time & 42.35 \\
QM Area & 946 \\
QM Integration Mode & A \\
RM1 Area & 1596 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0230 \\
Unqualified Amount (A) & 0.285766 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 37 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}

RT: 41.47-43.47 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123678-\mathrm{HxCDD}\) \\
QM Retention Time & 42.47 \\
QM Area & 3528 \\
QM Integration Mode & A \\
RM1 Area & 3813 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0222 \\
Unqualified Amount (A) & 0.822382 \\
Adjusted Amount (A) & 0.8224 \\
Signal-to-Noise & 92 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.78-43.78 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123789-H x C D D\) \\
QM Retention Time & 42.79 \\
QM Area & 1608 \\
QM Integration Mode & A \\
RM1 Area & 2082 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0218 \\
Unqualified Amount (A) & 0.397732 \\
Adjusted Amount (A) & 0.3977 \\
Signal-to-Noise & 46 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}
RT: 42.17-44.17 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123789-H x C D F\) \\
QM Retention Time & 43.17 \\
QM Area & 1614 \\
QM Integration Mode & A \\
RM1 Area & 2176 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0264 \\
Unqualified Amount (A) & 0.355167 \\
Adjusted Amount (A) & 0.3552 \\
Signal-to-Noise & 30 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Sample SW-846 8290A Feb 2007 Rev 117031003 EB17 ARS1-17-00216-007 Soil / 880730
Inst ID: DF18471-17FEB07/ Client: ARS Intemational LIC

\section*{Chromatogram}

RT: 43.87-45.87 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(1234678-\) HpCDF \\
QM Retention Time & 44.87 \\
QM Area & 15095 \\
QM Integration Mode & A \\
RM1 Area & 16492 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0118 \\
Unqualified Amount (A) & 2.046364 \\
Adjusted Amount (A) & 2.0464 \\
Signal-to-Noise & 429 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(1234678-\mathrm{HpCDD}\) \\
QM Retention Time & 46.04 \\
QM Area & 51328 \\
QM Integration Mode & A \\
RM1 Area & 54906 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0373 \\
Unqualified Amount (A) & 11.992395 \\
Adjusted Amount (A) & 11.9924 \\
Signal-to-Noise & 809 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT：45．61－47．61 SM：3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(1234789-\mathrm{HpCDF}\) \\
QM Retention Time & 46.61 \\
QM Area & 1389 \\
QM Integration Mode & A \\
RM1 Area & 1630 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit（A） & 0.0184 \\
Unqualified Amount（A） & 0.299853 \\
Adjusted Amount（A） & 0.2999 \\
Signal－to－Noise & 40 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 48.06-50.06 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & OCDD \\
QM Retention Time & 49.05 \\
QM Area & 698744 \\
QM Integration Mode & A \\
RM1 Area & 628080 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0373 \\
Unqualified Amount (A) & 172.521839 \\
Adjusted Amount (A) & 172.5218 \\
Signal-to-Noise & 11744 \\
Client Fiags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 48.25-50.25 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & OCDF \\
QM Retention Time & 49.25 \\
QM Area & 23261 \\
QM Integration Mode & A \\
RM1 Area & 18339 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0175 \\
Unqualified Amount (A) & 4.896454 \\
Adjusted Amount (A) & 4.8965 \\
Signal-to-Noise & 699 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}
RT: 31.37-33.37 SM: 5G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & 13C12-1278-TCDD (CRS) \\
QM Retention Time & 32.39 \\
QM Area & 175833 \\
QM Integration Mode & A \\
RM1 Area & 144071 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0202 \\
Unqualified Amount (A) & 29.375921 \\
Adjusted Amount (A) & 29.3759 \\
Signal-to-Noise & 3740 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & \[
\begin{aligned}
& \text { Quan. } \\
& \text { Mass. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ratio } \\
& \text { Mass } 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Specified } \\
& \text { RT [min] }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QM Retention } \\
& \text { Time }
\end{aligned}
\] & RM1 Retention Time & Labeled RT & \[
\begin{aligned}
& \text { RM1 Time } \\
& \text { Status }
\end{aligned}
\] & Native vs Labeled Time Status \\
\hline 1 & 2378-TCDF & \(305.8987+/-5 \mathrm{ppm}\) & 303.9016 +/-5 ppm & 30.98 & 30.98 & 31.00 & 30.97 & passed & passed \\
\hline 2 & 2378-TCDD & \(321.8936+/-5 \mathrm{ppm}\) & 319.8965 +/-5 ppm & 32.01 & 32.03 & 32.03 & 31.99 & passed & passed \\
\hline 3 & 12378-PeCDF & \(341.8567+/ .5\) ppm & 339.8597 +/-5 5 ppm & 36.54 & 36.54 & 36.54 & 36.53 & passed & passed \\
\hline 4 & 23478-PeCDF & 341.8567 +/- 5 ppm & \(339.8597+/ .5 \mathrm{ppm}\) & 37.76 & 37.76 & 37.76 & 37.75 & passed & passed \\
\hline 5 & 12378-PeCDD & 357.8516 +/. 5 ppm & 355.8546 +/- 5 ppm & 38.15 & 38.15 & 38.15 & 38.13 & passed & passed \\
\hline 6 & 123478-HxCDF & 375.8178 +/- 5 ppm & \(373.8208+/-5 \mathrm{ppm}\) & 41.34 & 41.34 & 41.34 & 41.32 & passed & passed \\
\hline 7 & 123678 - HXCDF & \(375.8178+/-5 \mathrm{ppm}\) & \(373.8208+/-5 \mathrm{ppm}\) & 41.49 & 41.50 & 41.50 & 41.47 & passed & passed \\
\hline 8 & 234678-HxCDF & \(375.8178+\) + 5 ppm & 373.8208 +/-5 ppm & 42.16 & 42.17 & 42.17 & 42.16 & passed & passed \\
\hline 9 & 123478 - \(\times\) XCDD & \(391.8127+/-5 \mathrm{ppm}\) & \(389.8157+/ .5\) ppm & 42.35 & 42.35 & 42.36 & 42.35 & passed & passed \\
\hline 10 & \(123678-\mathrm{HXCDD}\) & \(391.8127+/ .5 \mathrm{ppm}\) & \(389.8157+/-5 \mathrm{ppm}\) & 42.47 & 42.47 & 42.48 & 42.45 & passed & passed \\
\hline 11 & \(123789-\mathrm{HxCDD}\) & \(391.8127+/ .5 \mathrm{ppm}\) & \(389.8157+/ .5 \mathrm{ppm}\) & 42.78 & 42.79 & 42.79 & 42.76 & passed & passed \\
\hline 12 & \(123789-\mathrm{HXCDF}\) & \(375.8178+/-5 \mathrm{ppm}\) & \(373.8208+/ .5 \mathrm{ppm}\) & 43.17 & 43.17 & 43.17 & 43.16 & passed & passed \\
\hline 13 & 1234678-HpCDF & \(409.7789+1-5 \mathrm{ppm}\) & 407.7818 +/-5 ppm & 44.86 & 44.87 & 44.87 & 44.85 & passed & passed \\
\hline 14 & 1234678-HpCDD & \(425.7737+/-5 \mathrm{ppm}\) & \(423.7766+/ .5 \mathrm{ppm}\) & 46.05 & 46.04 & 46.04 & 46.03 & passed & passed \\
\hline 15 & 1234789-HpCDF & 409.7789 +/-5 ppm & 407.7818 +/- 5 ppm & 46.61 & 46.61 & 46.62 & 46.60 & passed & passed \\
\hline 16 & OCDD & \(459.7348+/-5 \mathrm{ppm}\) & \(457.7377+\) + 5 ppm & 49.05 & 49.05 & 49.05 & 49.05 & passed & passed \\
\hline 17 & OCDF & \(443.7399+/ .5 \mathrm{ppm}\) & \(441.7428+5\) ppm & 49.24 & 49.25 & 49.25 & 49.23 & passed & passed \\
\hline 18 & 13C12-1278-TCDD (CRS) & \(333.9339+/-5 \mathrm{ppm}\) & 331.9368 +/-5 ppm & 32.37 & 32.39 & 32.39 & 32.39 & passed & passed \\
\hline 19 & 13C12-1234-TCDD & 333.9339 +/- 5 ppm & \(331.9368+/ .5 \mathrm{ppm}\) & 31.24 & 31.24 & 31.24 & 31.24 & passed & passed \\
\hline 20 & 13C12-123468-HxCDD & \(403.8529+/-5 \mathrm{ppm}\) & \(401.8559+\) + 5 ppm & 41.23 & 41.23 & 41.23 & 41.23 & passed & passed \\
\hline 21 & 13C12-2378-TCDF & 317.9389 +/-5 ppm & \(315.9419+5 \mathrm{ppm}\) & 30.95 & 30.97 & 30.97 & 30.97 & passed & passed \\
\hline 22 & 13C12-2378-TCDD & 333.9339 +/-5 ppm & 331.9368 +/. 5 ppm & 31.99 & 31.99 & 31.99 & 31.99 & passed & passed \\
\hline 23 & 13C12-12378-PeCDF & 353.8970 +/-5 ppm & 351.9000 +/-5 ppm & 36.51 & 36.53 & 36.53 & 36.51 & passed & passed \\
\hline 24 & 13C12-23478-PeCDF & \(353.8970+/-5 \mathrm{ppm}\) & \(351.9000++-5 \mathrm{ppm}\) & 37.75 & 37.75 & 37.75 & 37.78 & passed & passed \\
\hline 25 & 13C12-12378-PeCDD & \(369.8919++-5 \mathrm{ppm}\) & \(367.8949+\) + 5 ppm & 38.12 & 38.13 & 38.13 & 38.13 & passed & passed \\
\hline 26 & 13C12-123478-HxCDF & \(385.8610+/-5 \mathrm{ppm}\) & \(383.8639+\) +/ 5 ppm & 41.32 & 41.32 & 41.32 & 41.24 & passed & passed \\
\hline 27 & 13C12-123678-HxCDF & \(385.8610+/-5 \mathrm{ppm}\) & \(383.8639+5.5 \mathrm{ppm}\) & 41.47 & 41.47 & 41.47 & 41.46 & passed & passed \\
\hline 28 & 13C12-234678-HxCDF & 385.8610 +/- 5 ppm & 383.8639 +/- 5 ppm & 42.15 & 42.16 & 42.16 & 42.20 & passed & passed \\
\hline 29 & 13C12-123478-HxCDD & \(403.8529+\) + 5 ppm & \(401.8559++5 \mathrm{ppm}\) & 42.33 & 42.35 & 42.35 & 42.35 & passed & passed \\
\hline 30 & 13C12-123678-HxCDD & \(403.8529+1.5 \mathrm{ppm}\) & \(401.8559+\) +- 5 ppm & 42.46 & 42.45 & 42.45 & 42.45 & passed & passed \\
\hline 31 & 13C12-123789-HxCDD & \(403.8529+/ .5 \mathrm{ppm}\) & \(401.8559+\) +- 5 ppm & 42.77 & 42.76 & 42.76 & 42.76 & passed & passed \\
\hline 32 & 13C12-123789-HxCDF & \(385.8610+\) +/ 5 ppm & \(383.8639+\) +/ 5 ppm & 43.16 & 43.16 & 43.16 & 43.10 & passed & passed \\
\hline 33 & 13C12-1234678-HPCDF & \(419.8220+\) +- 5 ppm & \(417.8253+/ .5 \mathrm{ppm}\) & 44.84 & 44.85 & 44.85 & 44.85 & passed & passed \\
\hline 34 & 13C12-1234678-HpCDD & \(437.8140+/ .5 \mathrm{ppm}\) & \(435.8169+\) +- 5 ppm & 46.03 & 46.03 & 46.03 & 46.03 & passed & passed \\
\hline 35 & 13C12-1234789-HpCDF & \(419.8220+/-5 \mathrm{ppm}\) & \(417.8253+/ .5 \mathrm{ppm}\) & 46.60 & 46.60 & 46.60 & 46.42 & passed & passed \\
\hline 36 & 13C12-OCDD & \(471.7750+\) + 5 ppm & \(469.7779+\) +- 5 ppm & 49.04 & 49.05 & 49.05 & 49.05 & passed & passed \\
\hline 37 & 13C42-OCDF & \(455.7802+\) + 5 ppm & \(453.7831+/ .5 \mathrm{ppm}\) & 49.22 & 49.23 & 49.23 & 49.22 & passed & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & \[
\begin{aligned}
& \text { QM Retention } \\
& \text { Time } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
RM1 Ratio \\
(A)
\end{tabular} & \[
\begin{aligned}
& \text { Ratio1 } \\
& \text { Limit }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Ratio1 } \\
& \text { Status }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Percent } \\
& \text { Recovery (A) }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Recovery } \\
& \text { Limit }
\end{aligned}
\] & & Recovery Status & \\
\hline 1 & 2378-TCDF & 30.98 & 0.9896 & 0.6450 - & 0.8950 & failed & & -- & 0. & 0 & & passed \\
\hline 2 & 2378-TCDD & 32.03 & 0.4851 & 0.6450 - & 0.8950 & failed & & -- & 0 - & 0 & & passed \\
\hline 3 & 12378 -PeCDF & 36.54 & 1.4369 & 1.3150 - & 1.7850 & passed & & -- & 0. & 0 & & passed \\
\hline 4 & 23478-PeCDF & 37.76 & 1.8997 & 1.3150 - & 1.7850 & failed & & -- & 0 - & 0 & & passed \\
\hline 5 & 12378-PeCDD & 38.15 & 2.2288 & 1.3150 - & 1.7850 & failed & & -- & 0 - & 0 & & passed \\
\hline 6 & 123478 -HxCDF & 41.34 & 1.2472 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 7 & 123678 - HXCDF & 41.50 & 1.4191 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 8 & 234678-HxCDF & 42.17 & 1.3847 & 1.0450 - & 1.4350 & passed & & -- & 0. & 0 & & passed \\
\hline 9 & \(123478-\mathrm{HxCDD}\) & 42.35 & 1.6879 & 1.0450 - & 1.4350 & failed & & -- & 0. & 0 & & passed \\
\hline 10 & 123678-HXCDD & 42.47 & 1.0809 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 11 & \(123789-\mathrm{HxCDD}\) & 42.79 & 1.2952 & 1.0450 - & 1.4350 & passed & & -- & 0. & 0 & & passed \\
\hline 12 & 123789 - HXCDF & 43.17 & 1.3484 & 1.0450 - & 1.4350 & passed & & -- & 0. & 0 & & passed \\
\hline 13 & 1234878-HpCDF & 44.87 & 1.0926 & 0.8750 - & 1.2050 & passed & & -- & 0. & 0 & & passed \\
\hline 14 & 1234678-HpCDD & 46.04 & 1.0697 & 0.8750 - & 1.2050 & passed & & -- & 0 - & 0 & & passed \\
\hline 15 & 1234789-HpCDF & 46.61 & 1.1736 & 0.8750 - & 1.2050 & passed & & -- & 0. & 0 & & passed \\
\hline 16 & OCDD & 49.05 & 0.8989 & 0.7550 - & 1.0250 & passed & & -- & 0. & 0 & & passed \\
\hline 17 & OCDF & 49.25 & 0.7884 & 0.7550 - & 1.0250 & passed & & - & 0 - & 0 & & passed \\
\hline 18 & 13C12-1278-TCDD (CRS) & 32.39 & 0.8194 & 0.6450 - & 0.8950 & passed & & 37.82 & 35. & 197 & & passed \\
\hline 19 & 13C12-1234-TCDD & 31.24 & 0.8334 & 0.6450 - & 0.8950 & passed & & 100.00 & 0 - & 0 & & passed \\
\hline 20 & 13C12-123468-HxCDD & 41.23 & 1.2421 & 1.0450 - & 1.4350 & passed & & 100.00 & 0. & 0 & & passed \\
\hline 21 & 13C12-2378-TCDF & 30.97 & 0.8022 & 0.6450 - & 0.8950 & passed & & 72.93 & 40. & 135 & & passed \\
\hline 22 & 13C12-2378-TCDD & 31.99 & 0.8082 & 0.6450 - & 0.8950 & passed & & 74.28 & 40. & 135 & & passed \\
\hline 23 & 13C12-12378-PeCDF & 36.53 & 1.6221 & \(1.3150-\) & 1.7850 & passed & & 88.77 & 40. & 135 & & passed \\
\hline 24 & 13C12-23478-PeCDF & 37.75 & 1.5747 & 1.3150. & 1.7850 & passed & & 84.26 & 40. & 135 & & passed \\
\hline 25 & 13C12-12378-PeCDD & 38.13 & 1.6192 & 1.3150 - & 1.7850 & passed & & 85.85 & 40. & 135 & & passed \\
\hline 26 & 13C12-123478-HxCDF & 41.32 & 0.5300 & 0.4250 - & 0.5950 & passed & & 79.78 & 40. & 135 & & passed \\
\hline 27 & 13C12-123678-HxCDF & 41.47 & 0.5252 & 0.4250 - & 0.5950 & passed & & 88.97 & 40. & 135 & & passed \\
\hline 28 & 13C12-234678-HxCDF & 42.16 & 0.5372 & 0.4250 - & 0.5950 & passed & & 79.83 & 40. & 135 & & passed \\
\hline 29 & 13C12-123478-HxCDD & 42.35 & 1.2695 & 1.0450 - & 1.4350 & passed & & 87.13 & \(40-\) & 135 & & passed \\
\hline 30 & 13C12-123678-HxCDD & 42.45 & 1.2516 & 1.0450 - & 1.4350 & passed & & 85.00 & \(40-\) & 135 & & passed \\
\hline 31 & 13C12-123789-HxCDD & 42.76 & 1.2417 & 1.0450 - & 1.4350 & passed & & 86.96 & \(40-\) & 135 & & passed \\
\hline 32 & 13C12-123789-HxCDF & 43.16 & 0.5374 & \(0.4250-\) & 0.5950 & passed & & 74.15 & \(40-\) & 135 & & passed \\
\hline 33 & 13C12-1234678-HPCDF & 44.85 & 0.4568 & 0.3650 - & 0.5150 & passed & & 103.41 & 40. & 135 & & passed \\
\hline 34 & 13C12-1234678-HpCDD & 46.03 & 1.0498 & 0.8750 - & 1.2050 & passed & & 91.77 & 40. & 135 & & passed \\
\hline 35 & 13C12-1234789-HpCDF & 46.60 & 0.4658 & 0.3650 - & 0.5150 & passed & & 76.52 & 40. & 135 & & passed \\
\hline 36 & 13C12-OCDD & 49.05 & 0.8875 & 0.7550 - & 1.0250 & passed & & 91.69 & \(40-\) & 135 & & passed \\
\hline 37 & 13C12-OCDF & 49.23 & 0.8978 & 0.7550 - & 1.0250 & passed & & 75.26 & 40. & 135 & & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & Status Overview & \[
\begin{aligned}
& \text { QM Retention } \\
& \text { Time }
\end{aligned}
\] & QM Area & \[
\begin{aligned}
& \text { QM } \\
& \text { Mode }
\end{aligned}
\] & & RM1 Area & RM1 Mode & & Detection Limit (A) & Unqualified Amount (A) & & Adjusted Amount (A) & AdjSpecAMT & Signal-to-Noise & \[
\begin{aligned}
& \text { Client } \\
& \text { Flags }
\end{aligned}
\] \\
\hline 1 & 2378-TCDF & failed & 30.98 & 1911 & & A & 1891 & & A & 0.0375 & & 0.318014 & n.d. & 0.000000 & 21 & \\
\hline 2 & 2378-TCDD & failed & 32.03 & 318 & & A & 154 & & A & 0.0136 & & 0.061598 & n.d. & 0.000000 & 14 & \\
\hline 3 & 12378 -PeCDF & passed & 36.54 & 2633 & & A & 3784 & & A & 0.0199 & & 0.508956 & 0.5090 & 0.000000 & 61 & \\
\hline 4 & 23478-PeCDF & failed & 37.76 & 3832 & & A & 7279 & & A & 0.0179 & & 0.835875 & n.d. & 0.000000 & 80 & \\
\hline 5 & 12378 -PeCDO & failed & 38.15 & 863 & & A & 1922 & & A & 0.0236 & & 0.370481 & n.d. & 0.000000 & 45 & \\
\hline 6 & 123478-HxCDF & passed & 41.34 & 2494 & & A & 3111 & & A & 0.0222 & & 0.441547 & 0.4415 & 0.000000 & 49 & \\
\hline 7 & \(123678-\mathrm{HxCDF}\) & passed & 41.50 & 2589 & & A & 3674 & & A & 0.0194 & & 0.429490 & 0.4295 & 0.000000 & 59 & \\
\hline 8 & 234678-HxCDF & passed & 42.17 & 2244 & & A & 3108 & & A & 0.0209 & & 0.419003 & 0.4190 & 0.000000 & 50 & \\
\hline 9 & \(123478-\mathrm{H} \times\) CDD & failed & 42.35 & 946 & & A & 1596 & & A & 0.0230 & & 0.285766 & n.d. & 0.000000 & 37 & \\
\hline 10 & 123678-HxCDO & passed & 42.47 & 3528 & & A & 3813 & & A & 0.0222 & & 0.822382 & 0.8224 & 0.000000 & 92 & \\
\hline 11 & \(123789-\mathrm{H} \times\) CDD & passed & 42.79 & 1608 & & A & 2082 & & A & 0.0218 & & 0.397732 & 0.3977 & 0.000000 & 46 & \\
\hline 12 & \(123789-\mathrm{HxCDF}\) & passed & 43.17 & 1614 & & A & 2176 & & A & 0.0264 & & 0.355167 & 0.3552 & 0.000000 & 30 & \\
\hline 13 & 1234678-HPCDF & passed & 44.87 & 15095 & & A & 16492 & & A & 0.0118 & & 2.046364 & 2.0464 & 0.000000 & 429 & \\
\hline 14 & 1234678-HPCDD & passed & 46.04 & 5132 B & & A & 54906 & & A & 0.0373 & & 11.992395 & 11.9924 & 0.000000 & 809 & \\
\hline 15 & 1234789-HpCDF & passed & 46.61 & 1389 & & A & 1630 & & A & 0.0184 & & 0.299853 & 0.2999 & 0.000000 & 40 & \\
\hline 16 & OCDD & passed & 49.05 & 698744 & & A & 628080 & & A & 0.0373 & & 172.521839 & 172.5218 & 0.000000 & 11744 & \\
\hline 17 & OCDF & passed & 49.25 & 23261 & & A & 18339 & & A & 0.0175 & & 4.896454 & 4.8965 & 0.000000 & 699 & \\
\hline 18 & 13C12-1278-TCDD (CRS) & passed & 32.39 & 175833 & & A & 144071 & & A & 0.0202 & & 29.375621 & 29.3759 & 77.669903 & 3740 & \\
\hline 19 & 13C12-1234-TCDD & passed & 31.24 & 898129 & & A & 748500 & & A & 0.0256 & & 194.174757 & 194.1748 & 194.174757 & 18991 & \\
\hline 20 & 13C12-123468-HxCDO & passed & 41.23 & \(91250 \dagger\) & & A & 1133419 & & A & 0.0383 & & 194.174757 & 194.1748 & 194.174757 & 12663 & \\
\hline 21 & 13C12-2378-TCDF & passed & 30.97 & 1244788 & & A & 988586 & & A & 0.0197 & & 141.614743 & 141.6147 & 194.174757 & 17815 & \\
\hline 22 & 13C12-2378-TCDD & passed & 31.99 & 666288 & & A & 538503 & & A & 0.0260 & & 144.238386 & 144.2384 & 194.174757 & 14841 & \\
\hline 23 & 13C12-12378-PeCDF & passed & 36.53 & 962754 & & A & 1561686 & & A & 0.0778 & & 172.367305 & 172.3673 & 184.174757 & 7305 & \\
\hline 24 & 13C12-23478-PeCDF & passed & 37.75 & 929443 & & A & 1463624 & & A & 0.0779 & & 163.604359 & 163.6044 & 194.174757 & 7328 & \\
\hline 25 & \(13 \mathrm{C} 12-12378\) PeCDD & passed & 38.13 & 526197 & & A & 851996 & & A & 0.0475 & & 166.708205 & 166.7082 & 194.174757 & 12427 & \\
\hline 26 & 13C12-123478-HxCDF & passed & 41.32 & \$371134 & & A & 726641 & & A & 0.0439 & & 154.921064 & 154.9211 & 194.174757 & 8745 & \\
\hline 27 & 13C12-123678-HxCDF & passed & 41.47 & 1613543 & & A & 847444 & & A & 0.0417 & & 172.753303 & 172.7533 & 194.174757 & 10215 & \\
\hline 28 & 13C12-234678-H×CDF & passed & 42.16 & 1332823 & & A & 716010 & & A & 0.0450 & & 155.014976 & 155.0150 & 194.174757 & 9027 & \\
\hline 29 & 13C12-123478-HxCDD & passed & 42.35 & 743086 & & A & 943336 & & A & 0.0405 & & 169.177051 & 169.1771 & 194.174757 & 10871 & \\
\hline 30 & 13C12-123678-HxCDD & passed & 42.45 & 753889 & & A & 843559 & & A & 0.0393 & & 165.052496 & 165.0525 & 194.174757 & 11062 & \\
\hline 31 & 13C12-123789-HxCDD & passed & 42.76 & 741403 & & A & 920614 & & A & 0.0410 & & 168.860284 & 188.8603 & 194.174757 & 10643 & \\
\hline 32 & 13C12-123789-HxCDF & passed & 43.16 & 1168394 & & A & 627876 & & A & 0.0477 & & 143.982788 & 143.9828 & 194.174757 & 7511 & \\
\hline 33 & 13C 12-1234678-HpCDF & passed & 44.85 & 1604725 & & A & 733065 & & A & 0.0605 & & 200.797641 & 200.7976 & 194.174757 & 8871 & \\
\hline 34 & 13C12-1234678-HPCDD & passed & 46.03 & 792431 & & A & 831895 & & A & 0.0531 & & 178.203065 & 178.2031 & 194.174757 & 9086 & \\
\hline 35 & 13C12-1234789-HpCDF & passed & 46.60 & 1007898 & & A & 469444 & & A & 0.0708 & & 148.585244 & 148.5852 & 194.174757 & 5539 & \\
\hline 36 & 13 C 12 -OCDD & passed & 49.05 & 1549227 & & A & 1374974 & & A & 0.0365 & & 356.076054 & 356.0761 & 388.349515 & 26936 & \\
\hline 37 & 13C12-OCDF & passed & 49.23 & 1863533 & & A & 1673161 & & A & 0.0286 & & 292.271781 & 292.2718 & 388349515 & 30858 & \\
\hline
\end{tabular}

RT: 22.50-51.00




RT: 39.20-44.50


RT: 41.50
AA: 3692
RT: 42.17


\(\overline{R T}: 47.90-51.20\)


NL
7.42E3
\(\mathrm{m} / \mathrm{z}=\)
443.2399-
444.2399

MS ICIS
17FEB0718

NL:
6.19 E3
m/z=
441.2428-
442.2428 MS ICIS 17FEB0718

NL: 6.05 E5
m/z= 455.2802456.2802 MS ICIS 17FEB0718

RT: 48.10
AA: \(8.10 \quad\) RT: 48.71 RT: 49.05
AA: 18.41 AA: 1727
: 48.58
RT: 49.30 RT: 49.59 RT: 49.96 RT: 50.40 RT: 50.65 RT: 50.93 \(A A: 9476\) AA: 507 AA: 292 AA: 328 AA: 192 AA: 88.10

\section*{AA: 11.61}

RT: 48.15
AA: 33.42

RT: 48.70 AA: 57.09 AA: 573

RT: 49.31
AA: 148

RT: 50.01 RT: 50.17 RT: 50.62 RT: 50.84 \(A A: 154 \quad A A: 106 \quad A A: 148 \quad A A: 42,85\)

RT: 49.25
(100
AA: 18351
-
```

Started by
- Xcalibur
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SNOOOOXXXX
workstation internet name - LX18470

```
    Analysis started at: 08-Feb-17 01:25:33
    Analysis will stop at user request
    Firmware Version: 2.02
    MCAL file name:
    Sequence : ef723472-e848-43e5-a9f2-e1bcce0ed473
    MID procedure: PFK16MAR24+MDT
    Mid Time Windows:
            Start Measure End Cycletime
\begin{tabular}{|c|c|c|c|c|}
\hline \# 1 & 11:30 m & m & 21:00 min & 00 \\
\hline \# 2 & 21:00 min & 13:36 min & 34:36 min & 1.00 sec \\
\hline \# 3 & 34:36 min & 4:53 min & 39:30 min & 0.90 sec \\
\hline \# 4 & 39:30 min & 4:45 min & 44:15 min & 0.80 sec \\
\hline 5 & 44:15 min & 3:45 min & 48:00 min & 0.80 sec \\
\hline & 48:00 min & 3:00 m & 51:00 m & 0.80 \\
\hline
\end{tabular}

Mid Masses:
window \# 1
\begin{tabular}{cccc} 
mass & \(F\) & int & gr \\
time (ms) \\
218.0129 & 1 & 1 & 95 \\
218.9851 & 1 & 20 & 1 \\
220.0100 & 1 & 1 & 94 \\
230.0532 & 2 & 1 & 47 \\
232.0502 & 2 & 1 & 47 \\
251.9739 & 1 & 1 & 95 \\
253.9710 & 1 & 1 & 95 \\
264.0142 & 2 & 1 & 47 \\
266.0112 & 2 & 1 & 47 \\
285.9350 & 1 & 1 & 95 \\
287.9320 & 1 & 1 & 95 \\
292.9819 & 20 & 1 & 4 \\
297.9752 & 2 & 1 & 47 \\
299.9723 & 2 & 1 & 47 \\
Window \#2 & & & \\
mass \(F\) & int & gr & time (ms) \\
292.9819 & 20 & 1 & 5 \\
303.9011 & 1 & 1 & 118 \\
305.8981 & 1 & 1 & 118 \\
315.9413 & 5 & 1 & 23 \\
317.9384 & 5 & 1 & 23 \\
319.8960 & 1 & 1 & 118 \\
321.8930 & 1 & 1 & 118
\end{tabular}


MID Window terminated after 21.000000 minutes MID Window end time was 21.000000 minutes MID Window terminated after 34.600000 minutes MID Window end time was 34.600000 minutes

17FEB07-18
MID Window terminated after 39.500000 minutes MID Window end time was 39.500000 minutes MID Window terminated after 44.250000 minutes MID window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\Xcalibur\System\DFS \(\backslash M S I \backslash 17 J A N 26: D F S T u n e\)
DFS - Parameter
\begin{tabular}{|c|c|c|c|c|c|}
\hline ACCU & 1000.0000 & BCORRS & 0.0170 & BMASS & 96.5000 \\
\hline BQUAD & 0.0500 & CAPIL & 0.0000 & CAPTSET & 0.0000 \\
\hline CCURR & 0.0000 & COUNTING & 0.0000 & DELAY & 0.0000 \\
\hline DRAW & -25.0000 & DRAWC & 0.0000 & DRAWS & 0.0000 \\
\hline DYNVOLTAGE & 20.0000 & ECORR & 0.9995 & ECURR & 1.0000 \\
\hline EDAC & 7969177.0000 & EDACG & 1.0000 & EDACZ & 61.3333 \\
\hline ELEN & -45.0000 & EMULT & 1300.0000 & ENS & 173.0000 \\
\hline ENSBR & 0.0500 & eratio & 1.0000 & ESA & 679.0600 \\
\hline ESIPAR & 0.0000 & EXS & 172.0000 & EXSBR & -0.4700 \\
\hline FDMA & 18000000.0000 & FILTER & 100.0000 & FLENS & 1.0000 \\
\hline FM & 10.0000 & FMII & 50.0000 & FQUAD & 12.3500 \\
\hline FQUADGAIN & 1.0000 & FREQ & 400.0000 & FSLOPE & 36000000.0000 \\
\hline FVANAL & 0.0176 & FVINLET & 0.0301 & FVSRC & 0.0289 \\
\hline FWIN & 0.7000 & HCURR & 0.0000 & hVanal & 0.0000 \\
\hline HVSRC & 0.0000 & ICALO & 0.0011 & ICAL1 & 0.4030 \\
\hline ICAL2 & 0.5865 & IONEN & 0.0000 & IST & 0.0000 \\
\hline ISTC & 260.0000 & ISTS & 260.0000 & LENS_POT & 714.0000 \\
\hline LENS_SYM & 14.3000 & LM & 1050.0000 & LMII & 500.0000 \\
\hline LMASS & 96.5000 & LKM & 442.9723 & MASS & 96.5000 \\
\hline MDAC & 1441808.5140 & MRANGE & 1304.6486 & NSAM & 200.0000 \\
\hline NSCAN & 2525.0000 & NSMAX & 8.0000 & NSMIN & 66.0000 \\
\hline NPEAK & 11.0000 & MULT & 0.0000 & PSAM & 10.0000 \\
\hline PUSHER & -9.0000 & RECURR & 0.8943 & ReLen & 0.0000 \\
\hline RES & 12502.5077 & RPUSHER & -8.6813 & RDRAW & 0.0000 \\
\hline RDRAWC & 0.0000 & RWIN & 2.0000 & SCIDLE & 0.0000 \\
\hline SHIELD_POT & 638.0000 & SHIELD_SYM & 0.0000 & SHIGH & 1050.0000 \\
\hline SKIM & 0.0000 & SLOW & 10.0000 & SS & 2.0000 \\
\hline SW & 0.0206 & tanal & 0.0000 & TCURR & 0.0000 \\
\hline TD & 30.0000 & TS & 60.6748 & THRESH & 2.0000 \\
\hline TIS & 0.2000 & TREF & 100.0000 & TSAM & 200.0000 \\
\hline TSET & 0.0000 & TUBEL & 0.0000 & UROT & 0.0000 \\
\hline USERVAR & 0.0000 & UTQ1 & 150.0000 & UTQ2 & 190.0000 \\
\hline UTQ3 & 80.0000 & VMASS & 96.5000 & XLENS_POT & 896.0000 \\
\hline XLENS_SYM & -8.5000 & YLENS_POT & 568.0000 & YLENS_SYM & 0.0000 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Source Gauge: & \(1.9 \mathrm{e}-005 \mathrm{mbar}\) \\
Analyzer Penning: & \(5.1 \mathrm{e}-008 \mathrm{mbar}\) \\
Pirani Analyse: & \(1.8 \mathrm{e}-002 \mathrm{mbar}\) \\
Pirani Source: & \(2.9 \mathrm{e}-002\) mbar \\
Pirani Inlet System: & \(3.0 \mathrm{e}-002\) mbar
\end{tabular}

Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 11825.
MID Time Window 2: Resolution is 12886.
MID Time Window 3: Resolution is 12462.
MID Time Window 4: Resolution is 12233.
Page 3

17FEB07-18

\footnotetext{
MID Time Window 5: Resolution is 13629.
MID Time Window 6: Resolution is 12502.
Amplifier offset: 87.
\(\approx \approx *\) File closed Wed Feb 08 02:16:36 2017
***
}

\section*{Quantitation Settings}

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
\begin{tabular}{ll} 
QualBrowser Compatibility & Compatibility off \\
Sum Area/Height & Sum QM RM1 \\
Quantitation Status & Dependend on Area \\
Injection Volume [hIJV] & 1.0 \\
Sample Volume [hSV] & 20.0 \\
Sample Weight [hSWT] & 10.16 \\
Dilution Factor [hDF] & 1.0 \\
Det. Limit Factor [hDLF] & 2.5 \\
Response Factor Mode & Average RF \\
Fit Calc. Mode & Linear Fit \\
Regression Mode & Non weighted Regression \\
Weighted Regression Factor & 1.0
\end{tabular}
\(y: 117 f e b 07 \backslash 17 f e b 07-19 . q u a n\)
\(y: 117\) feb07117feb07-19.raw
\(y\) :\responsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
0.0
10.16
1.0

Average RF
Linear Fit
1.0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & QM Retention Time & Status Overview & Amount Status & RM1 Time Status & \[
\left\lvert\, \begin{aligned}
& \text { Ratio1 } \\
& \text { Status }
\end{aligned}\right.
\] & Recovery Status & Native vs Labeled Time Status & Status Info & \\
\hline 1 & 2378-TCDF & 30.99 & passed & passed & passed & passed & passed & passed & & \\
\hline 2 & 2378-TCDD & 32.03 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1A \\
\hline 3 & 12378-PeCDF & 36.53 & passed & passed & passed & passed & passed & passed & & \\
\hline 4 & 23478-PeCDF & 37.76 & passed & passed & passed & passed & passed & passed & & \\
\hline 5 & 12378-PeCDD & 38.15 & failed & passed & passed & failed & passed & passed & & Failed on: Ratic 1A \\
\hline 6 & 123478-HxCDF & 41.34 & passed & passed & passed & passed & passed & passed & & \\
\hline 7 & 123678-HxCDF & 41.49 & passed & passed & passed & passed & passed & passed & & \\
\hline 8 & 234678-HxCDF & 42.18 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1A \\
\hline 9 & 123478-HxCDD & 42.37 & passed & passed & passed & passed & passed & passed & & \\
\hline 10 & 123678-HxCDD & 42.47 & passed & passed & passed & passed & passed & passed & & \\
\hline 11 & 123789-HxCDD & 42.78 & passed & passed & passed & passed & passed & passed & & \\
\hline 12 & 123789-HxCDF & 43.17 & passed & passed & passed & passed & passed & passed & & \\
\hline 13 & 1234678-HpCDF & 44.86 & passed & passed & passed & passed & passed & passed & & \\
\hline 14 & 1234678-HpCDD & 46.05 & passed & passed & passed & passed & passed & passed & & \\
\hline 15 & 1234789-HpCDF & 46.62 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1a \\
\hline 16 & OCDD & 49.05 & passed & passed & passed & passed & passed & passed & & \\
\hline 17 & OCDF & 49.24 & passed & passed & passed & passed & passed & passed & & \\
\hline 18 & 13C12-1278-TCDD (CRS) & 32.39 & passed & passed & passed & passed & passed & passed & & \\
\hline 19 & 13C12-1234-TCDD & 31.24 & passed & passed & passed & passed & passed & passed & & \\
\hline 20 & 13C12-123468-HxCDD & 41.23 & passed & passed & passed & passed & passed & passed & & \\
\hline 21 & 13C12-2378-TCDF & 30.97 & passed & passed & passed & passed & passed & passed & & \\
\hline 22 & 13C12-2378-TCDD & 32.00 & passed & passed & passed & passed & passed & passed & & \\
\hline 23 & 13C12-12378-PeCDF & 36.53 & passed & passed & passed & passed & passed & passed & & \\
\hline 24 & 13C12-23478-PeCDF & 37.75 & passed & passed & passed & passed & passed & passed & & \\
\hline 25 & 13C12-12378-PeCDD & 38.13 & passed & passed & passed & passed & passed & passed & & \\
\hline 26 & 13C12-123478-HxCDF & 41.33 & passed & passed & passed & passed & passed & passed & & \\
\hline 27 & 13C12-123678-HxCDF & 41.48 & passed & passed & passed & passed & passed & passed & & \\
\hline 28 & 13C12-234678-HxCDF & 42.16 & passed & passed & passed & passed & passed & passed & & \\
\hline 29 & 13C12-123478-HixCDD & 42.34 & passed & passed & passed & passed & passed & passed & & \\
\hline 30 & 13C12-123678-HxCDD & 42.46 & passed & passed & passed & passed & passed & passed & & \\
\hline 31 & 13C12-123789-HxCDD & 42.77 & passed & passed & passed & passed & passed & passed & & \\
\hline 32 & 13C12-123789-HxCDF & 43.16 & passed & passed & passed & passed & passed & passed & & \\
\hline 33 & 13C12-1234678-HpCDF & 44.85 & passed & passed & passed & passed & passed & passed & & \\
\hline 34 & 13C12-1234678-HpCDD & 46.04 & passed & passed & passed & passed & passed & passed & & \\
\hline 35 & 13C12-1234789-HpCDF & 46.60 & passed & passed & passed & passed & passed & passed & & \\
\hline 36 & 13C12-OCDD & 49.04 & passed & passed & passed & passed & passed & passed & & \\
\hline 37 & 13C12-OCDF & 49.23 & passed & passed & passed & passed & passed & passed & & \\
\hline
\end{tabular}

\section*{Quantitation Settings}

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibilit
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/08 02:16
285
S:11030:12937:15831
104
SW-846 8290A Feb 2007 Rev 117031003 BB19M ARS1-17-00216-004 Soil
8807305
DF18471-17FEB07
ARS International LLC
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
17031003
y:117feb07\17feb07-19.quan
\(y: 117 f e b 07 \backslash 17 f e b 07-19\). raw
y:Iresponsefiles \df18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.16
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

\section*{Chromatogram}

RT: 30.00-32.00 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & 2378-TCDF \\
QM Retention Time & 30.99 \\
QM Area & 322 \\
QM Integration Mode & A \\
RM1 Area & 269 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0167 \\
Unqualified Amount (A) & 0.042644 \\
Adjusted Amount (A) & 0.0426 \\
Signal-to-Noise & 11 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(2378-T C D D\) \\
QM Retention Time & 32.03 \\
QM Area & 113 \\
QM Integration Mode & A \\
RM1 Area & 37 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0149 \\
Unqualified Amount (A) & 0.017500 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 5 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(12378-P e C D F\) \\
QM Retention Time & 36.53 \\
QM Area & 746 \\
QM Integration Mode & A \\
RM1 Area & 1257 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0111 \\
Unqualified Amount (A) & 0.144290 \\
Adjusted Amount (A) & 0.1443 \\
Signal-to-Noise & 31 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 36.76-38.76 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(23478-\mathrm{PeCDF}\) \\
QM Retention Time & 37.76 \\
QM Area & 839 \\
QM Integration Mode & A \\
RM1 Area & 1281 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0098 \\
Unqualified Amount (A) & 0.140690 \\
Adjusted Amount (A) & 0.1407 \\
Signal-to-Noise & 26 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(12378-P e C D D\) \\
QM Retention Time & 38.15 \\
QM Area & 658 \\
QM Integration Mode & A \\
RM1 Area & 847 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0301 \\
Unqualified Amount (A) & 0.176842 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 14 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123478-\mathrm{HxCDF}\) \\
QM Retention Time & 41.34 \\
QM Area & 1335 \\
QM Integration Mode & A \\
RM1 Area & 1568 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0204 \\
Unqualified Amount (A) & 0.205179 \\
Adjusted Amount (A) & 0.2052 \\
Signal-to-Noise & 25 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123678-\mathrm{HxCDF}\) \\
QM Retention Time & 41.49 \\
QM Area & 1912 \\
QM Integration Mode & A \\
RM1 Area & 2527 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0186 \\
Unqualified Amount (A) & 0.284068 \\
Adjusted Amount (A) & 0.2841 \\
Signal-to-Noise & 37 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.18-43.18 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(234678-\mathrm{HxCDF}\) \\
QM Retention Time & 42.18 \\
QM Area & 2250 \\
QM Integration Mode & A \\
RM1 Area & 3266 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0204 \\
Unqualified Amount (A) & 0.388415 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 48 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123478-\mathrm{HxCDD}\) \\
QM Retention Time & 42.37 \\
QM Area & 1151 \\
QM Integration Mode & A \\
RM1 Area & 1486 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0213 \\
Unqualified Amount (A) & 0.279522 \\
Adjusted Amount (A) & 0.2795 \\
Signal-to-Noise & \(\mathbf{3 7}\) \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.47-43.47 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123678-\mathrm{HxCDD}\) \\
QM Retention Time & 42.47 \\
QM Area & 5649 \\
QM Integration Mode & A \\
RM1 Area & 6536 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0208 \\
Unqualified Amount (A) & 1.290683 \\
Adjusted Amount (A) & 1.2907 \\
Signal-to-Noise & 160 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.78-43.78 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123789-\mathrm{HxCDD}\) \\
QM Retention Time & 42.78 \\
QM Area & 2051 \\
QM Integration Mode & A \\
RM1 Area & 2377 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0207 \\
Unqualified Amount (A) & 0.461169 \\
Adjusted Amount (A) & 0.4612 \\
Signal-to-Noise & 56 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}
RT: 42.17-44.17 SM: 3G

\begin{tabular}{ll} 
Entry Parameters & \\
& \\
Compound Name & \(123789-\mathrm{HxCDF}\) \\
QM Retention Time & 43.17 \\
QM Area & 807 \\
QM Integration Mode & A \\
RM1 Area & 1151 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0226 \\
Unqualified Amount (A) & 0.152294 \\
Adjusted Amount (A) & 0.1523 \\
Signal-to-Noise & 18 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 43.86-45.86 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(1234678-\mathrm{HpCDF}\) \\
QM Retention Time & 44.86 \\
QM Area & 36518 \\
QM Integration Mode & A \\
RM1 Area & 40223 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0198 \\
Unqualified Amount (A) & 5.027382 \\
Adjusted Amount (A) & 5.0274 \\
Signal-to-Noise & 628 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 45.05-47.05 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(1234678-\) HpCDD \\
QM Retention Time & 46.05 \\
QM Area & 111816 \\
QM Integration Mode & A \\
RM1 Area & 111137 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0363 \\
Unqualified Amount (A) & 24.181691 \\
Adjusted Amount (A) & 24.1817 \\
Signal-to-Noise & 1669 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 45.62-47.62 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(1234789-\mathrm{HpCDF}\) \\
QM Retention Time & 46.62 \\
QM Area & 2655 \\
QM Integration Mode & A \\
RM1 Area & 3379 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0249 \\
Unqualified Amount (A) & 0.519432 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 54 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

RT: 48.05-50.05 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & OCDD \\
QM Retention Time & 49.05 \\
QM Area & 763085 \\
QM Integration Mode & A \\
RM1 Area & 668603 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0330 \\
Unqualified Amount (A) & 173.315705 \\
Adjusted Amount (A) & 173.3157 \\
Signal-to-Noise & 13125 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Chromatogram
RT: 48.24-50.24 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & OCDF \\
QM Retention Time & 49.24 \\
QM Area & 55561 \\
QM Integration Mode & A \\
RM1 Area & 47230 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0148 \\
Unqualified Amount (A) & 10.588891 \\
Adjusted Amount (A) & 10.5889 \\
Signal-to-Noise & 1807 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 31.37-33.37 SM: 5G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & 13C12-1278-TCDD (CRS) \\
QM Retention Time & 32.39 \\
QM Area & 193180 \\
QM Integration Mode & A \\
RM1 Area & 148630 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0202 \\
Unqualified Amount (A) & 31.862559 \\
Adjusted Amount (A) & 31.8626 \\
Signal-to-Noise & 4014 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & \[
\begin{aligned}
& \text { Quan. } \\
& \text { Mass }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ratio } \\
& \text { Mass } 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Specified } \\
& \text { RT [min] }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QM Retention } \\
& \text { Time }
\end{aligned}
\] & \begin{tabular}{l}
RM1 Retention \\
Time
\end{tabular} & Labeled RT & \[
\begin{aligned}
& \text { RM1 Time } \\
& \text { Status } \\
& \hline
\end{aligned}
\] & Native vs Labeled Time Status \\
\hline 1 & 2378-TCDF & 305.8987 +/- 5 ppm & \(303.9016+/-5 \mathrm{ppm}\) & 30.98 & 30.99 & 30.97 & 30.97 & passed & passed \\
\hline 2 & 2378-TCDD & \(321.8936+/-5 \mathrm{ppm}\) & \(319.8965+/ .5 \mathrm{ppm}\) & 32.01 & 32.03 & 32.00 & 32.00 & passed & passed \\
\hline 3 & 12378-PeCDF & \(341.8567+\) - 5 ppm & \(339.8597+/ .5 \mathrm{ppm}\) & 36.54 & 36.53 & 36.56 & 36.53 & passed & passed \\
\hline 4 & 23478-PeCDF & \(341.8567+\) +- 5 ppm & \(339.8597+\) - 5 ppm & 37.76 & 37.76 & 37.79 & 37.75 & passed & passed \\
\hline 5 & 12378-PeCDD & \(357.8516+/ .5 \mathrm{ppm}\) & \(355.8546+1.5 \mathrm{ppm}\) & 38.15 & 38.15 & 38.15 & 38.13 & passed & passed \\
\hline 6 & 123478 - \(\mathrm{H} \times \mathrm{CDF}\) & \(375.8178+/-5 \mathrm{ppm}\) & \(373.8208+/-5 \mathrm{ppm}\) & 41.34 & 41.34 & 41.34 & 41.33 & passed & passed \\
\hline 7 & 123678 -HxCDF & 375.8178 +/-5 ppm & \(373.8208+/-5 \mathrm{ppm}\) & 41.49 & 41.49 & 41.49 & 41.48 & passed & passed \\
\hline 8 & \(234678-\mathrm{HXCDF}\) & 375.8178 +/-5 ppm & \(373.8208+/ .5 \mathrm{ppm}\) & 42.16 & 42.18 & 42.18 & 42.16 & passed & passed \\
\hline 9 & 123478-HxCDD & \(391.8127+/-5 \mathrm{ppm}\) & \(389.8157+/-5 \mathrm{ppm}\) & 42.35 & 42.37 & 42.37 & 42.34 & passed & passed \\
\hline 10 & 123678-HxCDD & \(391.8127+/-5 \mathrm{ppm}\) & \(389.8157+/ .5 \mathrm{ppm}\) & 42.47 & 42.47 & 42.49 & 42.46 & passed & passed \\
\hline 11 & 123789-HxCDD & \(391.8127+\) + 5 ppm & \(389.8157+/ .5 \mathrm{ppm}\) & 42.78 & 42.78 & 42.78 & 42.77 & passed & passed \\
\hline 12 & \(123789-\mathrm{HxCDF}\) & \(375.8178+\) +-5 ppm & \(373.8208+/-5 \mathrm{ppm}\) & 43.17 & 43.17 & 43.19 & 43.16 & passed & passed \\
\hline 13 & 1234678-HpCDF & \(409.7789+/-5\) ppm & \(407.7818+/ .5 \mathrm{ppm}\) & 44.86 & 44.86 & 44.87 & 44.85 & passed & passed \\
\hline 14 & 1234678-HpCDD & \(425.7737+/-5 \mathrm{ppm}\) & \(423.7766+/-5 \mathrm{ppm}\) & 46.05 & 46.05 & 46.05 & 46.04 & passed & passed \\
\hline 15 & 1234789-HpCDF & \(409.7789+\) + 5 ppm & 407.7818 +/. 5 ppm & 46.61 & 46.62 & 46.62 & 46.60 & passed & passed \\
\hline 16 & OCDD & \(459.7348+1.5 \mathrm{ppm}\) & \(457.7377+\) + 5 ppm & 49.05 & 49.05 & 49.05 & 49.04 & passed & passed \\
\hline 17 & OCDF & \(443.7399+\) +- 5 ppm & \(441.7428+/ .5 \mathrm{ppm}\) & 49.24 & 49.24 & 49.24 & 49.23 & passed & passed \\
\hline 18 & 13C12-1278-TCDD (CRS) & \(333.9339++\) 5 ppm & 331.9368 +/-5 ppm & 32.37 & 32.39 & 32.39 & 32.39 & passed & passed \\
\hline 19 & 13C12-1234-TCDD & \(333.9339+\) +/ 5 ppm & \(331.9368+/-5 \mathrm{ppm}\) & 31.24 & 31.24 & 31.24 & 31.24 & passed & passed \\
\hline 20 & 13C12-123468-HxCDD & \(403.8529+\) +/-5 ppm & \(401.8559+/-5 \mathrm{ppm}\) & 41.23 & 41.23 & 41.23 & 41.23 & passed & passed \\
\hline 21 & 13C12-2378-TCDF & \(317.9389+/ .5\) ppm & \(315.9419+/ .5 \mathrm{ppm}\) & 30.95 & 30.97 & 30.97 & 30.97 & passed & passed \\
\hline 22 & 13C12-2378-TCDD & \(333.9339+/ .5 \mathrm{ppm}\) & \(331.9368+/-5 \mathrm{ppm}\) & 31.99 & 32.00 & 32.00 & 32.00 & passed & passed \\
\hline 23 & 13C12-12378-PeCDF & \(353.8970+\) +- 5 ppm & 351.9000 +/-5 ppm & 36.51 & 36.53 & 36.53 & 36.56 & passed & passed \\
\hline 24 & \(13 \mathrm{C} 12-23478-\mathrm{PeCDF}\) & \(353.8970+\) +- 5 ppm & 351.9000 +/-5 ppm & 37.75 & 37.75 & 37.75 & 37.84 & passed & passed \\
\hline 25 & 13C12-12378-PeCDD & \(369.8919+/-5 \mathrm{ppm}\) & \(367.8949+/ .5 \mathrm{ppm}\) & 38.12 & 38.13 & 38.13 & 38.13 & passed & passed \\
\hline 26 & 13C12-123478-HxCDF & \(385.8610+/-5 \mathrm{ppm}\) & 383.8639 +/-5ppm & 41.32 & 41.33 & 41.33 & 41.35 & passed & passed \\
\hline 27 & 13C12-123678-HxCDF & \(385.8610+/-5 \mathrm{ppm}\) & \(383.8639+/ .5 \mathrm{ppm}\) & 41.47 & 41.48 & 41.48 & 41.44 & passed & passed \\
\hline 28 & 13C12-234678-HxCDF & \(385.8610+/ .5 \mathrm{ppm}\) & \(383.8639+\) +-5 ppm & 42.15 & 42.16 & 42.16 & 42.10 & passed & passed \\
\hline 29 & 13C12-123478-HxCDD & \(403.8529+/ .5 \mathrm{ppm}\) & \(401.8559+/ .5 \mathrm{ppm}\) & 42.33 & 42.34 & 42.35 & 42.35 & passed & passed \\
\hline 30 & 13C12-123678-HxCDD & \(403.8529+1.5 \mathrm{ppm}\) & 401.8559 +/- 5 ppm & 42.46 & 42.46 & 42.46 & 42.46 & passed & passed \\
\hline 31 & 13C12-123789-HxCDD & \(403.8529+/ .5 \mathrm{ppm}\) & \(401.8559+/ .5 \mathrm{ppm}\) & 42.77 & 42.77 & 42.77 & 42.77 & passed & passed \\
\hline 32 & 13C12-123789-HxCDF & \(385.8610+/ .5 \mathrm{ppm}\) & \(383.8639+/-5 \mathrm{ppm}\) & 43.16 & 43.16 & 43.16 & 43.19 & passed & passed \\
\hline 33 & 13C12-1234678-HpCDF & \(419.8220+/ .5 \mathrm{ppm}\) & \(417.8253+/ .5 \mathrm{ppm}\) & 44.84 & 44.85 & 44.85 & 44.83 & passed & passed \\
\hline 34 & 13C12-1234678-HpCDD & \(437.8140+/-5 \mathrm{ppm}\) & \(435.8169+/ .5 \mathrm{ppm}\) & 46.03 & 46.04 & 46.04 & 46.04 & passed & passed \\
\hline 35 & 13C12-1234789-HpCDF & 419.8220 +/. 5 ppm & \(417.8253+1.5 \mathrm{ppm}\) & 46.60 & 46.60 & 46.60 & 46.56 & passed & passed \\
\hline 36 & 13C12-OCDD & \(471.7750+/ .5 \mathrm{ppm}\) & \(469.7779+/ .5 \mathrm{ppm}\) & 49.04 & 49.04 & 49.04 & 49.04 & passed & passed \\
\hline 37 & 13C12-OCDF & 455.7802 +/- 5 ppm & \(453.7831+\ldots .5 \mathrm{ppm}\) & 49.22 & 49.23 & 49.23 & 49.22 & passed & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & \[
\begin{aligned}
& \text { QM Retention } \\
& \text { Time } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { RM1 Ratio } \\
& \text { (A) } \\
& \hline
\end{aligned}
\] & Ratio1 Limit & & \[
\begin{aligned}
& \text { Ration } \\
& \text { Status }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Percent } \\
& \text { Recovery (A) }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Recovery } \\
& \text { Limit }
\end{aligned}
\] & & Recovery Status & \\
\hline 1 & 2378-TCDF & 30.99 & 0.8341 & 0.6450 - & 0.8950 & passed & & -- & 0. & 0 & & passed \\
\hline 2 & 2378-TCDD & 32.03 & 0.3288 & 0.6450 - & 0.8950 & failed & & -- & 0. & 0 & & passed \\
\hline 3 & 12378-PeCDF & 36.53 & 1.6849 & 1.3150 - & 1.7850 & passed & & -- & 0. & 0 & & passed \\
\hline 4 & 23478-PeCDF & 37.76 & 1.5280 & 1.3150 - & 1.7850 & passed & & \(\cdots\) & 0 - & 0 & & passed \\
\hline 5 & 12378 -PeCDD & 38.15 & 1.2872 & 1.3150 - & 1.7850 & failed & & -- & 0. & 0 & & passed \\
\hline 6 & 123478-HxCDF & 41.34 & 1.1749 & 1.0450 - & 1.4350 & passed & & -- & 0. & 0 & & passed \\
\hline 7 & 123678-HxCDF & 41.49 & 1.3220 & 1.0450 - & 1.4350 & passed & & -- & 0. & 0 & & passed \\
\hline 8 & \(234678-\mathrm{HxCDF}\) & 42.18 & 1.4515 & 1.0450 - & 1.4350 & failed & & -- & 0 - & 0 & & passed \\
\hline 9 & 123478-HxCDD & 42.37 & 1.2914 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 10 & 123678 -HxCDD & 42.47 & 1.1570 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 11 & \(123789-\mathrm{HxCDD}\) & 42.78 & 1.1588 & 1.0450 . & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 12 & \(123789-\mathrm{H} \times\) CDF & 43.17 & 1.4271 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 13 & 1234678-HpCDF & 44.86 & 1.1014 & 0.8750 - & 1.2050 & passed & & -- & 0. & 0 & & passed \\
\hline 14 & \(1234678-\mathrm{HPCDD}\) & 46.05 & 0.9939 & 0.8750 - & 1.2050 & passed & & -- & 0. & 0 & & passed \\
\hline 15 & 1234789-HpCDF & 46.62 & 1.2724 & 0.8750 - & 1.2050 & failed & & -- & 0 - & 0 & & passed \\
\hline 16 & OCDD & 49.05 & 0.8762 & 0.7550 - & 1.0250 & passed & & -- & 0. & 0 & & passed \\
\hline 17 & OCDF & 49.24 & 0.8501 & 0.7550 - & 1.0250 & passed & & - & 0 - & 0 & & passed \\
\hline 18 & 13C12-1278-TCDD (CRS) & 32.39 & 0.7694 & 0.6450 - & 0.8950 & passed & & 40.47 & 35. & 197 & & passed \\
\hline 19 & 13C12-1234-TCDD & 31.24 & 0.8108 & 0.6450 - & 0.8950 & passed & & 100.00 & 0. & 0 & & passed \\
\hline 20 & 13C12-123468-HxCDD & 41.23 & 1.2658 & 1.0450 - & 1.4350 & passed & & 100.00 & 0 - & 0 & & passed \\
\hline 21 & 13C12-2378-TCDF & 30.97 & 0.7973 & 0.6450 - & 0.8950 & passed & & 85.81 & 40. & 135 & & passed \\
\hline 22 & 13C12-2378-TCDD & 32.00 & 0.8121 & 0.6450 - & 0.8950 & passed & & 84.80 & 40 - & 135 & & passed \\
\hline 23 & 13C12-12378-PeCDF & 36.53 & 1.6386 & 1.3150 - & 1.7850 & passed & & 99.24 & 40. & 135 & & passed \\
\hline 24 & 13C12-23478-PeCDF & 37.75 & 1.5893 & 1.3150 - & 1.7850 & passed & & 96.95 & 40. & 135 & & passed \\
\hline 25 & 13C12-12378-PeCDD & 38.13 & 1.6028 & 1.3150 - & 1.7850 & passed & & 98.62 & 40. & 135 & & passed \\
\hline 26 & 13C12-123478-HxCDF & 41.33 & 0.5199 & 0.4250 - & 0.5950 & passed & & 88.08 & 40. & 135 & & passed \\
\hline 27 & 13C12-123678-HxCDF & 41.48 & 0.5203 & 0.4250 - & 0.5950 & passed & & 94.40 & 40. & 135 & & passed \\
\hline 28 & 13C12-234678-HxCDF & 42.16 & 0.5390 & 0.4250 - & 0.5950 & passed & & 87.90 & 40. & 135 & & passed \\
\hline 29 & 13C12-123478-HxCDD & 42.34 & 1.2858 & 1.0450 - & 1.4350 & passed & & 91.50 & 40 - & 135 & & passed \\
\hline 30 & 13C12-123678-HxCDD & 42.46 & 1.2457 & 1.0450 - & 1.4350 & passed & & 89.03 & \(40-\) & 135 & & passed \\
\hline 31 & 13C12-123789-HxCDD & 42.77 & 1.2403 & 1.0450 - & 1.4350 & passed & & 89.14 & 40. & 135 & & passed \\
\hline 32 & 13C12-123789-HxCDF & 43.16 & 0.5268 & 0.4250 - & 0.5950 & passed & & 88.50 & 40. & 135 & & passed \\
\hline 33 & 13C12-1234678-HpCDF & 44.85 & 0.4469 & 0.3650 - & 0.5150 & passed & & 101.28 & 40. & 135 & & passed \\
\hline 34 & 13C12-1234678-HpCDD & 46.04 & 1.0535 & 0.8750 - & 1.2050 & passed & & 94.59 & 40. & 135 & & passed \\
\hline 35 & 13C12-1234789-HpCDF & 46.60 & 0.4519 & 0.3650 - & 0.5150 & passed & & 87.45 & 40 - & 135 & & passed \\
\hline 36 & 13C12-OCDD & 49.04 & 0.8861 & 0.7550 - & 1.0250 & passed & & 97.53 & 40. & 135 & & passed \\
\hline 37 & 13C12-OCDF & 49.23 & 0.8973 & 0.7550- & 1.0250 & passed & & 85.16 & 40 - & 135 & & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & Status Overview & \[
\begin{aligned}
& \text { QM Retention } \\
& \text { Time }
\end{aligned}
\] & QM Area & \[
\begin{aligned}
& \text { QM } \\
& \text { Mode }
\end{aligned}
\] & & RM1 Area & \begin{tabular}{l}
RM1 \\
Mode
\end{tabular} & & \begin{tabular}{l}
Detection \\
Limit (A)
\end{tabular} & Unqualified Amount ( & & Adjusted Amount (A) & AdjSpecam T & Signal-to-Noise & \[
\begin{aligned}
& \text { Client } \\
& \text { Flags }
\end{aligned}
\] \\
\hline 1 & 2378-TCDF & passed & 30.99 & 322 & & A & 269 & & A & 0.0167 & & 0.042644 & 0.0426 & 0.000000 & 11 & \\
\hline 2 & 2378-TCDD & failed & 32.03 & 113 & & A & 37 & & A & 0.0149 & & 0.017500 & n. \({ }^{\text {d }}\) & 0.000000 & 5 & \\
\hline 3 & 12378 -PeCDF & passed & 36.53 & 746 & & A & 1257 & & A & 0.0111 & & 0.144290 & 0.1443 & 0.000000 & 31 & \\
\hline 4 & 23478-PeCDF & passed & 37.76 & 839 & & A & 1281 & & A & 0.0098 & & 0.140690 & 0.1407 & 0000000 & 26 & \\
\hline 5 & 12370-PeCDD & failed & 38.15 & 658 & & A & 847 & & A & 0.0301 & & 0.176842 & n.d. & 0.000000 & 14 & \\
\hline 6 & 123478-HxCDF & passed & 41.34 & 1335 & & A & 1568 & & A & 0.0204 & & 0.205179 & 0.2052 & 0.000000 & 25 & \\
\hline 7 & 123678-HxCDF & passed & 41.49 & 1912 & & A & 2527 & & A & 0.0186 & & 0.284068 & 0.2841 & 0.000000 & 37 & \\
\hline 8 & 234678-HxCDF & failed & 42.18 & 2250 & & A & 3266 & & A & 0.0204 & & 0.388495 & n. d & 0.000000 & 48 & \\
\hline 9 & 123478-HxCDD & passed & 42.37 & 1151 & & A & 1486 & & A & 0.0213 & & 0.279522 & 0.2795 & 0.000000 & 37 & \\
\hline 10 & \(123678-\mathrm{HxCDD}\) & passed & 42.47 & 5649 & & A & 6536 & & A & 0.0208 & & 1.290683 & 1.2907 & 0.000000 & 160 & \\
\hline 11 & 123789-HxCDD & passed & 42.78 & 2051 & & A & 2377 & & A & 0.0207 & & 0.461169 & 0.4612 & 0.000000 & 56 & \\
\hline 12 & 123789-HxCDF & passed & 43.17 & 807 & & A & 1151 & & A & 0.0226 & & 0.152294 & 0.1523 & 0.000000 & 18 & \\
\hline 13 & 1234678-HPCDF & passed & 44.86 & 36518 & & A & 40223 & & A & 0.0198 & & 5.027382 & 5.0274 & 0.000000 & 628 & \\
\hline 14 & 1234678-HpCDD & passed & 46.05 & 111816 & & A & 111137 & & A & 0.0363 & & 24.181691 & 24.1817 & 0.000000 & 1869 & \\
\hline 15 & 1234789-HpCDF & failed & 46.62 & 2655 & & A & 3379 & & A & 0.0249 & & 0.519432 & n.d & 0.000000 & 54 & \\
\hline 16 & OCDD & passed & 49.05 & 763085 & & A & 668603 & & A & 0.0330 & & 173.315705 & 173.3157 & 0000000 & 13125 & \\
\hline 17 & OCDF & passed & 49.24 & 55581 & & A & 47230 & & A & 0.0148 & & 10.588891 & 10.5889 & 0000000 & 1807 & \\
\hline 18 & 13C12-1278-TCDD (CRS) & passed & 32.39 & 193180 & & A & 148630 & & A & 0.0202 & & 34.862559 & 31.8626 & 78.740157 & 4014 & \\
\hline 19 & 13C 12-1234-TCDD & passed & 31.24 & 908118 & & A & 736311 & & A & 0.0258 & & 196.850394 & 196.8504 & 196.850394 & 19111 & \\
\hline 20 & \(13 \mathrm{C} 12-123468-\mathrm{HxCDD}\) & passed & 41.23 & 924348 & & A & 1170035 & & A & 0.0329 & & 196.850394 & 196.8504 & 196.850394 & 14952 & \\
\hline 21 & 13C12-2378-TCDF & passed & 30.97 & 1466695 & & A & 1169439 . & & A & 0.0354 & & 168.926842 & 168.9268 & 196.850394 & 26928 & \\
\hline 22 & 13C12-237日-TCDD & passed & 32.00 & 757848 & & A & 615547 & & A & 0.0261 & & 166.924647 & 166.9246 & 196.850394 & 16704 & \\
\hline 23 & 13C12-12378-PeCDF & passed & 36.53 & 1068194 & & A & 1750326 & & A & 0.0559 & & 195.359756 & 195.3598 & 196.850394 & 11571 & \\
\hline 24 & 13C12-23478-PeCDF & passed & 37.75 & 1062083 & & A & 1887944 & & A & 0.0560 & & 190.853912 & 190.8538 & 196.850394 & 11732 & \\
\hline 25 & 13C12-12378-PeCDD & passed & 38.13 & 607452 & & A & 973614 & & A & 0.0530 & & 194.142660 & 184.1427 & 196.850394 & 12806 & \\
\hline 26 & 13C12-123478-HxCDF & passed & 41.33 & 1559823 & & A & 810999 & & A & 0.0512 & & 173.390937 & 173.3908 & 196.850394 & 8390 & \\
\hline 27 & 13C12-123678-HxCDF & passed & 41.48 & 1758288 & & A & 914856 & & A & 0.0486 & & 185.829851 & 185.8209 & 196.850394 & 8410 & \\
\hline 28 & 13C12-234678-HxCDF & passed & 42.16 & 1500608 & & A & 808754 & & A & 0.0524 & & 173.035469 & 173.0355 & 196.850384 & 8140 & \\
\hline 29 & 13C12-123478-HxCDD & passed & 42.34 & 793193 & & A & 1049920 & & A & 0.0348 & & 180.125912 & \({ }^{8} 8.1259\) & 196.850394 & 12683 & \\
\hline 30 & 13C12-123678-HxCDD & passed & 42.46 & 810467 & & A & 1009606 & & A & 0.0337 & & 175.283057 & 175.2631 & 196.850394 & 13016 & \\
\hline 31 & 13C12-123789-HxCDD & passed & 42.77 & 778449 & & A & 96549 ? & & A & 0.0352 & & 175.468666 & 176.4687 & 196.850384 & 12332 & \\
\hline 32 & 13C12-123789-HxCDF & passed & 43.16 & 1437443 & & A & 757195 & & A & 0.0555 & & 174.211911 & 174.2119 & 196.850394 & 7707 & \\
\hline 33 & 13C12-1234678-HpCDF & passed & 44.85 & 1619888 & & A & 723894 & & A & 0.0661 & & 199.363861 & 199.3639 & 196.850394 & 7570 & \\
\hline 34 & 13C12-1234678-HpCDD & passed & 46.04 & 834604 & & A & 879293 & & A & 0.0514 & & 186.209786 & 186.2098 & 196.850394 & 9634 & \\
\hline 35 & 13C12-1234789-HPCDF & passed & 46.60 & 1790391 & & A & 537881 & & A & 0.0774 & & 172.140384 & 172.1404 & 196.850394 & 5832 & \\
\hline 36 & 13C12-OCDD & passed & 49.04 & 1688299 & & A & 1495928 & & A & 0.0314 & & 383.975471 & 383.9755 & 393.700787 & 33441 & \\
\hline 37 & 13C12-OCDF & passed & 49.23 & 2159254 & & A & 1937407 & & A & 0.0290 & & 335.270568 & 335.2706 & 393.700787 & 30096 & \\
\hline
\end{tabular}


RT: 20.40-34.90


RT: 27.43
RT: 22.17 RT: 23.67
RT: 24.64
RT: 25.89
RT: 22.18

NL:
5.89E2
\(\mathrm{m} / \mathrm{z}=\)
375.3364-
376.3364

MS ICIS
17FEB07-
19

RT: 34.61
RT: 33.55 AA: 471

5

RT: 34.50-39.80


NL : 3.03E2 \(\mathrm{m} / \mathrm{z}=\) 341.3567342.3567 MS ICIS 17FEB0719

\section*{NL:}
4.51E2 \(\mathrm{m} / \mathrm{z}=\) 339.3597340.3597 MS ICIS 17FEB0719

NL:
2.78E5
m/z=
353.3970-
354.3970

MS ICIS 17FEB07-

NL:
3.79E2
m/z= 409.2974410.2974 MS ICIS 17FEB07-


\(\overline{R T}: 44.10-48.20\)


RT: 44.58
AA: 8.43
RT: 44.36
RT: 44.36

RT: 44.87
AA: 40255
RT: 44.65
AA: 180
RT: 443
AA:273


RT: 45.6

\(\overline{\text { RT: 47.90-51.20 }}\)


RT: 48.11 RT: 48.27 RT: 48.85 RT: 49.05 RT: 49.48 RT: 49.80 RT: \(49.99 \quad\) RT: \(50.44 \quad\) RT: 50.92
AA: \(210 \quad A A: 18.82\) AA: 5.22 AA: 463 \(\qquad\)
: 49.23
NL:

AA: 2159837
6.92E5
m/z= 455.2802-
456.2802

MS ICIS
17FEB07-

100
48.0
\begin{tabular}{llll} 
RT: 49.30 & RT: 49.60 & RT: 50.28 & RT: 50.86 \\
AA: 9391 & \(A A: 505\) & \(A A: 362\) & \\
\hline
\end{tabular}
NL:
1.23E2
m/z=
513.1775-
514.1775

MS ICIS
17FEB07-
```

*** file opened Wed Feb 08 02:22:12 2017 ***

```
```

Started by - xcalibur

```
Started by - xcalibur
Instrument Internet name - DFS MS
Instrument Internet name - DFS MS
                            xcalibur
                            xcalibur
Instrument mode1 - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SN0000xXXX
Instrument service number - SN0000xXXX
workstation internet name - LX18470
```

workstation internet name - LX18470

```
Analysis started at: 08-Feb-17 02:22:11
Analysis will stop at user request
Firmware version: 2.02
MCAL file name:
Sequence : ef723472-e848-43e5-a9f2-e1bcce0ed473

MID procedure: PFK16MAR24+MDT

\begin{tabular}{|c|c|c|c|}
\hline 331.9363 & 5 & 1 & 23 \\
\hline 333.9333 & 5 & 1 & 23 \\
\hline 339.8592 & 1 & 1 & 118 \\
\hline 341.8562 & 1 & 1 & 118 \\
\hline 354.9787 c & 20 & 1 & 5 \\
\hline 375.8364 & 2 & 1 & 59 \\
\hline window \# 3 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 330.97871 & 20 & 1 & 6 \\
\hline 339.8592 & 1 & 1 & 133 \\
\hline 341.8562 & 1 & 1 & 133 \\
\hline 351.8994 & 3 & 1 & 44 \\
\hline 353.8965 & 3 & 1 & 44 \\
\hline 355.8541 & 1 & 1 & 133 \\
\hline 357.8511 & 1 & 1 & 133 \\
\hline 367.8943 & 3 & 1 & 44 \\
\hline 369.8914 & 3 & 1 & 44 \\
\hline 380.9755 c & 20 & 1 & 6 \\
\hline 409.7969 & 2 & 1 & 66 \\
\hline window \# 4 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 373.8201 & 1 & 1 & 117 \\
\hline 375.8172 & 1 & 1 & 117 \\
\hline 380.97551 & 20 & 1 & 5 \\
\hline 383.8634 & 3 & 1 & 39 \\
\hline 385.8604 & 3 & 1 & 39 \\
\hline 389.8151 & 1 & 1 & 117 \\
\hline 391.8121 & 1 & 1 & 117 \\
\hline 401.8554 & 3 & 1 & 39 \\
\hline 403.8524 & 3 & 1 & 39 \\
\hline 430.9723 c & 20 & 1 & 5 \\
\hline 445.7550 & 2 & 1 & 58 \\
\hline Window \# 5 mass F & int & gr & time (ms) \\
\hline 404.97551 & 20 & 1 & 5 \\
\hline 407.7812 & 1 & 1 & 117 \\
\hline 409.7783 & 1 & 1 & 117 \\
\hline 417.8244 & 3 & 1 & 39 \\
\hline 419.8215 & 3 & 1 & 39 \\
\hline 423.7761 & 1 & 1 & 117 \\
\hline 425.7732 & 1 & 1 & 117 \\
\hline 435.8164 & 3 & 1 & 39 \\
\hline 437.8134 & 3 & 1 & 39 \\
\hline 479.7160 & 2 & 1 & 58 \\
\hline 480.9691 c & 20 & 1 & 5 \\
\hline window \# 6 mass \(F\) & int & gr & time (ms) \\
\hline 441.7422 & 1 & 1 & 95 \\
\hline 442.9723 & 20 & 1 & 4 \\
\hline 443.7393 & 1 & 1 & 95 \\
\hline 453.7825 & 1 & 1 & 95 \\
\hline 455.7795 & 1 & 1 & 95 \\
\hline 457.7372 & 1 & 1 & 95 \\
\hline 459.7342 & 1 & 1 & 95 \\
\hline 469.7774 & 3 & 1 & 31 \\
\hline 471.7745 & 3 & 1 & 31 \\
\hline 492.9691 c & 20 & 1 & 4 \\
\hline 513.6770 & 2 & 1 & 47 \\
\hline
\end{tabular}

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID Window terminated after 34.600000 minutes
MID Window end time was 34.600000 minutes
Page 2

17FEB07-19
MID Window terminated after 39.500000 minutes MID Window end time was 39.500000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: \(C: \backslash X c a l i b u r \backslash S y s t e m \backslash D F S \backslash M S I \backslash 17 J A N 26 . D F S T u n e\)
DFS - Parameter
\begin{tabular}{|c|c|c|c|c|c|}
\hline ACCU & 1000.0000 & BCORRS & 0.0170 & BMASS & 96.0000 \\
\hline bQUAD & 0.0500 & CAPIL & 0.0000 & CAPTSET & 0.0000 \\
\hline CCURR & 0.0000 & COUNTING & 0.0000 & delay & 0.0000 \\
\hline DRAW & -25.0000 & DRAWC & 0.0000 & DRAWS & 0.0000 \\
\hline DYNVOLTAGE & 20.0000 & ECORR & 0.9995 & ECURR & 1.0000 \\
\hline EDAC & 7969177.0000 & EDACG & 1.0000 & EDACZ & 61.3333 \\
\hline ELEN & -45.0000 & EMULT & 1300.0000 & ENS & 173.0000 \\
\hline ENSBR & 0.0500 & eratio & 1.0000 & ESA & 679.0600 \\
\hline ESIPAR & 0.0000 & EXS & 172.0000 & EXSBR & -0.4700 \\
\hline FDMA & 18000000.0000 & FILTER & 100.0000 & FLENS & 1.0000 \\
\hline FM & 10.0000 & FMII & 50.0000 & FQUAD & 12.3500 \\
\hline FQUADGAIN & 1.0000 & FREQ & 400.0000 & FSLOPE & 36000000.0000 \\
\hline FVANAL & 0.0173 & FVINLET & 0.0302 & FVSRC & 0.0291 \\
\hline FWIN & 0.7000 & HCURR & 0.0000 & hVanal & 0.0000 \\
\hline HVSRC & 0.0000 & ICALO & 0.0011 & ICAL1 & 0.4030 \\
\hline ICAL2 & 0.5865 & IONEN & 0.0000 & IST & 0.0000 \\
\hline ISTC & 260.0000 & ISTS & 260.0000 & LENS_POT & 714.0000 \\
\hline LENS_SYM & 14.3000 & LM & 1050.0000 & LMII & 500.0000 \\
\hline LMASS & 96.0000 & LKM & 442.9723 & MASS & 96.0000 \\
\hline MDAC & 1435550.5184 & MRANGE & 1304.6486 & NSAM & 200.0000 \\
\hline NSCAN & 2524.0000 & NSMAX & 8.0000 & NSMIN & 66.0000 \\
\hline NPEAK & 11.0000 & MULT & 0.0000 & PSAM & 10.0000 \\
\hline PUSHER & -9.0000 & Recurr & 0.8972 & ReLen & 0.0000 \\
\hline RES & 12717.7186 & RPUSHER & -8.6960 & RDRAW & 0.0000 \\
\hline RDRAWC & 0.0000 & RWIN & 2.0000 & SCIDLE & 0.0000 \\
\hline SHIELD_POT & 638.0000 & SHIELD_SYM & 0.0000 & SHIGH & 1050.0000 \\
\hline SKIM & 0.0000 & SLOW & 10.0000 & SS & 2.0000 \\
\hline SW & 0.0206 & TANAL & 0.0000 & TCURR & 0.0000 \\
\hline TD & 30.0000 & TS & 60.6748 & THRESH & 2.0000 \\
\hline TIS & 0.2000 & TREF & 100.0000 & TSAM & 200.0000 \\
\hline TSET & 0.0000 & TUBEL & 0.0000 & UROT & 0.0000 \\
\hline USERVAR & 0.0000 & UTQ1 & 150.0000 & UTQ2 & 190.0000 \\
\hline UTQ3 & 80.0000 & VMASS & 96.0000 & XLENS_POT & 896.0000 \\
\hline XLENS_SYM & -8.5000 & YLENS_POT & 568.0000 & YLENS_SYM & 0.0000 \\
\hline
\end{tabular}

Source Gauge: \(\quad 2.0 \mathrm{e}-005\) mbar
Analyzer Penning: \(\quad 5.2 \mathrm{e}-008 \mathrm{mbar}\)
Pirani Analyse: \(\quad 1.8 \mathrm{e}-002\) mbar
Pirani Source: \(\quad 2.9 \mathrm{e}-002 \mathrm{mbar}\)
Pirani Inlet System: 3.0e-002 mbar
Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 11968.
MID Time Window 2: Resolution is 12291.
MID Time Window 3: Resolution is 12369.
MID Time window 4: Resolution is 12691.
Page 3

MID Time window 5: Resolution is 13942.
MID Time Window 6: Resolution is 12717.
Amplifier offset: 88.
*** File closed Wed Feb 08 03:13:13 2017
あぁ

Page 4

\section*{Quantitation Settings}

\section*{Data File Parameter}

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [ hSV ]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor \(\quad 1.0\)
265

105
1.0
20.0
10.05
1.0
2.5

\section*{2017/02/08 03:13}

S:11030:12937:15831

SW-846 8290A Feb 2007 Rev 117031003 BB18 ARS1-17-00216-002 Soil
8807306
DF18471-17FEB07
ARS International LLC
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
17031003
\(y: 117\) feb07\17feb07-20.quan
y:117feb07\17feb07-20.raw
\(y\) : Iresponsefilesldf18471-17jan31dfical.resp
C:XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area

Average RF
Linear Fit
Non weighted Regression

17FEB07-20 printed 2/9/2017 11:55
sample SW-846 8290A Feb 2007 Rev 117031003 BB 18 ARSt-17-00216-002 Sail / B80730
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & QM Retention Time & Status Overview & Amount Status & RM1 Time Status & Ratio1 Status & Recovery Status & Native vs Labeled Time Status & \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { Status } \\
\text { Info }
\end{array}
\end{array}
\] & \\
\hline 1 & 2378-TCDF & 31.00 & passed & passed & passed & passed & passed & passed & & \\
\hline 2 & 2378-TCDD & 32.01 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio1A \\
\hline 3 & 12378-PeCDF & 36.55 & passed & passed & passed & passed & passed & passed & & \\
\hline 4 & 23478-PeCDF & 37.79 & passed & passed & passed & passed & passed & passed & & \\
\hline 5 & 12378-PeCDD & 38.16 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio 1A \\
\hline 6 & 123478-HxCDF & 41.35 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio1A \\
\hline 7 & 123678-HxCDF & 41.48 & passed & passed & passed & passed & passed & passed & & \\
\hline 8 & 234678-HxCDF & 42.18 & passed & passed & passed & passed & passed & passed & & \\
\hline 9 & 123478-HxCDD & 42.36 & passed & passed & passed & passed & passed & passed & & \\
\hline 10 & 123678-HxCDD & 42.48 & failed & passed & passed & failed & passed & passed & & Failed on: Ratio1A \\
\hline 11 & 123789-HxCDD & 42.79 & passed & passed & passed & passed & passed & passed & & \\
\hline 12 & 123789-HxCDF & 43.18 & passed & passed & passed & passed & passed & passed & & \\
\hline 13 & 1234678-HpCDF & 44.87 & passed & passed & passed & passed & passed & passed & & \\
\hline 14 & 1234678-HpCDD & 46.05 & passed & passed & passed & passed & passed & passed & & \\
\hline 15 & 1234789-HpCDF & 46.61 & passed & passed & passed & passed & passed & passed & & \\
\hline 16 & OCDD & 49.06 & passed & passed & passed & passed & passed & passed & & \\
\hline 17 & OCDF & 49.25 & passed & passed & passed & passed & passed & passed & & \\
\hline 18 & 13C12-1278-TCDD (CRS) & 32.40 & passed & passed & passed & passed & passed & passed & & \\
\hline 19 & 13C12-1234-TCDD & 31.25 & passed & passed & passed & passed & passed & passed & & \\
\hline 20 & 13C12-123468-HxCDD & 41.24 & passed & passed & passed & passed & passed & passed & & \\
\hline 21 & 13C12-2378-TCDF & 30.96 & passed & passed & passed & passed & passed & passed & & \\
\hline 22 & 13C12-2378-TCDD & 32.01 & passed & passed & passed & passed & passed & passed & & \\
\hline 23 & 13C12-12378-PeCDF & 36.54 & passed & passed & passed & passed & passed & passed & & \\
\hline 24 & 13C12-23478-PeCDF & 37.76 & passed & passed & passed & passed & passed & passed & & \\
\hline 25 & 13C12-12378-PeCDD & 38.14 & passed & passed & passed & passed & passed & passed & & \\
\hline 26 & 13C12-123478-HxCDF & 41.33 & passed & passed & passed & passed & passed & passed & & \\
\hline 27 & 13C12-123678-HxCDF & 41.48 & passed & passed & passed & passed & passed & passed & & \\
\hline 28 & 13C12-234678-HxCDF & 42.17 & passed & passed & passed & passed & passed & passed & & \\
\hline 29 & 13C12-123478-HxCDD & 42.35 & passed & passed & passed & passed & passed & passed & & \\
\hline 30 & 13C12-123678-HxCDD & 42.47 & passed & passed & passed & passed & passed & passed & & \\
\hline 31 & 13C12-123789-HxCDD & 42.78 & passed & passed & passed & passed & passed & passed & & \\
\hline 32 & 13C12-123789-HxCDF & 43.17 & passed & passed & passed & passed & passed & passed & & \\
\hline 33 & 13C12-1234678-HpCDF & 44.85 & passed & passed & passed & passed & passed & passed & & \\
\hline 34 & 13C12-1234678-HpCDD & 46.04 & passed & passed & passed & passed & passed & passed & & \\
\hline 35 & 13C12-1234789-HpCDF & 46.61 & passed & passed & passed & passed & passed & passed & & \\
\hline 36 & 13C12-OCDD & 49.05 & passed & passed & passed & passed & passed & passed & & \\
\hline 37 & 13C12-OCDF & 49.25 & passed & passed & passed & passed & passed & passed & & \\
\hline
\end{tabular}

\section*{Quantitation Settings}

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

\section*{Quan Parameter}

QualBrowser Compatibility
Sum Area/Height
Quantitatior! Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/08 03:13
265
S:11030:12937:15831
105
SW-846 8290A Feb 2007 Rev 117031003 BB18 ARS1-17-00216-002 Soil
8807306
DF18471-17FEB07
ARS International LLC
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
17031003
y:117feb07\17feb07-20.quan
\(y: 117\) feb07117feb07-20.raw
y:Iresponsefiles\df18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.05
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

\section*{Chromatogram}

RT: 30.00-32.00 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(2378-\) TCDF \\
QM Retention Time & 31.00 \\
QM Area & 4373 \\
QM Integration Mode & A \\
RM1 Area & 3004 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0371 \\
Unqualified Amount (A) & 0.548110 \\
Adjusted Amount (A) & 0.5481 \\
Signal-to-Noise & 38 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(2378-\) TCDD \\
QM Retention Time & 32.01 \\
QM Area & 73 \\
QM Integration Mode & A \\
RM1 Area & 137 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0164 \\
Unqualified Amount (A) & 0.024607 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 7 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}

RT: 35.57-37.57 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(12378-\mathrm{PeCDF}\) \\
QM Retention Time & 36.55 \\
QM Area & 5060 \\
QM Integration Mode & A \\
RM1 Area & 7199 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0177 \\
Unqualified Amount (A) & 0.958556 \\
Adjusted Amount (A) & 0.9586 \\
Signal-to-Noise & 140 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}
RT: 36.77-38.77 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(23478-\mathrm{PeCDF}\) \\
QM Retention Time & 37.79 \\
QM Area & 1916 \\
QM Integration Mode & A \\
RM1 Area & 3083 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0157 \\
Unqualified Amount (A) & 0.362259 \\
Adjusted Amount (A) & 0.3623 \\
Signal-to-Noise & 43 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Lancaster

\section*{Chromatogram}

RT: 37.17-39.17 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(12378-P e C D D\) \\
QM Retention Time & 38.16 \\
QM Area & 428 \\
QM Integration Mode & A \\
RM1 Area & 784 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0379 \\
Unqualified Amount (A) & 0.159128 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 11 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}
RT: 40.35-42.35 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123478-\mathrm{HxCDF}\) \\
QM Retention Time & 41.35 \\
QM Area & 1573 \\
QM Integration Mode & A \\
RM1 Area & 2378 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0182 \\
Unqualified Amount (A) & 0.298740 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 41 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123678-\mathrm{HxCDF}\) \\
QM Retention Time & 41.48 \\
QM Area & 1253 \\
QM Integration Mode & A \\
RM1 Area & 1509 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0176 \\
Unqualified Amount (A) & 0.199335 \\
Adjusted Amount (A) & 0.1993 \\
Signal-to-Noise & 35 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(234678-\mathrm{HxCDF}\) \\
QM Retention Time & 42.18 \\
QM Area & 1457 \\
QM Integration Mode & A \\
RM1 Area & 1655 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0187 \\
Unqualified Amount (A) & 0.234141 \\
Adjusted Amount (A) & 0.2341 \\
Signal-to-Noise & 30 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.36-43.36 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123478-\mathrm{HxCDD}\) \\
QM Retention Time & 42.36 \\
QM Area & 787 \\
QM Integration Mode & A \\
RM1 Area & 1080 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0234 \\
Unqualified Amount (A) & 0.213373 \\
Adjusted Amount (A) & 0.2134 \\
Signal-to-Noise & 23 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.48-43.48 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123678-\mathrm{HxCDD}\) \\
QM Retention Time & 42.48 \\
QM Area & 1961 \\
QM Integration Mode & A \\
RM1 Area & 1982 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0218 \\
Unqualified Amount (A) & 0.445575 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 54 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123789-\mathrm{HxCDD}\) \\
QM Retention Time & 42.79 \\
QM Area & 1548 \\
QM Integration Mode & A \\
RM1 Area & 2085 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0216 \\
Unqualified Amount (A) & 0.397414 \\
Adjusted Amount (A) & 0.3974 \\
Signal-to-Noise & 48 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 42.18-44.18 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123789-\mathrm{HxCDF}\) \\
QM Retention Time & 43.18 \\
QM Area & 733 \\
QM Integration Mode & A \\
RM1 Area & 999 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0191 \\
Unqualified Amount (A) & 0.137925 \\
Adjusted Amount (A) & 0.1379 \\
Signal-to-Noise & 16 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}
RT: 43.87-45.87 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(1234678-\mathrm{HpCDF}\) \\
QM Retention Time & 44.87 \\
QM Area & 13746 \\
QM Integration Mode & A \\
RM1 Area & 14147 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0285 \\
Unqualified Amount (A) & 1.945470 \\
Adjusted Amount (A) & 1.9455 \\
Signal-to-Noise & 172 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(1234678-\mathrm{HpCDD}\) \\
QM Retention Time & 46.05 \\
QM Area & 37829 \\
QM Integration Mode & A \\
RM1 Area & 41298 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0327 \\
Unqualified Amount (A) & 9.103848 \\
Adjusted Amount (A) & 9.1038 \\
Signal-to-Noise & 707 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}
RT: 45.62-47.62 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(1234789-\)-HpCDF \\
QM Retention Time & 46.61 \\
QM Area & 1009 \\
QM Integration Mode & A \\
RM1 Area & 1176 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0357 \\
Unqualified Amount (A) & 0.199683 \\
Adjusted Amount (A) & 0.1997 \\
Signal-to-Noise & 14 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & OCDD \\
QM Retention Time & 49.06 \\
QM Area & 327484 \\
QM Integration Mode & A \\
RM1 Area & 294025 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0249 \\
Unqualified Amount (A) & 81.232333 \\
Adjusted Amount (A) & 81.2323 \\
Signal-to-Noise & 8257 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Status Info

\section*{Chromatogram}
\[
\mathrm{RT}: 48.26-50.26 \text { SM: 3G }
\]


Entry Parameters
\begin{tabular}{ll} 
Compound Name & OCDF \\
QM Retention Time & 49.25 \\
QM Area & 17179 \\
QM Integration Mode & A \\
RM1 Area & 15217 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0166 \\
Unqualified Amount (A) & 3.446370 \\
Adjusted Amount (A) & 3.4464 \\
Signal-to-Noise & 530 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & 13 C 12 -1278-TCDD (CRS) \\
QM Retention Time & 32.40 \\
QM Area & 189848 \\
QM Integration Mode & A \\
RM1 Area & 157963 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0238 \\
Unqualified Amount (A) & 35.538421 \\
Adjusted Amount (A) & 35.5384 \\
Signal-to-Noise & 3540 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & Quan. Mass & Ratio Mass 1 & Specified
RT [min] & QM Retention Time & RM1 Retention Time & Labeled RT & RM1 Time Status & Native vs Labeled Time Status \\
\hline 1 & 2378-TCDF & 305.8987 +/. 5 ppm & 303.9016 +/. 5 ppm & 30.98 & 31.00 & 31.00 & 30.96 & passed & passed \\
\hline 2 & 2378-TCDD & 321.8936 +/-5 ppm & 319.8965 +/-5 ppm & 32.01 & 32.01 & 32.02 & 32.01 & passed & passed \\
\hline 3 & 12378-PeCDF & 341.8567 +/. 5 ppm & \(339.8597+/ .5 \mathrm{ppm}\) & 36.54 & 36.55 & 36.55 & 36.54 & passed & passed \\
\hline 4 & 23478-PeCDF & \(341.8567+\) / 5 ppm & 339.8597 +/-5 ppm & 37.76 & 37.79 & 37.79 & 37.76 & passed & passed \\
\hline 5 & 12378-PeCDD & 357.8516 +/- 5 ppm & 355.8546 +/- 5 ppm & 38.15 & 38.16 & 38.17 & 38.14 & passed & passed \\
\hline 6 & 123478-HxCDF & 375.8178 +/-5 ppm & 373.8208 +/-5 ppm & 41.34 & 41.35 & 41.35 & 41.33 & passed & passed \\
\hline 7 & 123678-HxCDF & 375.8178 +/-5 ppm & 373.8208 +/-5 ppm & 41.49 & 41.48 & 41.51 & 41.48 & passed & passed \\
\hline 8 & 234678-HxCDF & 375.8178 +/. 5 ppm & 373.8208 +/-5 ppm & 42.16 & 42.18 & 42.17 & 42.17 & passed & passed \\
\hline 9 & 123478-HxCDD & \(391.8127+/ .5 \mathrm{ppm}\) & \(389.8157+/-5 \mathrm{ppm}\) & 42.35 & 42.36 & 42.37 & 42.35 & passed & passed \\
\hline 10 & 123678-HxCDD & 391.8127 +/-5 ppm & 389.8157 +/-5 ppm & 42.47 & 42.48 & 42.48 & 42.47 & passed & passed \\
\hline 11 & 123789-HxCDD & 391.8127 +/-5 ppm & \(389.8157+/ .5 \mathrm{ppm}\) & 42.78 & 42.79 & 42.79 & 42.78 & passed & passed \\
\hline 12 & 123789-HxCDF & 375.8178 +/-5 ppm & \(373.8208+/ .5 \mathrm{ppm}\) & 43.17 & 43.18 & 43.19 & 43.17 & passed & passed \\
\hline 13 & 1234678-HpCDF & \(409.7189+/-5 \mathrm{ppm}\) & 407.7818 +/-5 ppm & 44.86 & 44.87 & 44.88 & 44.85 & passed & passed \\
\hline 14 & 1234678-HpCDD & \(425.7737+/ .5 \mathrm{ppm}\) & \(423.7768+/ .5 \mathrm{ppm}\) & 46.05 & 46.05 & 46.05 & 46.04 & passed & passed \\
\hline 15 & 1234789-HpCDF & 409.7789 +/. 5 ppm & 407.7818 +/-5 ppm & 46.61 & 46.61 & 46.62 & 46.61 & passed & passed \\
\hline 16 & OCDD & 459.7348 +/-5 ppm & 457.7377 +/-5 ppm & 49.05 & 49.06 & 49.06 & 49.05 & passed & passed \\
\hline 17 & OCDF & 443.7399 +/-5 ppm & 441.7428 +/. 5 ppm & 48.24 & 49.25 & 49.26 & 49.25 & passed & passed \\
\hline 18 & 13C12-1278-TCDD (CRS) & 333.9339 +/-5 ppm & 331.9368 +/-5 ppm & 32.37 & 32.40 & 32.38 & 32.40 & passed & passed \\
\hline 19 & 13C12-1234-TCDD & 333.9339 +/-5 ppm & 331.9368 +/-5 ppm & 31.24 & 31.25 & 31.25 & 31.25 & passed & passed \\
\hline 20 & 13C12-123468-HxCDD & 403.8529 +/-5 ppm & 401.8559 +/-5 ppm & 41.23 & 41.24 & 41.24 & 41.24 & passed & passed \\
\hline 21 & 13C12-2378-TCDF & 317.9389 +/- 5 ppm & \(315.9419+/-5 \mathrm{ppm}\) & 30.95 & 30.96 & 30.98 & 30.93 & passed & passed \\
\hline 22 & 13C12-2378-TCDD & \(333.9339+/-5 \mathrm{ppm}\) & 331.9368 +/-5 ppm & 31.99 & 32.01 & 32.01 & 32.01 & passed & passed \\
\hline 23 & 13C12-12378-PeCDF & 353.8970 +/- 5 ppm & 351.9000 +/-5 ppm & 36.51 & 36.54 & 36.54 & 36.54 & passed & passed \\
\hline 24 & 13C12-23478-PeCDF & 353.8970 +/-5 ppm & 351.9000 +/-5 ppm & 37.75 & 37.76 & 37.76 & 37.79 & passed & passed \\
\hline 25 & 13C12-12378-PeCDD & \(369.8919+/-5 \mathrm{ppm}\) & 367.8949 +/-5 ppm & 38.12 & 38.14 & 38.14 & 38.14 & passed & passed \\
\hline 26 & 13C12-123478-HxCDF & \(385.8610+/ .5 \mathrm{ppm}\) & \(383.8639+/-5 \mathrm{ppm}\) & 41.32 & 41.33 & 41.33 & 41.35 & passed & passed \\
\hline 27 & 13C12-123678-HxCDF & \(385.8610+/-5 \mathrm{ppm}\) & \(383.8639+/-5 \mathrm{ppm}\) & 41.47 & 41.48 & 41.48 & 41.52 & passed & passed \\
\hline 28 & 13C12-234678-HxCDF & 385.8610 +/-5 ppm & 383.8639 +/- 5 ppm & 42.15 & 42.17 & 42.17 & 42.24 & passed & passed \\
\hline 29 & 13C12-123478-HxCDD & 403.8529 +/. 5 ppm & 401.8559 +/. 5 ppm & 42.33 & 42.35 & 42.35 & 42.35 & passed & passed \\
\hline 30 & 13C12-123678-HxCDD & \(403.8529+/-5 \mathrm{ppm}\) & \(401.8559+/ .5 \mathrm{ppm}\) & 42.46 & 42.47 & 42.47 & 42.47 & passed & passed \\
\hline 31 & 13C12-123789-HxCDD & 403.8529 +/-5 ppm & 401.8559 +/. 5 ppm & 42.77 & 42.78 & 42.78 & 42.78 & passed & passed \\
\hline 32 & 13C12-123789-HxCDF & 385.8610 +/- 5 ppm & 383.8639 +/. 5 ppm & 43.16 & 43.17 & 43.17 & 43.19 & passed & passed \\
\hline 33 & 13C12-1234678-HpCDF & \(419.8220+/ .5 \mathrm{ppm}\) & \(417.8253+/ .5 \mathrm{ppm}\) & 44.84 & 44.85 & 44.87 & 44.81 & passed & passed \\
\hline 34 & 13C12-1234678-HpCDD & 437.8140 +/-5 ppm & \(435.8169+i-5 \mathrm{ppm}\) & 46.03 & 48.04 & 46.04 & 46.04 & passed & passed \\
\hline 35 & 13C12-1234789-HpCDF & 419.8220 +/-5 ppm & \(417.8253+/-5 \mathrm{ppm}\) & 46.60 & 46.61 & 46.61 & 46.61 & passed & passed \\
\hline 36 & 13C12-OCDD & 471.7750 +/-5 ppm & 469.7779 +/. 5 ppm & 49.04 & 49.05 & 49.05 & 49.05 & passed & passed \\
\hline 37 & 13C12-OCDF & 455.7802 +/-5 ppm & 453.7831 +/-5 ppm & 49.22 & 49.25 & 49.25 & 49.25 & passed & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & \[
\begin{aligned}
& \text { QM Retention } \\
& \text { Time }
\end{aligned}
\] & \begin{tabular}{l}
RM1 Ratio \\
(A)
\end{tabular} & \[
\begin{aligned}
& \text { Ratiol } \\
& \text { Limit }
\end{aligned}
\] & & \[
\left\lvert\, \begin{aligned}
& \text { Ration } \\
& \text { Status }
\end{aligned}\right.
\] & Fercent Recovery (A) & & Recovery Limit & & Recovery Status & \\
\hline 1 & 2378-TCDF & 31.00 & 0.6869 & 0.6450 - & 0.8950 & passed & & -- & 0. & 0 & & passed \\
\hline 2 & 2378-TCDD & 32.01 & 1.8847 & 0.6450 - & 0.8950 & failed & & -- & 0. & 0 & & passed \\
\hline 3 & 12378-PeCDF & 36.55 & 1.4228 & 1.3150. & 1.7850 & passed & & --- & 0 - & 0 & & passed \\
\hline 4 & 23478-PeCDF & 37.79 & 1.6095 & 1.3150 - & 1.7850 & passed & & -- & 0 - & 0 & & passed \\
\hline 5 & 12378-PeCDD & 38.16 & 1.8344 & 1.3150 - & 1.7850 & failed & & -- & 0. & 0 & & passed \\
\hline 6 & 123478 -HxCDF & 41.35 & 1.5119 & 1.0450 - & 1.4350 & failed & & -- & 0 - & 0 & & passed \\
\hline 7 & 123678-HxCDF & 41.48 & 1.2040 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 8 & 234678-HxCDF & 42.18 & 1.1359 & 1.0450 - & 1.4350 & passed & & -- & 0. & 0 & & passed \\
\hline 9 & \(123478-\mathrm{HxCDD}\) & 42.36 & 1.3736 & 1.0450 - & 1.4350 & passed & & -- & 0 - & 0 & & passed \\
\hline 10 & \(123678-\mathrm{HxCDD}\) & 42.48 & 1.0107 & 1.0450 - & 1.4350 & failed & & - & 0 . & 0 & & passed \\
\hline 11 & \(123789-\mathrm{HxCDD}\) & 42.79 & 1.3474 & 1.0450 - & 1.4350 & passed & & - & 0 - & 0 & & passed \\
\hline 12 & \(123789-\mathrm{HxCDF}\) & 43.18 & 1.3625 & 1.0450 - & 1.4350 & passed & & - & 0 - & 0 & & passed \\
\hline 13 & 1234678-HpCDF & 44.87 & 1.0292 & 0.8750 - & 1.2050 & passed & & -- & 0. & 0 & & passed \\
\hline 14 & \(1234678-\mathrm{HPCDD}\) & 46.05 & 1.0917 & 0.8750 - & 1.2050 & passed & & -- & 0. & 0 & & passed \\
\hline 15 & 1234789-HpCDF & 46.61 & 1.1658 & 0.8750 - & 1.2050 & passed & & -- & 0. & 0 & & passed \\
\hline 15 & OCDD & 49.06 & 0.8978 & 0.7550 - & 1.0250 & passed & & --- & 0 - & 0 & & passed \\
\hline 17 & OCDF & 49.25 & 0.8858 & 0.7550 - & 1.0250 & passed & & -- & 0 - & 0 & & passed \\
\hline 18 & 13C12-1278-TCDD (CRS) & 32.40 & 0.8320 & 0.6450- & 0.8950 & passed & & 44.65 & 35. & 197 & & passed \\
\hline 19 & 13C 12-1234-TCDD & 31.25 & 0.7908 & 0.6450 - & 0.8950 & passed & & 100.00 & 0 - & 0 & & passed \\
\hline 20 & 13C12-123468-HxCDD & 41.24 & 1.2757 & 1.0450 . & 1.4350 & passed & & 100.00 & 0 - & 0 & & passed \\
\hline 21 & 13C12-2378-TCDF & 30.96 & 0.7930 & 0.6450 - & 0.8950 & passed & & 91.35 & \(40-\) & 135 & & passed \\
\hline 22 & 13C12-2378-TCDD & 32.01 & 0.7981 & 0.6450 - & 0.8950 & passed & & 91.98 & 40 - & 135 & & passed \\
\hline 23 & 13C12-12378-PeCDF & 36.54 & 1.5688 & 1.3150 - & 1.7850 & passed & & 100.19 & 40. & 135 & & passed \\
\hline 24 & 13C12-23478-PeCDF & 37.76 & 1.5771 & \(1.3150-\) & 1.7850 & passed & & 97.33 & 40 - & 135 & & passed \\
\hline 25 & 13C12-12378-PeCDD & 38.14 & 1.5940 & 1.3150 - & 1.7850 & passed & & 96.79 & 40. & 135 & & passed \\
\hline 26 & 13 C 12 -123478-HxCDF & 41.33 & 0.5220 & 0.4250 - & 0.5950 & passed & & 91.11 & 40. & 135 & & passed \\
\hline 27 & 13C12-123678-HxCDF & 41.48 & 0.5345 & 0.4250 - & 0.5950 & passed & & 92.65 & \(40-\) & 135 & & passed \\
\hline 28 & 13C12-234678-HxCDF & 42.17 & 0.5317 & 0.4250 - & 0.5950 & passed & & 91.04 & \(40-\) & 135 & & passed \\
\hline 29 & \({ }^{13 C} 12-123478-\mathrm{HxCDD}\) & 42.35 & 1.2464 & 1.0450 - & 1.4350 & passed & & 93.95 & 40. & 135 & & passed \\
\hline 30 & 13C 12 -123678-HxCDD & 42.47 & 1.2595 & 1.0450 - & 1.4350 & passed & & 92.37 & 40. & 135 & & passed \\
\hline 31 & 13C12-123789-HxCDD & 42.78 & 1.2316 & 1.0450 - & 1.4350 & passed & & 93.93 & 40. & 135 & & passed \\
\hline 32 & 13C12-123789-HxCDF & 43.17 & 0.5323 & 0.4250 - & 0.5950 & passed & & 95.70 & 40. & 135 & & passed \\
\hline 33 & 13C12-1234678-HpCDF & 44.85 & 0.4553 & 0.3650 - & 0.5150 & passed & & 105.29 & 40. & 135 & & passed \\
\hline 34 & 13C12-1234678-HpCDD & 46.04 & 1.0406 & 0.8750 - & 1.2050 & passed & & 98.70 & 40. & 135 & & passed \\
\hline 35 & 13C12-1234789-HpCDF & 46.61 & 0.4519 & 0.3650 - & 0.5150 & passed & & 91.14 & 40. & 135 & & passed \\
\hline 36 & 13 C 12 -OCDD & 49.05 & 0.9097 & \(0.7550-\) & 1.0250 & passed & & 99.99 & \(40-\) & 135 & & passed \\
\hline 37 & 13C12-OCDF & 49.25 & 0.8982 & 0.7550 - & 1.0250 & passed & & 91.27 & 40 & 135 & & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & Status Overview & QM Retention Time & QM Area & QM Mode & & RM1 Area & \[
\begin{aligned}
& \text { RM1 } \\
& \text { Mode }
\end{aligned}
\] & & Detection Limit (A) & Unqualified Amount (A) & & Adjusted Amaunt (A) & AdjSpecAmT & Signai-to-Noise & \[
\begin{aligned}
& \text { Client } \\
& \text { Flags } \\
& \hline
\end{aligned}
\] \\
\hline 1 & 2378-TCDF & passed & 31.00 & 4373 & & A & 3004 & & A & 0.0371 & & 0.548110 & 0.5481 & 0.000000 & 38 & \\
\hline 2 & 2378-TCDD & failed & 32.04 & 73 & & A & 137 & & A & 0.0184 & & 0.024607 & n.d. & 0.000000 & 7 & \\
\hline 3 & 12378-PeCDF & passed & 36.55 & 5060 & & A & 7199 & & A & 0.0177 & & 0.958556 & 0.9586 & 0.000000 & 140 & \\
\hline 4 & 23478-PeCDF & passed & 37.79 & 1916 & & A & 3083 & & A & 0.0157 & & 0.362259 & 0.3623 & 0.000000 & 43 & \\
\hline 5 & 12378 -PeCDD & failed & 38.16 & 428 & & A & 784 & & A & 0.0379 & & 0.159128 & n.d. & 0.000000 & 11 & \\
\hline 6 & 123478-HxCDF & failed & 41.35 & 1573 & & A & 2378 & & A & 0.0182 & & 0.298740 & n.d. & 0.000000 & 41 & \\
\hline 7 & 123678-H×CDF & passed & 41.48 & 1253 & & A & 1509 & & A & 0.0176 & & 0.199335 & 0.1993 & 0.000000 & 35 & \\
\hline 8 & \(234678-\mathrm{HxCDF}\) & passed & 42.18 & 1457 & & A & 1655 & & A & 0.0187 & & 0.234141 & 0.2341 & 0.000000 & 30 & \\
\hline 9 & \(123478-\mathrm{H} \times \mathrm{CDD}\) & passed & 42.36 & 787 & & A & 1080 & & A & 0.0234 & & 0.213373 & 0.2134 & 0.000000 & 23 & \\
\hline 10 & 123678-HxCDD & failed & 42.48 & 1961 & & A & 1982 & & A & 0.0218 & & 0.445575 & n. d . & 0.000000 & 54 & \\
\hline 11 & 123789-HxCDO & passed & 42.79 & 1548 & & A & 2085 & & A & 0.0216 & & 0.397414 & 0.3974 & 0.000000 & 48 & \\
\hline 12 & \(123789-\mathrm{HxCDF}\) & passed & 43.18 & 733 & & A & 999 & & A & 0.0191 & & 0.137925 & 0.1379 & 0.000000 & 16 & \\
\hline 13 & 1234678-HpCDF & passed & 44.67 & 13746 & & A & 14147 & & A & 0.0285 & & 1.945470 & 1.9455 & 0.000000 & 172 & \\
\hline 14 & \(1234678-\mathrm{HpCDO}\) & passed & 46.05 & 37829 & & A & 41298 & & A & 0.0327 & & 9.103848 & 9.1038 & 0.000000 & 707 & \\
\hline 15 & 1234789-HPCDF & passed & 46.61 & 1009 & & A & 4176 & & A & 0.0357 & & 0.199683 & 0.1997 & 0.000000 & 14 & \\
\hline 16 & OCDD & passed & 49.06 & 327484 & & A & 294025 & & A & 0.0249 & & 81.232333 & 81.2323 & 0.000000 & 8257 & \\
\hline 17 & OCDF & passed & 49.25 & 17179 & & A & 15217 & & A & 0.0166 & & 3.446370 & 3.4464 & 0.000000 & 530 & \\
\hline 18 & 13C12-1278-TCDD (CRS) & passed & 32.40 & 189848 & & A & 157963 & & A & 0.0238 & & 35.538421 & 35.5384 & 79.601990 & 3540 & \\
\hline 19 & 13C12-1234-TCOD & passed & 31.25 & 846894 & & A & 669752 & & A & 0.0304 & & 199.004975 & 199.0050 & 199.004975 & 16392 & \\
\hline 20 & 13C12-123468-HxCDO & passed & 41.24 & 840577 & & A & 1072330 & & A & 0.0470 & & 199.004975 & 199.0050 & 199.004975 & 10594 & \\
\hline 21 & 13C+2-2378-TCDF & passed & 30.56 & 1443369 & & A & 1144608 & & A & 0.0220 & & 181.781634 & 181.7816 & 195.004975 & 19740 & \\
\hline 22 & 13C12-2378-TCDD & passed & 32.01 & 764174 & & A & 609906 & & A & 0.0308 & & 183.047439 & 183.0474 & 799.004975 & 15496 & \\
\hline 23 & 13C12-12378-PeCDF & passed & 36.54 & 1021618 & & A & 1602686 & & A & 0.0551 & & 199.382270 & 199.3823 & 199.004975 & 11316 & \\
\hline 24 & 13C12-23478-PeCDF & passed & 37.76 & 987970 & & A & 1558100 & & A & 0.0551 & & \(\uparrow 93.683569\) & 193.6836 & 199.004975 & 11490 & \\
\hline 25 & 13C12-12378-PeCDD & passed & 38.14 & 551676 & & A & 879367 & & A & 0.0352 & & 192.611547 & 192.6115 & 199.004975 & 17456 & \\
\hline 26 & 13C12-123478-HxCDF & passed & 41.33 & 1471675 & & A & 768176 & & A & 0.0414 & & 181.316107 & 181.3161 & 199.004975 & 11000 & \\
\hline 27 & 13C12-123678-HxCDF & passed & 41.48 & 1561508 & & A & 834686 & & A & 0.0393 & & 184.374722 & 184.3747 & 199.004975 & 41584 & \\
\hline 28 & 13C12-234678-H×CDF & passed & 42.17 & 1426292 & & A & 758305 & & A & 0.0424 & & 189.177525 & 181.1775 & 199.004975 & 10361 & \\
\hline 29 & 13C12-123478-HxCDD & passed & 42.35 & 756940 & & A & 943418 & & A & 0.0496 & & 186.974126 & 186.9741 & 199.004975 & 9344 & \\
\hline 30 & 13C12-123678-HxCDD & passed & 42.47 & 763272 & & A & 961314 & & A & 0.0481 & & 183.813113 & 183.8131 & 199.004975 & 10046 & \\
\hline 31 & 13C12-123789-H×CDD & passed & 42.78 & 752146 & & A & 926315 & & A & 0.0503 & & 186.925628 & 186.9256 & 199.004975 & 9557 & \\
\hline 32 & 13C12-123789-HxCDF & passed & 43.17 & 1414526 & & A & 752975 & & A & 0.0449 & & 190.451426 & 190.4514 & 199.004975 & 10673 & \\
\hline 33 & 13C12-1234678-HpCDF & passed & 44.85 & 1529232 & & A & 696249 & & A & 0.0624 & & 209.528410 & 209.5284 & 199.004975 & 8642 & \\
\hline 34 & 13C12-1234678-HpCDD & passed & 46.04 & 800443 & & A & 832933 & & A & 0.0592 & & 196.423692 & 196.4237 & 199.004975 & 8736 & \\
\hline 35 & 13C12-1234799-HpCDF & passed & 46.61 & 1133165 & & A & 512089 & & A & 0.0730 & & 181.381689 & 181.3817 & 199.004975 & 6674 & \\
\hline 36 & 13C12-OCDD & passed & 49.05 & 1561215 & & A & 1420237 & & A & 0.0357 & & 397.950619 & 397.9506 & 398.009950 & 30985 & \\
\hline 37 & 13C12-OCDF & passed & 49.25 & 2112681 & & A & 1897628 & & A & 0.0396 & & 363.273043 & 363.2730 & 398.009950 & 24409 & \\
\hline
\end{tabular}


RT: 20.40-34.90


100

RT: 25.54

T: 21.12
RT: 22.7
AA: 217
RT: 24.7
AA: 251
AA: 241

TCDF 13C12 Quan Mass


RT: 24.77
AA: 251
AA: 233
RT: 26.98
AA: 1932
RT: 27.83 RT: 28.57
AA: 3183 AA: 2895

RA. 233
A. \(251 \mathrm{ran}+\mathrm{L}\)

RT: 30.96
AA: 1443644

RT: 29.92
AA: 4143
RT: 24.65
AA: 144837

RT: 32.19
AA: 486
RT: 31.00
RT: 32.21
NL:
3.16E3
m/z=
305.3987-
306.3987

MS ICIS
17FEB07-
20

RT: 33.58
AA: 980
NL: 2.37E3 \(\mathrm{m} / \mathrm{z}=\) 303.4016304.4016 MS ICIS 17FEB0720


RT: 33.83
AA: 713

NL
2.70E5
m/z= 317.4389318.4389 MS ICIS 17FEB0720

1.10E3
\(\mathrm{m} / \mathrm{z}=\)
375.3364-
376.3364

MS ICIS 17FEB07-

RT: 23.41
RT: 33.56
: 88.14
RT: 26.81
RT: 32.71 AA: 1139
RT: 29.94
AA: 498

RT: 34.50-39.80


RT: 38.97
AA: 150

RT: 36.69



RT: 47.90-51.20


RT: 49.43

AA: 37.37

\section*{RT: 48.10 RT: 48.44 \\ AA: 50.62 AA: 73.55}


RT: 49.25
AA: 2113658

NL: 6.65E5 \(\mathrm{m} / \mathrm{z}=\) 455.2802456.2802 MS ICIS 17FEB0720

RT: 48.78
AA: 51.23

AADPAD ED
\(\mathrm{m} / \mathrm{z}=\) 513.1775514.1775 MS ICIS 17FEB0720
*\%* file opened Wed Feb 08 03:18:46 2017 ***
```

Started by - Xcalibur
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SN0000XXXX
workstation internet name - LX18470

```
    Analysis started at: 08-Feb-17 03:18:45
Analysis will stop at user request
Firmware Version: 2.02

MCAL file name:
Sequence : ef723472-e848-43e5-a9f2-e1bcce0ed473

MID procedure: PFK16MAR24+MDT


Page 1
\begin{tabular}{|c|c|c|c|}
\hline 331.9363 & 5 & 1 & 23 \\
\hline 333.9333 & 5 & 1 & 23 \\
\hline 339.8592 & 1 & 1 & 118 \\
\hline 341.8562 & 1 & 1 & 118 \\
\hline 354.9787 c & 20 & 1 & 5 \\
\hline 375.8364 & 2 & 1 & 59 \\
\hline window \# 3 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 330.97871 & 20 & 1 & 6 \\
\hline 339.8592 & 1 & 1 & 133 \\
\hline 341.8562 & 1 & 1 & 133 \\
\hline 351.8994 & 3 & 1 & 44 \\
\hline 353.8965 & 3 & 1 & 44 \\
\hline 355.8541 & 1 & 1 & 133 \\
\hline 357.8511 & 1 & 1 & 133 \\
\hline 367.8943 & 3 & 1 & 44 \\
\hline 369.8914 & 3 & 1 & 44 \\
\hline 380.9755 c & 20 & 1 & 6 \\
\hline 409.7969 & 2 & 1 & 66 \\
\hline Window \# 4 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 373.8201 & 1 & 1 & 117 \\
\hline 375.8172 & 1 & 1 & 117 \\
\hline 380.97551 & 20 & 1 & 5 \\
\hline 383.8634 & 3 & 1 & 39 \\
\hline 385.8604 & 3 & 1 & 39 \\
\hline 389.8151 & 1 & 1 & 117 \\
\hline 391.8121 & 1 & 1 & 117 \\
\hline 401.8554 & 3 & 1 & 39 \\
\hline 403.8524 & 3 & 1 & 39 \\
\hline 430.9723 c & 20 & 1 & 5 \\
\hline 445.7550 & 2 & 1 & 58 \\
\hline Window \# 5 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 404.97551 & 20 & 1 & 5 \\
\hline 407.7812 & 1 & 1 & 117 \\
\hline 409.7783 & 1 & 1 & 117 \\
\hline 417.8244 & 3 & 1 & 39 \\
\hline 419.8215 & 3 & 1 & 39 \\
\hline 423.7761 & 1 & 1 & 117 \\
\hline 425.7732 & 1 & 1 & 117 \\
\hline 435.8164 & 3 & 1 & 39 \\
\hline 437.8134 & 3 & 1 & 39 \\
\hline 479.7160 & 2 & 1 & 58 \\
\hline 480.9691 c & 20 & 1 & 5 \\
\hline Window \# 6 mass \(F\) & int & gr & time (ms) \\
\hline 441.7422 & 1 & 1 & 95 \\
\hline 442.9723 & 20 & 1 & 4 \\
\hline 443.7393 & 1 & 1 & 95 \\
\hline 453.7825 & 1 & 1 & 95 \\
\hline 455.7795 & 1 & 1 & 95 \\
\hline 457.7372 & 1 & 1 & 95 \\
\hline 459.7342 & 1 & 1 & 95 \\
\hline 469.7774 & 3 & 1 & 31 \\
\hline 471.7745 & 3 & 1 & 31 \\
\hline 492.9691 c & 20 & 1 & 4 \\
\hline 513.6770 & 2 & 1 & 47 \\
\hline
\end{tabular}

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID window terminated after 34.600000 minutes
MID Window end time was 34.600000 minutes
Page 2

17FEB07-20
MID Window terminated after 39.500000 minutes MID Window end time was 39.500000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\Xcalibur \(\backslash\) System \({ }^{\text {DFS }}\) \MSI \(\backslash 17\) JAN26.DFSTune
DFS - Parameter
\begin{tabular}{|c|c|c|c|c|c|}
\hline ACCU & 1000.0000 & BCORRS & 0.0170 & BMASS & 95.5000 \\
\hline BQUAD & 0.0500 & CAPIL & 0.0000 & CAPTSET & 0.0000 \\
\hline CCURR & 0.0000 & COUNTING & 0.0000 & DELAY & 0.0000 \\
\hline DRAW & -25.0000 & DRAWC & 0.0000 & DRAWS & 0.0000 \\
\hline dYNVOLTAGE & 20.0000 & ECORR & 0.9995 & ECURR & 1.0000 \\
\hline EDAC & 7969177.0000 & EDACG & 1.0000 & EDACZ & 61.3333 \\
\hline ELEN & -45.0000 & EMULT & 1300.0000 & ENS & 173.0000 \\
\hline ENSBR & 0.0500 & ERATIO & 1.0000 & ESA & 679.0600 \\
\hline ESIPAR & 0.0000 & EXS & 172.0000 & EXSBR & -0.4700 \\
\hline FDMA & 18000000.0000 & FILTER & 100.0000 & FLENS & 1.0000 \\
\hline FM & 10.0000 & FMII & 50.0000 & FQUAD & 12.3500 \\
\hline FQUADGAIN & 1.0000 & FREQ & 400.0000 & FSLOPE & 36000000.0000 \\
\hline FVANAL & 0.0175 & FVINLET & 0.0306 & FVSRC & 0.0289 \\
\hline FWIN & 0.7000 & HCURR & 0.0000 & HVANAL & 0.0000 \\
\hline HVSRC & 0.0000 & ICALO & 0.0011 & ICAL1 & 0.4030 \\
\hline ICAL2 & 0.5865 & IONEN & 0.0000 & IST & 0.0000 \\
\hline ISTC & 260.0000 & ISTS & 260.0000 & LENS_POT & 714.0000 \\
\hline LENS_SYM & 14.3000 & LM & 1050.0000 & LMII & 500.0000 \\
\hline LMASS & 95.5000 & LKM & 442.9723 & MASS & 95.5000 \\
\hline MDAC & 1429287.2593 & MRANGE & 1304.6486 & NSAM & 200.0000 \\
\hline NSCAN & 2524.0000 & NSMAX & 8.0000 & NSMIN & 66.0000 \\
\hline NPEAK & 11.0000 & MULT & 0.0000 & PSAM & 10.0000 \\
\hline PUSHER & -9.0000 & RECURR & 0.8977 & RELEN & 0.0000 \\
\hline RES & 12476.3116 & RPUSHER & -8.6667 & RDRAW & 0.0000 \\
\hline RDRAWC & 0.0000 & RWIN & 2.0000 & SCIDLE & 0.0000 \\
\hline SHIELD_POT & 638.0000 & SHIELD_SYM & 0.0000 & SHIGH & 1050.0000 \\
\hline SKIM & 0.0000 & SLOW & 10.0000 & SS & 2.0000 \\
\hline SW & 0.0206 & TANAL & 0.0000 & TCURR & 0.0000 \\
\hline TD & 30.0000 & TS & 60.6748 & THRESH & 2.0000 \\
\hline TIS & 0.2000 & TREF & 100.0000 & TSAM & 200.0000 \\
\hline TSET & 0.0000 & TUBEL & 0.0000 & UROT & 0.0000 \\
\hline USERVAR & 0.0000 & UTQ1 & 150.0000 & UTQ2 & 190.0000 \\
\hline UTQ3 & 80.0000 & VMASS & 95.5000 & XLENS_POT & 896.0000 \\
\hline XLENS_SYM & -8.5000 & YLENS_POT & 568.0000 & YLENS_SYM & 0.0000 \\
\hline
\end{tabular}

\footnotetext{
Source Gauge: \(\quad 1.9 \mathrm{e}-005 \mathrm{mbar}\)
Analyzer Penning: \(\quad 5.1 \mathrm{e}-008 \mathrm{mbar}\)
Pirani Analyse: \(\quad 1.7 \mathrm{e}-002 \mathrm{mbar}\)
Pirani Source: \(\quad 2.9 \mathrm{e}-002 \mathrm{mbar}\)
Pirani Inlet System: 3.0e-002 mbar
}

Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 12110.
MID Time Window 2: Resolution is 12335.
MID Time window 3: Resolution is 12382 .
MID Time Window 4: Resolution is 12632.

MID Time Window 5: Resolution is 12403.
MID Time Window 6: Resolution is 12476.
```

Amplifier offset: 87.
$\underset{\sim \neq *}{* *}$ File closed Wed Feb 08 04:09:48 2017

```

\section*{Standards Data}

\section*{Dioxins/Furans by HRMS}

\section*{Quantitation Settings}

\section*{Data File Parameter}

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [ hSV ]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/01/31 21:06
26
\[
2
\]

TDTFWD ST1701737A
CPS01
DF18471-17JAN31
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
y:117jan31117jan31-02.quan
y:\17jan31117jan31-02.raw
\(y\) :iresponsefilesidf18471-17jan31dfical.resp

Compatibility off
No Summation
Dependend on Area
1.0
1.0
1.0
1.0
1.0

Average RF
Linear Fit
Non weighted Regression
1.0

\section*{Chromatogram}


\section*{Entry Parameters}

Smoothing Points
Compound Name
Quan. Mass QM Integration Mode
Ratio Mass 1
RM1 Integration Mode
ManInt
RM1 Retention Time
RM1 Left Baseline Height
RM1 Left Height
RM1 Height
GC Res (\%) left

3
2378-TCDD
321.8936 +/- 50 ppm

A
\(319.8965+/-50 \mathrm{ppm}\)
A
0
32.20
360.97

6483
63563
10.821187

```

Started by - Xcalibur
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SN0000XXXX
workstation internet name - LX18470

```

Analysis started at: 31-Jan-17 21:09:24

Analysis will stop at user request

Firmware version: 2.02

MCAL file name:

Sequence : 62d69d10-234f-46c5-bc8a-53bf0dc2f3b7

MID procedure: PFK16MAR24+MDT

Mid Time Windows:
Start Measure End Cycletime
\begin{tabular}{rrrrrrr} 
\# & 1 & \(11: 30 \mathrm{~min}\) & \(9: 30 \mathrm{~min}\) & \(21: 00 \mathrm{~min}\) & 1.00 sec \\
\(\#\) & 2 & \(21: 00 \mathrm{~min}\) & \(13: 44 \mathrm{~min}\) & \(34: 44 \mathrm{~min}\) & 1.00 sec \\
\(\#\) & 3 & \(34: 44 \mathrm{~min}\) & \(5: 03 \mathrm{~min}\) & \(39: 47 \mathrm{~min}\) & 0.90 & sec \\
\(\#\) & 4 & \(39: 47 \mathrm{~min}\) & \(4: 27 \mathrm{~min}\) & \(44: 15 \mathrm{~min}\) & 0.80 & sec \\
\(\#\) & 5 & \(44: 15 \mathrm{~min}\) & \(3: 45 \mathrm{~min}\) & \(48: 00 \mathrm{~min}\) & 0.80 & sec \\
\(\#\) & 6 & \(48: 00 \mathrm{~min}\) & \(3: 00 \mathrm{~min}\) & \(51: 00 \mathrm{~min}\) & 0.80 sec
\end{tabular}

Mid Masses:
Window \# 1
\begin{tabular}{cccc} 
mass & int & int & time (ms) \\
218.0129 & 1 & 1 & 95 \\
218.9851 & 1 & 20 & 1 \\
220.0100 & 1 & 1 & 95 \\
230.0532 & 2 & 1 & 47 \\
232.0502 & 2 & 1 & 47 \\
251.9739 & 1 & 1 & 95 \\
253.9710 & 1 & 1 & 95 \\
264.0142 & 2 & 1 & 47 \\
266.0112 & 2 & 1 & 47 \\
285.9350 & 1 & 1 & 95 \\
287.9320 & 1 & 1 & 95 \\
292.9819 c & 20 & 1 & 4 \\
297.9752 & 2 & 1 & 47 \\
299.9723 & 2 & 1 & 47 \\
window \# 2 & & & \\
mass & int & gr & time (ms) \\
292.9819 & 20 & 1 & 5 \\
303.9011 & 1 & 1 & 118 \\
305.8981 & 1 & 1 & 118 \\
315.9413 & 5 & 1 & 23 \\
317.9384 & 5 & 1 & 23 \\
319.8960 & 1 & 1 & 118 \\
321.8930 & 1 & 1 & 118
\end{tabular}

Page 1
\begin{tabular}{|c|c|c|c|}
\hline 331.9363 & 5 & 1 & 23 \\
\hline 333.9333 & 5 & 1 & 23 \\
\hline 339.8592 & 1 & 1 & 118 \\
\hline 341.8562 & 1 & 1 & 118 \\
\hline 354.9787 c & 20 & 1 & 5 \\
\hline 375.8364 & 2 & 1 & 59 \\
\hline Window \# 3 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 330.97871 & 20 & 1 & 6 \\
\hline 339.8592 & 1 & 1 & 133 \\
\hline 341.8562 & 1 & 1 & 133 \\
\hline 351.8994 & 3 & 1 & 44 \\
\hline 353.8965 & 3 & 1 & 44 \\
\hline 355.8541 & 1 & 1 & 133 \\
\hline 357.8511 & 1 & 1 & 133 \\
\hline 367.8943 & 3 & 1 & 44 \\
\hline 369.8914 & 3 & 1 & 44 \\
\hline 380.9755 c & 20 & 1 & 6 \\
\hline 409.7969 & 2 & 1 & 66 \\
\hline Window \# 4 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 373.8201 & 1 & 1 & 117 \\
\hline 375.8172 & 1 & 1 & 117 \\
\hline 380.97551 & 20 & 1 & 5 \\
\hline 383.8634 & 3 & 1 & 39 \\
\hline 385.8604 & 3 & 1 & 39 \\
\hline 389.8151 & 1 & 1 & 117 \\
\hline 391.8121 & 1 & 1 & 117 \\
\hline 401.8554 & 3 & 1 & 39 \\
\hline 403.8524 & 3 & 1 & 39 \\
\hline 430.9723 c & 20 & 1 & 5 \\
\hline 445.7550 & 2 & 1 & 58 \\
\hline Window \# 5 & & & \\
\hline mass F & int & gr & time (ms) \\
\hline 404.97551 & 20 & 1 & 5 \\
\hline 407.7812 & 1 & 1 & 117 \\
\hline 409.7783 & 1 & 1 & 117 \\
\hline 417.8244 & 3 & 1 & 39 \\
\hline 419.8215 & 3 & 1 & 39 \\
\hline 423.7761 & 1 & 1 & 117 \\
\hline 425.7732 & 1 & 1 & 117 \\
\hline 435.8164 & 3 & 1 & 39 \\
\hline 437.8134 & 3 & 1 & 39 \\
\hline 479.7160 & 2 & 1 & 58 \\
\hline 480.9691 c & 20 & 1 & 5 \\
\hline Window \# 6 & & & \\
\hline mass \(F\) & int & gr & time (ms) \\
\hline 441.7422 & 1 & 1 & 95 \\
\hline 442.97231 & 20 & 1 & 4 \\
\hline 443.7393 & 1 & 1 & 95 \\
\hline 453.7825 & 1 & 1 & 95 \\
\hline 455.7795 & 1 & 1 & 95 \\
\hline 457.7372 & 1 & 1 & 95 \\
\hline 459.7342 & 1 & 1 & 95 \\
\hline 469.7774 & 3 & 1 & 31 \\
\hline 471.7745 & 3 & 1 & 31 \\
\hline 492.9691 c & 20 & 1 & 4 \\
\hline 513.6770 & 2 & 1 & 47 \\
\hline
\end{tabular}

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID Window terminated after 34.750000 minutes
MID Window end time was 34.740000 minutes
Page 2

MID Window terminated after 39.800000 minutes MID Window end time was 39.800000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\xcalibur\system\DFS \(\backslash M S I \backslash 17 J A N 26 . D F S T u n e\)
DFS - Parameter
\begin{tabular}{|c|c|c|c|c|c|}
\hline Accu & 1000.0000 & BCORRS & 0.0170 & BMASS & 99.0000 \\
\hline BQUAD & 0.4500 & CAPIL & 0.0000 & CAPTSET & 0.0000 \\
\hline CCURR & 0.0000 & COUNTING & 0.0000 & delay & 0.0000 \\
\hline DRAW & -25.0000 & DRAWC & 0.0000 & DRAWS & 0.0000 \\
\hline DYNVOLTAGE & 20.0000 & ECORR & 0.9995 & ECURR & 1.0000 \\
\hline EDAC & 7969177.0000 & EDACG & 1.0000 & EDACZ & 156.3333 \\
\hline ELEN & -45.0000 & EMULT & 1300.0000 & ENS & 175.0000 \\
\hline ENSBR & 0.4500 & eratio & 1.0000 & ESA & 679.0600 \\
\hline ESIPAR & 0.0000 & EXS & 171.0000 & EXSBR & -0.5300 \\
\hline FDMA & 18000000.0000 & FILTER & 100.0000 & FLENS & 1.0000 \\
\hline FM & 10.0000 & FMII & 50.0000 & FQUAD & 13.9000 \\
\hline FQUADGAIN & 1.0000 & FREQ & 400.0000 & FSLOPE & 36000000.0000 \\
\hline fVANAL & 0.0153 & FVINLET & 0.0275 & FVSRC & 0.0273 \\
\hline FWIN & 0.7000 & HCURR & 0.0000 & HVANAL & 0.0000 \\
\hline HVSRC & 0.0000 & ICALO & 0.0011 & ICAL1 & 0.4030 \\
\hline ICAL2 & 0.5865 & IONEN & 0.0000 & IST & 0.0000 \\
\hline ISTC & 260.0000 & ISTS & 260.0000 & LENS_POT & 718.0000 \\
\hline LENS_SYM & 12.7500 & LM & 1050.0000 & LMII & 500.0000 \\
\hline LMASS & 99.0000 & LKM & 442.9723 & MASS & 99.0000 \\
\hline MDAC & 1472957. 1872 & MRANGE & 1304.6486 & NSAM & 200.0000 \\
\hline NSCAN & 2520.0000 & NSMAX & 8.0000 & NSMIN & 66.0000 \\
\hline NPEAK & 11.0000 & MULT & 0.0000 & PSAM & 10.0000 \\
\hline PUSHER & -15.0000 & RECURR & 0.8972 & RELEN & 0.0000 \\
\hline RES & 14475.0295 & RPUSHER & -14.5568 & RDRAW & 0.0000 \\
\hline RDRAWC & 0.0000 & RWIN & 2.0000 & SCIDLE & 0.0000 \\
\hline SHIELD_POT & 664.0000 & SHIELD_SYM & 0.0000 & SHIGH & 1050.0000 \\
\hline SKIM & 0.0000 & SLOW & 10.0000 & SS & 2.0000 \\
\hline SW & 0.0180 & TANAL & 0.0000 & TCURR & 0.0000 \\
\hline TD & 30.0000 & TS & 60.6748 & THRESH & 2.0000 \\
\hline TIS & 0.2000 & TREF & 100.0000 & TSAM & 200.0000 \\
\hline TSET & 0.0000 & TUBEL & 0.0000 & UROT & 0.0000 \\
\hline USERVAR & 0.0000 & UTQ1 & 150.0000 & UTQ2 & 190.0000 \\
\hline UTQ3 & 80.0000 & VMASS & 99.0000 & XLENS_POT & 880.0000 \\
\hline XLENS_SYM & -2.5000 & YLENS_POT & 602.0000 & YLENS_SYM & -7.7500 \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { Source Gauge: } & 2.0 \mathrm{e}-005 \mathrm{mbar} \\
\text { Analyzer Penning: } & 5.2 \mathrm{e}-008 \mathrm{mbar} \\
\text { Pirani Analyse: } & 1.5 \mathrm{e}-002 \mathrm{mbar} \\
\text { Pirani Source: } & 2.7 \mathrm{e}-002 \mathrm{mbar} \\
\text { Pirani Inlet System: } & 2.8 \mathrm{e}-002 \mathrm{mbar}
\end{array}
\]

Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 11312.
MID Time Window \(2:\) Resolution is 10930.
MID Time window 3:
Resolution is 10949.
MID Time window 4: Resolution is 11416.
Page 3

MID Time Window 5: Resolution is 14928.
MID Time Window 6: Resolution is 14475.
Amplifier offset: 88.
*** File closed Tue Jan 31 22:00:26 2017
***
\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|}
\hline
\end{tabular}

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/01/31 22:57
63

3
CALDF11737B
CSLO1
DF18471-17JAN31
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
y:I17jan31\17jan31-04.quan
y:I17jan31117jan31-04.raw
\(y\) :\responsefiles 1 df 18471 1-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

Entry Parameters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & QM Retention Time & Status Overview & Amount Status & RM1 Time Status & \[
\begin{array}{|l|}
\hline \text { Ratiol } \\
\text { Status } \\
\hline
\end{array}
\] & Recovery Status & RRT Status & \[
\begin{aligned}
& \text { Status } \\
& \text { info } \\
& \hline
\end{aligned}
\] \\
\hline 1 & 2378-TCDF & 31.17 & passed & passed & passed & passed & passed & passed & \\
\hline 2 & 2378-TCDD & 32.19 & passed & passed & passed & passed & passed & passed & \\
\hline 3 & 12378 - \({ }_{\text {a }}\) CDF & 36.68 & passed & passed & passed & passed & passed & passed & \\
\hline 4 & 23478PeCDF & 37.88 & passed & passed & passed & passed & passed & passed & \\
\hline 5 & \(12378 . \mathrm{PeCDD}\) & 38.26 & passed & passed & passed & passed & passed & passed & \\
\hline 6 & 123478 - HxCDF & 41.44 & passed & passed & passed & passed & passed & passed & \\
\hline 7 & 123678 - XxCDF & 41.60 & passed & passed & passed & passed & passed & passed & \\
\hline 8 & 234678-HxCDF & 42.27 & passed & passed & passed & passed & passed & passed & \\
\hline 9 & 123478 -HxCDD & 42.46 & passed & passed & passed & passed & passed & passed & \\
\hline 10 & \(123678-\mathrm{H} \times\) CDD & 42.57 & passed & passed & passed & passed & passed & passed & \\
\hline 11 & 123789-HxCDD & 42.88 & passed & passed & passed & passed & passed & passed & \\
\hline 12 & 123789-HxCDF & 43.27 & passed & passed & passed & passed & passed & passed & \\
\hline 13 & 1234678-HpCDF & 44.96 & passed & passed & passed & passed & passed & passed & \\
\hline 14 & 1234678-HpCDD & 46.15 & passed & passed & passed & passed & passed & passed & \\
\hline 15 & 1234789-HpCDF & 46.70 & passed & passed & passed & passed & passed & passed & \\
\hline 16 & OCDD & 49.14 & passed & passed & passed & passed & pessed & passed & \\
\hline 17 & OCDF & 49.34 & passed & passed & passed & passed & passed & passed & \\
\hline 18 & 13C12-1234-TCDD & 31.41 & passed & passed & passed & passed & passed & passed & \\
\hline 19 & 13C12-123468-HxCDD & 41.34 & passed & passed & passed & passed & passed & passed & \\
\hline 20 & 13C 12-2378-TCDF & 31.13 & passed & passed & passed & passed & passed & passed & \\
\hline 21 & 13C12-2378-TCDD & 32.16 & passed & passed & passed & passed & passed & passed & \\
\hline 22 & 13C12-12378-PeCDF & 36.65 & passed & passed & passed & passed & passed & passed & \\
\hline 23 & 13C12-23478-PeCDF & 37.86 & passed & passed & passed & passed & passed & passed & \\
\hline 24 & 13C12-12378-PeCDD & 38.25 & passed & passed & passed & passed & passed & passed & \\
\hline 25 & 13C12-123478-HxCDF & 41.44 & passed & passed & passed & passed & passed & passed & \\
\hline 26 & \(13 \mathrm{C} 12-123678-\mathrm{HxCDF}\) & 41.59 & passed & passed & passed & passed & passed & passed & \\
\hline 27 & 13C12-234678-HxCDF & 42.26 & passed & passed & passed & passed & passed & passed & \\
\hline 28 & 13C12-123478-H×CDD & 42.45 & passed & passed & passed & passed & passed & passed & \\
\hline 29 & 13C12-123678-H×CDD & 42.56 & passed & passed & passed & passed & passed & passed & \\
\hline 30 & 13C12-123789-HxCDD & 42.87 & passed & passod & passed & passed & passed & passed & \\
\hline 31 & 13C12-123789-HxCOF & 43.26 & passed & passed & passed & passed & passed & passed & \\
\hline 32 & 13C 12-1234678-HpCDF & 44.94 & passed & passed & passed & passed & passed & passed & \\
\hline 33 & 13C12-1234678-HpCDD & 46.13 & passed & passed & passed & passed & passed & passed & \\
\hline 34 & 13C 12-1234789-HpCDF & 46.70 & passed & passed & passed & passed & passed & passed & \\
\hline 35 & 13 C 12 -OCDD & 49.12 & passed & passed & passed & passed & passed & passed & \\
\hline 38 & 13C12-OCDF & 49.32 & passed & passed & passed & passed & passed & passed & \\
\hline 37 & Total TCDF & 29.84 & passed (1) & - & - & --- & - & - & \\
\hline 38 & Total TCDD & 30.51 & passed (1) & -- & - & --- & - & -- & \\
\hline 39 & Total PeCDF & 36.97 & passed (2) & -- & -- & - & - & -- & \\
\hline 40 & Total PeCDD & 37.05 & passed (1) & - & - & -- & - & - & \\
\hline 41 & Total \(\mathrm{H} \times\) CDF & 41.91 & passed (4) & - - & - & - & - & - & \\
\hline 42 & Total HxCDD & 42.65 & passed (3) & -- & -- & - & - & -- & \\
\hline 43 & Total HpCDD & 45.68 & passed (1) & - & - & - & -- & - & \\
\hline 44 & Total HpCDF & 45.90 & passed (2) & -- & --- & --- & - & - & \\
\hline 45 & Single TCDF & 3117 & passed & passed & passed & passed & passed & passed & \\
\hline 46 & Single TCDD & 32.19 & passed & passed & passed & passed & passed & passed & \\
\hline 47 & Single PeCDD & 38.26 & passed & passed & passed & passed & passed & passed & \\
\hline 48 & Single PeCDF & 37.88 & passed & passed & passed & passed & passed & passed & \\
\hline 49 & Single PeCDF & 36.68 & passed & passed & passed & passed & passed & passed & \\
\hline 50 & Single HPCDD & 46.15 & passed & passed & passed & passed & passed & passed & \\
\hline 51 & Single \(\mathrm{H} \times \mathrm{CDF}\) & 41.60 & passed & passed & passed & passed & passed & passed & \\
\hline 52 & Single \(\mathrm{H} \times \mathrm{CDF}\) & 41.44 & passed & passed & passed & passed & passed & passed & \\
\hline 53 & Single \(\mathrm{H} \times \mathrm{CDF}\) & 42.27 & passed & passed & passed & passed & passed & passed & \\
\hline 54 & Single \(\mathrm{H} \times\) CDF & 43.27 & passed & passed & passed & passed & passed & passed & \\
\hline 55 & Single HxCDD & 42.57 & passed & passed & passed & passed & passed & passed & \\
\hline 56 & Single HxCDO & 42.45 & passed & passed & passed & passed & passed & passed & \\
\hline 57 & Single HXCDD & 42.88 & passed & passed & passed & passed & passed & passed & \\
\hline 58 & Single HpCDF & 44.96 & passed & passed & passed & passed & passed & passed & \\
\hline 59 & Single HPCDF & 46.70 & passed & passed & passed & passed & passed & passed & \\
\hline
\end{tabular}

\section*{Quantitation Settings}

\section*{Data File Parameter}

Acq. Data
Number of Entries
2017/01/31 22:57

Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor
y:I17jan31117jan31-04.quan
\(y\) :117jan31117jan31-04.raw
\(y\) :Iresponsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

\section*{Chromatogram}

RT: 30.17-32.17 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & 2378 -TCDF \\
QM Retention Time & 31.17 \\
QM Area & 2214 \\
QM Integration Mode & M \\
RM1 Area & 1431 \\
RM1 Integration Mode & A \\
ManInt & 1 \\
Detection Limit (A) & 0.0022 \\
Unqualified Amount (A) & 0.100000 \\
Adjusted Amount (A) & 0.1000 \\
Signal-to-Noise & 139 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 31.19-33.19 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & 2378 -TCDD \\
QM Retention Time & 32.19 \\
QM Area & 984 \\
QM Integration Mode & A \\
RM1 Area & 664 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0030 \\
Unqualified Amount (A) & 0.100000 \\
Adjusted Amount (A) & 0.1000 \\
Signal-to-Noise & 80 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & 12378 -PeCDF \\
QM Retention Time & 36.68 \\
QM Area & 5060 \\
QM Integration Mode & A \\
RM1 Area & 8150 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0024 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 532 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

AIL01 Page 1874 of 560

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(23478-\mathrm{PeCDF}\) \\
QM Retention Time & 37.88 \\
QM Area & 5380 \\
QM Integration Mode & A \\
RM1 Area & 8776 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0022 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 585 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & 12378 -PeCDD \\
QM Retention Time & 38.26 \\
QM Area & 2959 \\
QM Integration Mode & A \\
RM1 Area & 5278 \\
RM1 Integration Mode & M \\
ManInt & 1 \\
Detection Limit (A) & 0.0063 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 193 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123478-\mathrm{HxCDF}\) \\
QM Retention Time & 41.44 \\
QM Area & 5444 \\
QM Integration Mode & A \\
RM1 Area & 7288 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0037 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 343 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & 123678-HxCDF \\
QM Retention Time & 41.60 \\
QM Area & 6125 \\
QM Integration Mode & A \\
RM1 Area & 7653 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0034 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 378 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 41.27-43.27 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(234678-\mathrm{HxCDF}\) \\
QM Retention Time & 42.27 \\
QM Area & 5275 \\
QM Integration Mode & A \\
RM1 Area & 6895 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0037 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 347 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Status Info

\section*{Chromatogram}

RT: 41.46-43.46 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123478-\mathrm{HxCDD}\) \\
QM Retention Time & 42.46 \\
QM Area & 3610 \\
QM Integration Mode & A \\
RM1 Area & 3927 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0079 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 156 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Status Info

\section*{Chromatogram}

RT: 41.57-43.57 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123678-\mathrm{HxCDD}\) \\
QM Retention Time & 42.57 \\
QM Area & 4271 \\
QM Integration Mode & A \\
RM1 Area & 4548 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0068 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 184 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\footnotetext{
Status Info
}

\section*{Chromatogram}

> RT: 41.88-43.88 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(123789-\mathrm{HxCDD}\) \\
QM Retention Time & 42.88 \\
QM Area & 4091 \\
QM Integration Mode & A \\
RM1 Area & 4978 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0068 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 200 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Chromatogram
RT: 42.27-44.27 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(123789-H x C D F\) \\
QM Retention Time & 43.27 \\
QM Area & 5122 \\
QM Integration Mode & A \\
RM1 Area & 7290 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0037 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 328 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(1234678-\mathrm{HpCDF}\) \\
QM Retention Time & 44.96 \\
QM Area & 5496 \\
QM Integration Mode & A \\
RM1 Area & 5779 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0023 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 538 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Status Info

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(1234678-\mathrm{HpCDD}\) \\
QM Retention Time & 46.15 \\
QM Area & 3913 \\
QM Integration Mode & A \\
RM1 Area & 3581 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0045 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 289 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Status Info

AIL01 Page 1885 of 560

\section*{Chromatogram}

RT: 45.70-47.70 SM: 3G

\begin{tabular}{ll} 
Entry Parameters & \\
& \\
Compound Name & \(1234789-H p C D F\) \\
QM Retention Time & 46.70 \\
QM Area & 5603 \\
QM Integration Mode & A \\
RM1 Area & 5087 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0025 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 483 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 48.14-50.14 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & OCDD \\
QM Retention Time & 49.14 \\
QM Area & 7308 \\
QM Integration Mode & A \\
RM1 Area & 6187 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0047 \\
Unqualified Amount (A) & 1.000000 \\
Adjusted Amount (A) & 1.0000 \\
Signal-to-Noise & 567 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & OCDF \\
QM Retention Time & 49.34 \\
QM Area & 9738 \\
QM Integration Mode & A \\
RM1 Area & 9133 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0051 \\
Unqualified Amount (A) & 1.000000 \\
Adjusted Amount (A) & 1.0000 \\
Signal-to-Noise & 523 \\
Client Flags & \\
Status Overview & passed \\
Status Info &
\end{tabular}

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/01/31 22:57
63

3
CALDF11737B
CSLO1
DF18471-17JAN31
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
y:117jan31117jan31-04.quan
y:I17jan31117jan31-04.raw
\(y\) :Iresponsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression 1.0

\section*{Chromatogram}

RT: 25.66-34.02 SM: 3G


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & Totai TCDF \\
QM Retention Time & 29.84 \\
QM Area & 2214 \\
QM Integration Mode & M \\
RM1 Area & 1431 \\
RM1 Integration Mode & A \\
ManInt & 1 \\
Detection Limit (A) & 0.0022 \\
Unqualified Amount (A) & 0.100000 \\
Adjusted Amount (A) & 0.1000 \\
Signal-to-Noise & 139 \\
Client Flags & \\
Status Overview & passed (1) \\
Status Info &
\end{tabular}

Inst ID: DF18471-17JAN31 / Client

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & Total TCDD \\
QM Retention Time & 30.61 \\
QM Area & 984 \\
QM Integration Mode & A \\
RM1 Area & 664 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0030 \\
Unqualified Amount (A) & 0.100000 \\
Adjusted Amount (A) & 0.1000 \\
Signal-to-Noise & 80 \\
Client Flags & \\
Status Overview & passed (1) \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & Total PeCDF \\
QM Retention Time & 36.97 \\
QM Area & 10441 \\
QM Integration Mode & A \\
RM1 Area & 16926 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0023 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 1.0000 \\
Signal-to-Noise & 559 \\
Client Flags & \\
Status Overview & passed (2) \\
Status Info &
\end{tabular}

\section*{Chromatogram}

\begin{tabular}{ll} 
Entry Parameters & \\
& \\
Compound Name & Total PeCDD \\
QM Retention Time & 37.05 \\
QM Area & 2959 \\
QM Integration Mode & A \\
RM1 Area & 5278 \\
RM1 Integration Mode & M \\
ManInt & 1 \\
Detection Limit (A) & 0.0063 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 193 \\
Client Flags & \\
Status Overview & passed (1) \\
Status Info &
\end{tabular}

\section*{Chromatogram}

RT: 39.94-43.89 SM: 3G


Entry Parameters
\begin{tabular}{ll} 
Compound Name & Total HxCDF \\
QM Retention Time & 41.91 \\
QM Area & 21966 \\
QM Integration Mode & A \\
RM1 Area & 29126 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0036 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 2.0000 \\
Signal-to-Noise & 349 \\
Client Flags & \\
Status Overview & passed (4) \\
Status Info &
\end{tabular}

Status Info

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & Total HxCDD \\
QM Retention Time & 42.65 \\
QM Area & 11973 \\
QM Integration Mode & A \\
RM1 Area & 13453 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0072 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 1.5000 \\
Signal-to-Noise & 180 \\
Client Flags & \\
Status Overview & passed (3)
\end{tabular}

Status Info sample CALDF11737B/CSLD
Inst ID DF18471-17JAN31/Cli


Entry Parameters
\begin{tabular}{ll} 
Compound Name & Total HpCDD \\
QM Retention Time & 45.68 \\
QM Area & 3913 \\
QM Integration Mode & A \\
RM1 Area & 3581 \\
RM1 Integration Mode & A \\
Manint & 0 \\
Detection Limit (A) & 0.0045 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 0.5000 \\
Signal-to-Noise & 289 \\
Client Flags & \\
Status Overview & passed (1) \\
Status Info &
\end{tabular}

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & Total HpCDF \\
QM Retention Time & 45.90 \\
QM Area & 11099 \\
QM Integration Mode & A \\
RM1 Area & 10866 \\
RM1 Integration Mode & A \\
ManInt & 0 \\
Detection Limit (A) & 0.0024 \\
Unqualified Amount (A) & 0.500000 \\
Adjusted Amount (A) & 1.0000 \\
Signal-to-Noise & 510 \\
Client Flags & \\
Status Overview & passed (2) \\
Status Info &
\end{tabular}

\section*{Quantitation Settings}

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
\begin{tabular}{ll} 
QualBrowser Compatibility & Compatibility off \\
Sum Area/Height & Sum QM RM1 \\
Quantitation Status & Dependend on Area \\
Injection Volume [hIJV] & 1.0 \\
Sample Volume [hSV] & 1.0 \\
Sample Weight [hSWT] & 1.0 \\
Dilution Factor [hDF] & 1.0 \\
Det. Limit Factor [hDLF] & 2.5 \\
Response Factor Mode & Single Point (Spec. RF) \\
Fit Calc. Mode & Linear Fit \\
Regression Mode & Non weighted Regression \\
Weighted Regression Factor & 1.0
\end{tabular}
y:I17jan31117jan31-04.quan
y:\17jan31117jan31-04.raw
y:\responsefilesldf18471-17jan31dfical.resp
C:XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Sum RMI
Dependend on Area
1.0
1.0
1.0

25
Single Point (Spec. RF)

Non weighted Regression
1.0

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & \(2378-T C D F\) \\
QM Retention Time & 31.17 \\
QM Area & 2244 \\
QM Integration Mode & A \\
RM1 Area & 1431 \\
RM1 Integration Mode & A \\
ManInt & 1 \\
Detection Limit (A) & 0.0022 \\
Unqualified Amount (A) & 0.100825 \\
Adjusted Amount (A) & n.d \\
Signal-to-Noise & 139 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & \(12378-P e C D D\) \\
QM Retention Time & 38.26 \\
QM Area & 2959 \\
QM Integration Mode & A \\
RM1 Area & 5291 \\
RM1 Integration Mode & A \\
Manint & 1 \\
Detection Limit (A) & 0.0063 \\
Unqualified Amount (A) & 0.500758 \\
Adjusted Amount (A) & n.d. \\
Signal-to-Noise & 193 \\
Client Flags & \\
Status Overview & failed \\
Status Info & Failed on: Ratio1A
\end{tabular}

\section*{Quantitation Settings}

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

\section*{Quan Parameter}

QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/01/31 22:57
195

\section*{3}

CALDF11737B
CSLO1
DF18471-17JAN31
jda02741
DB5MS \(60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}\)
y:117jan31117jan31-04.quan
y:I17jan31117jan31-04.raw
y:Iresponsefilesldf18471-17jan31dfical.resp
C:UCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

\section*{Chromatogram}


\section*{Entry Parameters}
\begin{tabular}{ll} 
Compound Name & Total TCDF \\
QM Retention Time & 29.84 \\
QM Area & 42 \\
QM Integration Mode & A \\
RM1 Area & 36 \\
RM1 Integration Mode & A \\
ManInt & 1 \\
Detection Limit (A) & 0.0022 \\
Unqualified Amount (A) & 0.002154 \\
Adjusted Amount (A) & 0.0022 \\
Signal-to-Noise & 5 \\
Client Flags & \\
Status Overview & passed (1) \\
Status Info &
\end{tabular}

AIL01 Page 202 of 560

\section*{Chromatogram}


Entry Parameters
\begin{tabular}{ll} 
Compound Name & Total PeCDD \\
QM Retention Time & 37.05 \\
QM Area & 2 \\
QM Integration Mode & A \\
RM1 Area & 3 \\
RM1 Integration Mode & A \\
ManInt & 1 \\
Detection Limit (A) & 0.0063 \\
Unqualified Amount (A) & 0.000275 \\
Adjusted Amount (A) & 0.0003 \\
Signal-to-Noise & 0 \\
Client Flags & \\
Status Overview & passed (1) \\
Status Info &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{aligned}
& \text { Compound } \\
& \text { Name } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Quan. } \\
& \text { Mass }
\end{aligned}
\] & \begin{tabular}{l}
Ratio \\
Mass 1
\end{tabular} & \[
\begin{aligned}
& \text { RT Window } \\
& {[\mathrm{min}]}
\end{aligned}
\] & \begin{tabular}{l}
Specified \\
RT (min]
\end{tabular} & \begin{tabular}{l}
OM Retention \\
Time
\end{tabular} & RM1 Retention Time & RM1 Time
Status & RRT Status & \\
\hline 1 & 2378-TCDF & \(305.8987+/-5 \mathrm{ppm}\) & 303.9016 +/-5 ppm & 0.67 & 31.17 & 37.17 & 31.17 & passed & & passed \\
\hline 2 & 2378-TCDD & \(321.8936+/-5 \mathrm{ppm}\) & 319.8965 +/-5 ppm & 0.67 & 32.19 & 32.19 & 32.18 & passed & & passed \\
\hline 3 & \(12378-\mathrm{PeCDF}\) & \(341.8567+1-5 \mathrm{ppm}\) & \(339.8597+\) +-5 ppm & 0.57 & 36.68 & 36.68 & 36.68 & passed & & passed \\
\hline 4 & 23478-PeCDF & \(341.8567+1-5 \mathrm{ppm}\) & \(339.8597+/ .5 \mathrm{ppm}\) & 0.67 & 37.88 & 37.86 & 37.88 & passed & & passed \\
\hline 5 & \(12378-\mathrm{PeCDD}\) & \(357.8516+/ .5 \mathrm{ppm}\) & \(355.8546+/ .5 \mathrm{ppm}\) & 0.67 & 38.26 & 38.26 & 38.26 & passed & & passed \\
\hline 6 & 123478-H×CDF & 375.8178 +/-5 ppm & \(373.8208+i-5 \mathrm{ppm}\) & 067 & 41.44 & 41.44 & 41.45 & passed & & passed \\
\hline 7 & 123678 -H×CDF & \(375.8178+/-5 \mathrm{ppm}\) & \(373.8208+/-5 \mathrm{ppm}\) & 0.67 & 41.60 & 41.60 & 41.60 & passed & & passed \\
\hline - & 234678-HxCDF & 375.8178 +/-5 ppm & 373.8208 +/-5 ppm & 0.67 & 42.27 & 42.27 & 42.27 & passed & & passed \\
\hline 9 & \(123478-\mathrm{HxCDO}\) & 391.8127 +/-5 ppm & \(389.8157+/-5 \mathrm{ppm}\) & 0.67 & 42.46 & 42.46 & 42.46 & passed & & passed \\
\hline 10 & \(123678-\mathrm{H} \mathrm{\times CDD}\) & \(391.8127++\) - ppm & \(389.8157+l-5 \mathrm{ppm}\) & 0.67 & 42.57 & 42.57 & 42.58 & passed & & passed \\
\hline 11 & 123789-HxCDD & \(391.8127+/ .5 \mathrm{ppm}\) & \(389.8157+\) + 5 ppm & 0.67 & 42.88 & 42.88 & 42.89 & passed & & passed \\
\hline 12 & 123789-HxCDF & 375.8178 +/-5 ppm & \(373.8208+\) +-5 ppm & 0.67 & 43.27 & 43.27 & 4328 & passed & & passed \\
\hline 13 & 1234678-HpCDF & 409.7789 +/-5 ppm & \(407.7818+1-5 \mathrm{ppm}\) & 0.67 & 44.96 & 44.96 & 44.96 & passed & & passed \\
\hline 14 & 1234678-HPCDD & \(425.7737++\) - 5 ppm & \(423.7766+/-5 \mathrm{ppm}\) & 0.67 & 46.15 & 46.15 & 46.15 & passed & & passed \\
\hline 15 & 1234789-HpCDF & 409.7789 +/-5 ppm & \(407.7818+1.5 \mathrm{ppm}\) & 0.67 & 46.70 & 46.70 & 46.70 & passed & & passed \\
\hline 16 & OCDD & \(459.7348+1-5 \mathrm{ppm}\) & \(457.7377+i-5 \mathrm{ppm}\) & 0.67 & 49.14 & 49.14 & 49.14 & passed & & passed \\
\hline 17 & OCDF & \(443.7399+\) +-5 ppm & \(441.7428+/-5 \mathrm{ppm}\) & 0.67 & 49.34 & 49.34 & 49.34 & passed & & passed \\
\hline 18 & 13C12-1234-TCDD & \(333.9339+\) +- 5 ppm & 331.9368 +l-5 ppm & 0.67 & 31.41 & 31.41 & 31.41 & passed & & passed \\
\hline 19 & 13C12-123468-HxCDD & \(403.8529+\) +- 5 ppm & \(4018559+/-5 \mathrm{ppm}\) & 1.00 & 41.34 & 41.34 & 41.34 & passed & & passed \\
\hline 20 & 13C12-2378-TCDF & 317.9389 +/. 5 ppm & \(345.9419+/\) - 5 ppm & 0.67 & 31.13 & 31.13 & 31.13 & passed & & passed \\
\hline 21 & 13C12-2378-TCDD & 333.9339 +/-5 ppm & 331.9368 +/-5 ppm & 0.67 & 32.16 & 32.16 & 32.16 & passed & & passed \\
\hline 22 & 13C12-12378-PeCDF & 353.8970 +/- 5 ppm & 351.9000 +/-5 ppm & 0.67 & 36.65 & 36.65 & 36.65 & passed & & passed \\
\hline 23 & 13C12-23478-PeCDF & 353.8970 +/-5 ppm & 351.9000 +/- 5 ppm & 0.67 & 37.86 & 37.86 & 37.86 & passed & & passed \\
\hline 24 & 13C12-12378-PeCDD & 369.8919 +/-5 ppm & 367.8949 +/-5 ppm & 0.67 & 38.25 & 38.25 & 38.25 & passed & & passed \\
\hline 25 & 13C12-123478-HxCOF & \(385.8610+/ .5 \mathrm{ppm}\) & \(383.8639+1-5 \mathrm{ppm}\) & 0.67 & 41.44 & 41.44 & 41.44 & passed & & passed \\
\hline 26 & 13C12-123678-HxCDF & \(385.8610+\) /-5 ppm & \(383.8639+1.5 \mathrm{ppm}\) & 0.67 & 41.59 & 41.59 & 41.59 & passed & & passed \\
\hline 27 & 13C12-234678-HxCDF & \(385.8610+/ .5 \mathrm{ppm}\) & \(383 \mathrm{B639}+\) +/. 5 ppm & 0.67 & 42.26 & 42.26 & 42.26 & passed & & passed \\
\hline 28 & 13C12-123478-HxCDD & \(403.8529+\) +- 5 ppm & \(404.8559+/-5 \mathrm{ppm}\) & 0.67 & 42.45 & 42.45 & 42.45 & passed & & passed \\
\hline 29 & 13C12-123678-HxCDD & 403.8529 +/-5 ppm & \(401.8559+/ .5 \mathrm{ppm}\) & 0.67 & 42.56 & 42.56 & 42.56 & passed & & passed \\
\hline 30 & 13C12-123789-HxCDD & 403.8529 +l-5 ppm & \(401.8559++-5 \mathrm{ppm}\) & 0.67 & 42.67 & 42.87 & 42.87 & passed & & passed \\
\hline 31 & 13C12-123789-HxCDF & 385.8610 +/-5 ppm & \(383.8639+/-5 \mathrm{ppm}\) & 0.67 & 43.26 & 43.26 & 43.26 & passed & & passed \\
\hline 32 & 13C12-1234678-HpCDF & \(419.8220+/-5 \mathrm{ppm}\) & \(417.8253+/-5 \mathrm{ppm}\) & 0.67 & 44.94 & 44.94 & 44.94 & passed & & passed \\
\hline 33 & 13C12-1234678-HPCDD & 437.8140 +/-5 ppm & \(435.8169+/-5\) ppm & 0.67 & 46.13 & 46.13 & 46.13 & passed & & passed \\
\hline 34 & 43C 12-1234789-HPCDF & 419.8220 +/-5 ppm & \(417.8253+/-5 \mathrm{ppm}\) & 0.67 & 46.70 & 46.70 & 46.70 & passed & & passed \\
\hline 35 & 13C12-OCDO & 479.7750 +/-5 ppm & \(469.7779+/-5 \mathrm{ppm}\) & 0.67 & 49.12 & 49.12 & 49.12 & passed & & passed \\
\hline 36 & 13C12-OCDF & 455.7802 +/-5 ppm & 453.7831 +/-5 ppm & 1.00 & 49.32 & 49.32 & 49.32 & passed & & passed \\
\hline 37 & Total TCDF & 305.8987 +l-5 ppm & \(303.9016+/-5 \mathrm{ppm}\) & 7.60 & 29.84 & 29.64 & 29.84 & -- & & - \\
\hline 38 & Total TCDD & 3218936 + \(/-5 \mathrm{ppm}\) & 319.8965 +/- 5 ppm & 5.60 & 30.61 & 30.61 & 30.61 & --- & & - \\
\hline 39 & Total PeCDF & 341.8567 +/-5 ppm & \(339.8597+/-5 \mathrm{ppm}\) & 5.93 & 36.97 & 36.97 & 36.97 & -- & & - \\
\hline 40 & Total PeCDD & 357.8516 +/-5 ppm & 355.8546 +/-5 PPm & 3.56 & 3705 & 37.05 & 37.05 & -- & & - \\
\hline 41 & Total \(\mathrm{H} \times \mathrm{CDF}\) & 375.8178 +l-5 ppm & \(373.8208+/-5 \mathrm{ppm}\) & 3.59 & 41.91 & 41.91 & 41.91 & - & & - \\
\hline 42 & Total \(\mathrm{H} \times \mathrm{CDD}\) & \(391.8127+/-5 \mathrm{ppm}\) & \(389.8157+/-5 \mathrm{ppm}\) & 2.50 & 42.65 & 42.65 & 42.65 & -- & & - \\
\hline 43 & Total HPCDD & \(425.7737+/-5 \mathrm{ppm}\) & \(423.7766+/-5 \mathrm{pprs}\) & 1.05 & 45.68 & 45.68 & 45.68 & -- & & - \\
\hline 44 & Total HPCDF & \(409.7789+/-5 \mathrm{ppm}\) & 407.7816 +/-5 ppm & 2.10 & 45.90 & 45.30 & 45.90 & -- & & - \\
\hline 45 & Single TCDF & \(305.8987+1-5 \mathrm{ppm}\) & 303.9016 +/- 5 ppm & 7.60 & 31.17 & 31.17 & 3117 & passed & & passed \\
\hline 46 & Single TCDD & 321.8936 +/-5 ppm & 319.8965 +/-5 ppm & \(5 . \mathrm{EO}\) & 32.19 & 32.19 & 32.18 & passed & & passed \\
\hline 47 & Single PeCDD & 357.8516 +l-5ppm & \(355.8546+/-5 \mathrm{ppm}\) & 3.56 & 38.26 & 38.26 & 38.26 & passed & & passed \\
\hline 48 & Single PeCDF & \(341.8567+1 / 5 \mathrm{ppm}\) & \(339.8597+\) +-5 ppm & 5.93 & \(37 \mathrm{B8}\) & 37.88 & 37.88 & passed & & passed \\
\hline 49 & Single PeCDF & 341.8567 +/-5 ppm & \(339.8597+/-5 \mathrm{ppm}\) & 5.93 & 36.68 & 36.68 & 36.68 & passed & & passed \\
\hline 50 & Single HPCDD & \(425.7737+/-5 \mathrm{ppm}\) & 423.7766 + + - 5 ppm & 105 & 46.15 & 46.15 & 46.15 & passed & & passed \\
\hline 51 & Single \(H \times C D F\) & \(375.8178+/-5 \mathrm{ppm}\) & \(373.8208+/ .5 \mathrm{ppm}\) & 3.59 & 41.60 & 4\%.60 & 41.60 & passed & . & passed \\
\hline 52 & Single \(\mathrm{H} \times\) CDF & \(375.8178+/-5 \mathrm{ppm}\) & \(373.8208+/ .5 \mathrm{ppm}\) & 3.59 & 41.44 & 41.44 & 41.45 & passed & & passed \\
\hline 53 & Single \(\mathrm{H} \times\) CDF & 375.8178 +/-5 ppm & \(373.8208+/-5 \mathrm{ppm}\) & 3.59 & 42.27 & 42.27 & 42.27 & passed & & passed \\
\hline 54 & Single \(\mathrm{H} \times \mathrm{CDF}\) & 375.8178 +/-5 ppm & 373.8208 +/- 5 ppm & 3.59 & 43.27 & 43.27 & 43.28 & passed & & passed \\
\hline 55 & Single HxCDD & \(391.8127+/ .5 \mathrm{ppm}\) & 389.8157 +/-5 ppm & 2.50 & 42.57 & 42.57 & 42.58 & passed & & passed \\
\hline 56 & Single \(\mathrm{H} \times\) CDD & \(391.8127+/-5 \mathrm{ppm}\) & \(389.8157+5 \mathrm{spm}\) & 2.50 & 42.46 & 42.46 & 42.46 & passed & & passed \\
\hline 57 & Single \(\mathrm{H} \times \mathrm{CDD}\) & \(391.8127+1-5 \mathrm{ppm}\) & \(389.8157+\) +/-5 ppm & 250 & 42.88 & 42.88 & 42.89 & passed & & passed \\
\hline 58 & Single HpCDF & \(409.7789+1.5 \mathrm{ppm}\) & \(407.7898+/ .5 \mathrm{ppm}\) & 210 & 44.96 & 44.96 & 44.96 & passed & & passed \\
\hline 59 & Single HPCDF & 409.7789 +/-5 ppm & \(407.7818+/-5 \mathrm{ppm}\) & 210 & 46.70 & 46.70 & 46.70 & passed & & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Compound Name & QM Retention Time & \[
\begin{aligned}
& \text { RM1 Ratio } \\
& \text { (A) } \\
& \hline
\end{aligned}
\] & \[
\left\{\begin{array}{l}
\text { Ratioi } \\
\text { Limit }
\end{array}\right.
\] & & Ration Status & \begin{tabular}{l}
Percent \\
Recovery (A)
\end{tabular} & \[
\begin{aligned}
& \text { Recovery } \\
& \text { Limint }
\end{aligned}
\] & Recovery Status & \\
\hline 1 & 2378-TCDF & 31.17 & 0.6462 & 0.6450 - & 0.8950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 2 & 2376-TCDD & 32.19 & 0.6752 & 0.6450 - & 0.8950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 3 & 12378-PeCDF & 36.68 & 1.6105 & \(1.3150-\) & 1.7850 & passed & 100.00 & 0. & 0 & passed \\
\hline 4 & 23478.eCDF & 37.88 & 1.6312 & 1.3150 - & 1.7850 & passed & 100.00 & 0 - & 0 & passed \\
\hline 5 & 12378 -PeCDD & 36.26 & 1.7837 & \(1.3150-\) & 1.7850 & passed & 100.00 & 0 - & 0 & passed \\
\hline 6 & 123478 -HxCDF & 41.44 & 1.3386 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 7 & 123678 -HxCDF & 41.60 & 1.2494 & 1.0450 - & 1.4350 & passed & 100.00 & \(0-\) & 0 & passed \\
\hline 8 & 234678-HxCDF & 42.27 & 1.3071 & 1.0450 - & 1.4350 & passed & 100.00 & \(0-\) & 0 & passed \\
\hline 9 & 123478-HxCDD & 42.46 & 1.0878 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 10 & \(123678-\mathrm{HxCDD}\) & 42.57 & 1.0649 & 1.0450 - & 1.4350 & passed & 100.00 & \(0-\) & 0 & passed \\
\hline 11 & \(123789-\mathrm{HxCDD}\) & 42.88 & 1.2167 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 12 & \(123789-\mathrm{HxCDF}\) & 43.27 & 1.4235 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 13 & \(1234678-\mathrm{HpCDF}\) & 44.96 & 1.0515 & \(0.8750-\) & 1.2050 & passed & 100.00 & 0 - & 0 & passed \\
\hline 14 & 1234678-HpCDD & 46.15 & 0.9154 & \(0.8750-\) & 1.2050 & passed & 100.00 & 0 - & 0 & passed \\
\hline 15 & 1234789-HpCDF & 46.70 & 0.9079 & 0.8750 - & 1.2050 & passed & 100.00 & \(0-\) & 0 & passed \\
\hline 16 & OCDD & 49.14 & 0.8466 & 0.7550 - & 1.0250 & passed & 100.00 & 0 - & 0 & passed \\
\hline 17 & OCDF & 49.34 & 0.9379 & 0.7550 - & 1.0250 & passed & 100.00 & 0 - & 0 & passed \\
\hline 18 & 13C12-1234-TCDD & 37.41 & 0.8031 & 0.6450 - & 0.8950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 19 & 13C 12-123468-HxCDD & 41.34 & 1.2654 & 1.0450 - & 1.4350. & . passed & 100.00 & 0 - & 0 & passed \\
\hline 20 & 13C12-2378-TCDF & 31.13 & 0.7792 & 0.6450 - & 0.8950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 21 & 13C12-2378-TCDD & 32.16 & 0.7819 & 0.6450 - & 0.8950 & passed & 100.00 & 0 . & 0 & passed \\
\hline 22 & 13C12-12378-PeCDF & 36.65 & 1.5695 & \(1.3150-\) & 1.7850 & passed & 100.00 & 0 - & 0 & passed \\
\hline 23 & 13C12-23478-PeCDF & 37.86 & 1.5646 & \(1.3150-\) & 1.7850 & passed & 100.00 & 0 - & 0 & passed \\
\hline 24 & 13C \(12-12378\)-PeCDD & 36.25 & 1.5928 & 1.3150. & 1.7850 & passed & 100.00 & 0. & 0 & passed \\
\hline 25 & 13C12-123478-HxCDF & 41.44 & 0.5095 & 0.4250 - & 0.5950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 26 & 13C12-123678-HxCDF & 41.59 & 0.5363 & 0.4250. & 0.5950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 27 & 13C12-234678-HxCDF & 42.26 & 0.5340 & 0.4250 - & 0.5950 & passed & 100.00 & \(0-\) & 0 & passed \\
\hline 28 & 13C12-123478-HxCDD & 42.45 & 1.2425 & 10450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 29 & 13C12-123678-HxCDD & 42.56 & 1.2447 & 1.0450 - & 1.4350 & passed & 100.00 & 0. & 0 & passed \\
\hline 30 & 13C12-123789-HxCDD & 42.87 & 1.2234 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 31 & 13C12-123789-HxCDF & 43.26 & 0.5317 & \(0.4250-\) & 0.5950 & passed & 100.00 & 0. & 0 & passed \\
\hline 32 & 13C12-1234678-HPCDF & 44.94 & 0.4594 & 0.3650 - & 0.5150 & passed & 100.00 & 0 - & 0 & passed \\
\hline 33 & 13C12-1234678-HPCDO & 46.13 & 1.0794 & 0.8750 - & 1.2050 & passed & 100.00 & 0 - & 0 & passed \\
\hline 34 & 13C 12-1234789-HpCDF & 46.70 & 0.4498 & 0.3650 - & 0.5150 & passed & 100.00 & 0 - & 0 & passed \\
\hline 35 & 13C12-OCDD & 49.12 & 0.9027 & 0.7550 - & 1.0250 & passed & 100.00 & 0 - & 0 & passed \\
\hline 36 & 13C12-OCDF & 49.32 & 0.9145 & \(0.7550-\) & 1.0250 & passed & 100.00 & 0. & 0 & passed \\
\hline 37 & Total TCDF & 29.64 & 0.6462 & 0.6450 - & 0.8950 & --- & 100.00 & 0 - & 0 & - \\
\hline 38 & Total TCDD & 30.61 & 06752 & 0.6450 - & 0.8950 & - & 100.00 & 0. & 0 & - \\
\hline 39 & Total PeCDF & 36.97 & 1.6212 & 1.3150 - & 1.7650 & - & 100.00 & 0. & 0 & - \\
\hline 40 & Total PeCDD & 37.05 & 1.7838 & 1.3150 - & 1.7850 & - & 100.00 & 0 - & 0 & - \\
\hline 41 & Total HxCDF & 41.91 & 1.3260 & 1.0450 - & 1.4350 & -- & 100.00 & 0. & 0 & - \\
\hline 42 & Total HxCDD & 4265 & 1.1237 & 1.0450 - & 1.4350 & -- & 100.00 & 0 - & 0 & - \\
\hline 43 & Total HPCDD & 45.68 & 0.9154 & 0.8750 - & 1.2050 & -- & 100.00 & 0 - & 0 & - \\
\hline 44 & Total HpCDF & 45.90 & 0.9790 & 0.8750 - & 12050 & - & 100.00 & 0 - & 0 & - \\
\hline 45 & Singie TCDF & 31.17 & 0.6462 & 0.6450 - & 0.6950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 46 & Single TCDC & 32.19 & 0.6752 & 06450 . & 0.8950 & passed & 100.00 & 0 - & 0 & passed \\
\hline 47 & Single PeCDC & 38.26 & 1.7838 & \(1.3150-\) & 1.7850 & passed & 100.00 & 0. & 0 & passed \\
\hline 48 & Single PeCDF & 37.88 & 1.6312 & \(1.3150-\) & 1.7850 & passed & 100.00 & 0 - & 0 & passed \\
\hline 49 & Single PeCDF & 36.68 & 1.6105 & 1.3150 - & 1.7850 & passed & 100.00 & 0 - & 0 & passed \\
\hline 50 & Single HPCDD & 46.15 & 0.9154 & 0.8750 - & 1.2050 & passed & 100.00 & 0. & 0 & passed \\
\hline 51 & Single \(\mathrm{H} \times \mathrm{CDF}\) & 41.60 & 1.2494 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 52 & Single HxCDF & 41.44 & 1.3386 & \(1.0450-\) & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 53 & Single HxCDF & 42.27 & 1.3071 & \(1.0450-\) & 1.4350 & passed & 100.00 & 0. & 0 & passed \\
\hline 54 & Single HXCDF & 43.27 & 1.4235 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 55 & Single \(\mathrm{H} \times\) CDD & 42.57 & 1.0649 & 1.0450 - & 1.4350 & passed & 100.00 & 0 - & 0 & passed \\
\hline 56 & Single HxCDD & 42.46 & 1.0878 & 1.0450 - & 1.4350 & passed & 100.00 & 0. & 0 & passed \\
\hline 57 & Single \(\mathrm{H} \times\) CDD & 42.88 & 1.2167 & 1.0450 - & 1.4350 & passed & 100.00 & 0. & 0 & passed \\
\hline 58 & Single \(\mathrm{H} P C D F\) & 44.96 & 1.0515 & 0.6750 - & 1.2050 & passed & 100.00 & 0 - & 0 & passed \\
\hline 59 & Single HPCDF & 46.70 & 0.9079 & 0.8750 - & 1.2050 & passed & 100.00 & 0 - & 0 & passed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{aligned}
& \text { Compound } \\
& \text { Name }
\end{aligned}
\] & Status Overview & QM Retention Time & QM Area \(\quad \begin{aligned} & \text { QM } \\ & \text { Mode }\end{aligned}\) & & RM\% Area \(\quad \begin{aligned} & \text { RM1 } \\ & \text { Mode }\end{aligned}\) & & Detection Limit (A) & Unqualified Amount (A) & \[
\begin{aligned}
& \text { Adjusted } \\
& \text { Amount (A) }
\end{aligned}
\] & AdjSpecAMT & Signal-to-Nois & \[
\begin{aligned}
& \text { Client } \\
& \text { Flags } \\
& \hline
\end{aligned}
\] \\
\hline 1 & 2378-TCDF & passed & 31.17 & 2214 & M & 1431 & A & 0.0022 & 0.100000 & 0.1000 & 0.100000 & 139 & \\
\hline 2 & 2378-TCDD & passed & 32.19 & 984 & A & 664 & A & 0.0030 & 0.100000 & 0.1000 & 0.100000 & 80 & \\
\hline 3 & 12378-PeCDF & passed & 36.68 & 5060 & A & 8150 & A & 0.0024 & 0.500000 & 0.5000 & 0.500000 & 532 & \\
\hline 4 & 23478-PeCDF & passed & 37.88 & 5380 & A & 8776 & A & 0.0022 & 0.500000 & 0.5000 & 0.500000 & 585 & \\
\hline 5 & 12378-㐌CDD & passed & 38.26 & 2959 & A & 5278 & M & 0.0063 & 0.500000 & 0.5000 & 0.500000 & 193 & \\
\hline 6 & 123478 - HxCDF & passed & 41.44 & 5444 & A & 7288 & A & 0.0037 & 0.500000 & 0.5000 & 0.500000 & 343 & \\
\hline 7 & 123678-HxCDF & passed & 41.60 & 6125 & A & 7653 & A & 0.0034 & 0.500000 & 0.5000 & 0.500000 & 378 & \\
\hline 8 & \(234678-\mathrm{HxCDF}\) & passed & 42.27 & 5275 & A & 6895 & A & 0.0037 & 0.500000 & 0.5000 & 0.500000 & 347 & \\
\hline 9 & 123478 - \(\times\) ×CDD & passed & 42.46 & 3610 & A & 3927 & A & 0.0079 & 0.500000 & 0.5000 & 0.500000 & 156 & \\
\hline 10 & \(123678-\mathrm{HxCDD}\) & passed & 42.57 & 4271 & A & 4548 & A & 0.0068 & 0.500000 & 0.5000 & 0.500000 & 184 & \\
\hline 11 & \(123789-\mathrm{HxCDD}\) & passed & 42.88 & 4091 & A & 4978 & A & 0.0068 & 0.500000 & 0.5000 & 0.500000 & 200 & \\
\hline 12 & 123789-HXCDF & passed & 43.27 & 5122 & A & 7290 & A & 0.0037 & 0.500000 & 0.5000 & 0.500000 & 328 & \\
\hline 13 & 1234678-HpCDF & passed & 44.96 & 5496 & A & 5779 & A & 0.0023 & 0.500000 & 0.5000 & 0.500000 & 538 & \\
\hline 14 & 1234678-HpCDD & passed & 46.45 & 3913 & A & 3581 & A & 0.0045 & 0.500000 & 0.5000 & 0.500000 & 289 & \\
\hline 15 & 1234789-HpCDF & passed & 46.70 & 5603 & A & 5087 & A & 0.0025 & 0.500000 & 0.5000 & 0.500000 & 483 & \\
\hline 16 & OCDD & passed & 49.14 & 7308 & A & 6187 & A & 0.0047 & 1.000000 & 1.0000 & 1.000000 & 567 & \\
\hline 17 & OCDF & passed & 49.34 & 9738 & A & 9133 & A & 0.0051 & 1.000000 & 1.0000 & 1.000000 & 523 & \\
\hline 18 & 13C12-1234-TCDD & passed & 31.41 & 859424 & A & 690222 & A & 0.0121 & 100.000000 & 100.8000 & 100.000000 & 20596 & \\
\hline 19 & 13C12-123468-H×CDD & passed & 41.34 & 757718 & A & 958841 & A & 0.0225 & 100.000000 & 100.0000 & 100.000000 & 11104 & \\
\hline 20 & 13C12-2378-TCDF & passed & 31.13 & 1614889 & A & 1258368 & A & 0.0045 & 100.000000 & 100.0000 & 100.000000 & 55032 & \\
\hline 21 & 13C12-2378-TCDD & passed & 32.16 & 843952 & A & 659847 & A & 0.0125 & 100.000000 & 100.0000 & 100.000000 & 21338 & \\
\hline 22 & 13C12-12378-PeCDF & passed & 36.65 & 1017487 & A & 1596981 & A & 0.0298 & 100.000000 & 100.0000 & 100.000000 & 10972 & \\
\hline 23 & 13C42-23478-PeCDF & passed. & 37.86 & 995810 & A & 1558028 & A & 0.0305 & 100.000000 & \$00.0000 & 100.000000 & 11193 & \\
\hline 24 & 13C12-12378-PeCDD & passed & 38.25 & 568191 & A & 905030 & A & 0.0201 & 100.000000 & 100.0000 & 100.000000 & 17204 & \\
\hline 25 & 13C12-12347-HxCDF & passed & 41.44 & 1437426 & A & 732340 & A & 0.0246 & 100.000000 & 100.0000 & 100.000000 & 9942 & \\
\hline 26 & 13C12-123678-HxCDF & passed & 41.59 & 1462339 & A & 784314 & A & 0.0237 & 100.000000 & 100.0000 & 100.000000 & 10342 & \\
\hline 27 & 13C12-234678-HxCDF & passed & 42.26 & 1359673 & A & 726044 & A & 0.0256 & 100.000000 & 100.0000 & 100.000000 & 10242 & \\
\hline 28 & 13C12-123478-HxCDD & passed & 42.45 & 700908 & A & 870856 & A & 0.0246 & 100.000000 & 100.0000 & 100.000000 & 10478 & \\
\hline 29 & 13C12-123678-HxCDD & passed & 42.56 & 719073 & A & 895012 & A & 0.0239 & 100.000000 & 100.0000 & 100.000000 & 10795 & \\
\hline 30 & 13C12-123789-HxCDD & passed & 42.87 & 711820 & A & 870872 & A & 0.0244 & 100.000000 & 100.0000 & 100.000000 & 10319 & \\
\hline 31 & 13C12-123789-HxCDF & passed & 43.26 & 1305618 & A & 694171 & A & 0.0267 & 100.000000 & 100.0000 & 100.000000 & 9500 & \\
\hline 32 & 13C12-1234678-HPCDF & passed & 44.94 & 1269886 & A & 583331 & A & 0.0322 & 100.000000 & 100.0000 & 100.000000 & 8509 & \\
\hline 33 & 13C12-1234678-HpCDD & passed & 46.13 & 690399 & A & 745243 & A & 0.0266 & 100.000000 & 100.0000 & 100.000000 & 10195 & \\
\hline 34 & 13C12-1234789-HPCDF & passed & 46.70 & 1085981 & A & 488506 & A & 0.0379 & 100.000000 & 100.0000 & 100.000000 & 6996 & \\
\hline 35 & 13C12-OCDD & passed & 49.12 & 1393945 & A & 1258306 & A & 0.0204 & 200.000000 & 200.0000 & 200.000000 & 26347 & \\
\hline 36 & 13C12-OCDF & passed & 49.32 & 2051878 & A & 1876451 & A & 0.0218 & 200.000000 & 200.0000 & 200.000000 & 25215 & \\
\hline 37 & Total TCDF & passed (1) & 29.84 & 2214 & M & 1431 & A & 0.0022 & 0.100000 & 0.1000 & 0.100000 & 139 & \\
\hline 36 & Total TCDO & passed (1) & 30.61 & 984 & A & 664 & A & 0.0030 & 0.100000 & 0.1000 & 0100000 & 80 & \\
\hline 39 & Total PeCDF & passed (2) & 36.97 & 10441 & A & 16926 & A & 0.0023 & 0.500000 & 1.0000 & 0.500000 & 559 & \\
\hline 40 & Total PeCDD & passed (1) & 37.05 & 2959 & A & 5278 & M & 0.0063 & 0.500000 & 0.5000 & 0.500000 & 193 & \\
\hline 41 & Total HxCDF & passed (4) & 41.91 & 21966 & A & 29126 & A & 0.0036 & 0.500000 & 2.0000 & 0.500000 & 349 & \\
\hline 42 & Total HxCDD & passed (3) & 42.65 & 11973 & A & 13453 & A & 0.0072 & 0.500000 & 1.5000 & 0.500000 & 180 & \\
\hline 43 & Total HpCDD & passed (1) & 45.68. & 3913 & A & 3581 & A & 0.0045 & 0.500000 & 0.5000 & 0.500000 & 289 & \\
\hline 44 & Total HPCDF & passed (2) & 45.90 & 11099 & A & 10866 & A & 0.0024 & 0.500000 & 1.0000 & 0.500000 & 510 & \\
\hline 45 & Single TCDF & passed & 31.17 & 2214 & M & 1431 & A & 0.0022 & 0.100000 & 0.1000 & 0100000 & 139 & \\
\hline 46 & Single TCDD & passed & 32.19 & 984 & A & 664 & A & 0.0030 & 0.100000 & 0.1000 & 0.100000 & 80 & \\
\hline 47 & Single PeCDD & passed & 38.26 & 2959 & A & 5278 & M & 0.0063 & 0.500000 & 0.5000 & 0.500000 & 193 & \\
\hline 48 & Single PeCDF & passed & 37.88 & 5380 & A & 8776 & A & 0.0022 & 0.500000 & 0.5000 & 0.500000 & 585 & \\
\hline 49 & Single PeCDF & passed & 36.68 & 5060 & A & 8150 & A & 0.0024 & 0.500000 & 0.5000 & 0.500000 & 532 & \\
\hline 50 & Single HPCDD & passed & 46.15 & 3913 & A & 3581 & A & 0.0045 & 0.500000 & 0.5000 & 0.500000 & 289 & \\
\hline 51 & Single \(\mathrm{H} \times \mathrm{CDF}\) & passed & 41.60 & 6125 & A & 7653 & A & 0.0034 & 0.500000 & 0.5000 & 0.500000 & 378 & \\
\hline 52 & Single \(\mathrm{H} \times \mathrm{CDF}\) & passed & 41.44 & 5444 & A & 7288 & A & 0.0036 & 0.500000 & 0.5000 & 0.500000 & 343 & \\
\hline 53 & Single \(\mathrm{H} \times\) CDF & passed & 42.27 & 5275 & A & 6895 & A & 0.0038 & 0.500000 & 0.5000 & 0.500000 & 347 & \\
\hline 54 & Single \(H \times C D F\) & passed & 43.27 & 5122 & A & 7290 & A & 0.0037 & 0.500000 & 0.5000 & 0.500000 & 328 & \\
\hline 55 & Single \(\mathrm{H} \times \mathrm{CDD}\) & passed & 42.57 & 4271 & A & 4548 & A & 0.0068 & 0.500000 & 0.5000 & 0.500000 & 184 & \\
\hline 56 & Single HxCDD & passed & 42.46 & 3610 & A & 3927 & A & 0.0080 & 0.500000 & 0.5000 & 0.500000 & 156 & \\
\hline 57 & Single \(\mathrm{H} \times \mathrm{CDD}\) & passed & 42.88 & 4091 & A & 4978 & A & 0.0066 & 0.500000 & 0.5000 & 0.500000 & 200 & \\
\hline 58 & Single HpCDF & passed & 44.96 & 5496 & A & 5779 & A & 0.0024 & 0.500000 & 0.5000 & 0.500000 & 538 & \\
\hline 59 & Single HPCDF & passed & 46.70 & 5603 & A & 5087 & A & 0.0025 & 0.500000 & 0.5000 & 0.500000 & 483 & \\
\hline
\end{tabular}

Acq. Data: 1/31/2017 10:57:03 PM
Sample Name: CALDF11737B PFK Reference Lock Mass Traces

```

 17JAN31-04
 \#\#* file opened Tue Jan 31 23:02:28 2017 \#**

```
```

Started by - Xcalibur

```
Started by - Xcalibur
Instrument Internet name - DFS MS
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SNO000XXXX
Instrument service number - SNO000XXXX
Workstation internet name - LX18470
Workstation internet name - LX18470
    Analysis started at: 31-Jan-17 23:02:27
    Analysis will stop at user request
```

 Firmware version: 2.02
 MCAL file name:
 Sequence : 62d69d10-234f-46c5-bc8a-53bf0dc2f3b7
 MID procedure: PFK16MAR24+MDT
 Mid Time Windows:
 Start Measure End Cycletime
 | $\#$ | 1 | $11: 30 \mathrm{~min}$ | $9: 30 \mathrm{~min}$ | $21: 00 \mathrm{~min}$ | 1.00 sec | |
| ---: | :--- | ---: | :--- | ---: | :--- | :--- | :--- |
| $\#$ | 2 | $21: 00 \mathrm{~min}$ | $13: 44 \mathrm{~min}$ | $34: 44 \mathrm{~min}$ | 1.00 | sec |
| $\#$ | 3 | $34: 44 \mathrm{~min}$ | $5: 03 \mathrm{~min}$ | $39: 47 \mathrm{~min}$ | 0.90 | sec |
| $\#$ | 4 | $39: 47 \mathrm{~min}$ | $4: 27 \mathrm{~min}$ | $44: 15 \mathrm{~min}$ | 0.80 | sec |
| $\#$ | 5 | $44: 15 \mathrm{~min}$ | $3: 45 \mathrm{~min}$ | $48: 00 \mathrm{~min}$ | 0.80 | sec |
| $\#$ | 6 | $48: 00 \mathrm{~min}$ | $3: 00 \mathrm{~min}$ | $51: 00 \mathrm{~min}$ | 0.80 sec | |

Mid Masses:
Window \# 1
mass F int $g r$ time (ms)
218.0129
220.0100
230.0532
232.0502
251.9739
$\begin{array}{llll}253.9710 & 1 & 1 & 95\end{array}$
$\begin{array}{llll}264.0142 & 2 & 1 & 47\end{array}$
$\begin{array}{llll}266.0112 & 2 & 1 & 47\end{array}$
$\begin{array}{llll}285.9350 & 1 & 1 & 95 \\ 287.9320 & 1 & 1 & 95\end{array}$
$\begin{array}{lrrr}287.9320 & 1 & 1 & 95 \\ 292.9819 & \text { c } & 20 & 1\end{array}$
$\begin{array}{rrrr}297.9752 & 2 & 1 & 47\end{array}$
$\begin{array}{llll}299.9723 & 2 & 1 & 47\end{array}$
Window \# 2
mass F int $g r$ time (ms)
292.9819 1
303.9011
305.8981
315.9413
317.9384
319.8960
321.8930

int	gr	time
20	1	5
1	1	118
1	1	118
5	1	23
5	1	23
1	1	118
1	1	118

Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
Window \# 3			
mass F	int	gr	time (ms)
330.97871	20	1	
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
Window \# 4 mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
window \# 5			
mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
window \# 6 mass F	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID Window terminated after 34.750000 minutes
MID Window end time was 34.740000 minutes
Page 2

17JAN31-04
MID Window terminated after 39.800000 minutes MID Window end time was 39.800000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\xcalibur \backslash System \backslash DFS $\backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	98.0000
BQUAD	0.4500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
dYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	156.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	175.0000
ENSBR	0.4500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	171.0000	EXSBR	-0.5300
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	13.9000
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0155	FVINLET	0.0276	FVSRC	0.0273
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	718.0000
LENS_SYM	12.7500	LM	1050.0000	LMII	500.0000
LMASS	98.0000	LKM	442.9723	MASS	98.0000
MDAC	1460524.2399	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2521.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-15.0000	RECURR	0.8977	RELEN	0.0000
RES	12476.8853	RPUSHER	-14.5568	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	664.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	sLOW	10.0000	SS	2.0000
SW	0.0180	tanal	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
uservar	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	98.0000	XLENS_POT	880.0000
XLENS_SYM	-2.5000	YLENS_POT	602.0000	YLENS_SYM	-7.7500

$$
\begin{array}{ll}
\text { Source Gauge: } & \text { 2.0e-005 mbar } \\
\text { Analyzer Penning: } & 5.2 \mathrm{e}-008 \mathrm{mbar} \\
\text { Pirani Analyse: } & 1.5 \mathrm{e}-002 \mathrm{mbar} \\
\text { Pirani Source: } & 2.7 \mathrm{e}-002 \mathrm{mbar} \\
\text { Pirani Inlet System: } & \text { 2.7e-002 mbar }
\end{array}
$$

Scantype is magnetic
Sourcemode is EI POS

Page 3

```
                                    17JAN31-04
MID Time Window 5: Resolution is 11753. MID Time Window 6: Resolution is 12476.
Amplifier offset: 89.
*** File closed Tue Jan 31 23:53:30 2017
***
```


Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 02:43
64

4
CALDF21737B
CS101
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117jan31117jan31-08.quan
y:I17jan31117jan31-08.raw
y : \responsefilesldf18471-17jan31dfical.resp
C: XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Single Point (Spec. RF)
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

$y: 117 j a n 31117 j a n 31-08 . q u a n$
y:117jan31117jan31-08.raw
y:\responsefiles ldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Dependend on Area
1.0
1.0

25
Single Point (Spec. RF)

Non weighted Regression
1.0

Chromatogram

Entry Parameters

Compound Name	2378 -TCDF
QM Retention Time	31.14
QM Area	6702
QM Integration Mode	A
RM1 Area	5002
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0033
Unqualified Amount (A)	0.500000
Adjusted Amount (A)	0.5000
Signal-to-Noise	432
Client Flags	
Status Overview	passed
Status Info	

Status Info

AIL01 Page1215 of 560

Chromatogram

Entry Parameters

Compound Name	$2378-$-TCDD
QM Retention Time	32.17
QM Area	5065
QM Integration Mode	A
RM1 Area	3314
RM1 Integration Mode	M
ManInt	1
Detection Limit (A)	0.0033
Unqualified Amount (A)	0.500000
Adjusted Amount (A)	0.5000
Signal-to-Noise	428
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$12378-P e C D F$
QM Retention Time	36.66
QM Area	21515
QM Integration Mode	A
RM1 Area	32868
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0030
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	1998
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters	
Compound Name	$23478-$ PeCDF
QM Retention Time	37.87
QM Area	22543
QM Integration Mode	A
RM1 Area	34328
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0027
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	2223
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$12378-P e C D D$
QM Retention Time	38.26
QM Area	12817
QM Integration Mode	A
RM 1 Area	19144
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0077
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	847
Client Flags	
Status Overview	passed
Status Info	

AIL01 Page 1219 of 560

Chromatogram

RT: 40.43-42.43 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.45
QM Area	22382
QM Integration Mode	A
RM1 Area	28775
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0074
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	851
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.60-42.60 SM: 3G

Entry Parameters

Compound Name	$123678-\mathrm{HxCDF}$
QM Retention Time	41.60
QM Area	24118
QM Integration Mode	A
RM1 Area	29074
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0071
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	883
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$234678-\mathrm{HxCDF}$
QM Retention Time	42.27
QM Area	25712
QM Integration Mode	A
RM1 Area	28825
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0066
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	943
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.46-43.46 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDD}$
QM Retention Time	42.46
QM Area	14707
QM Integration Mode	A
RM1 Area	19000
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0081
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	776
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	123678-HxCDD
QM Retention Time	42.57
QM Area	15073
QM Integration Mode	A
RM1 Area	18843
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0079
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	773
Client Flags	
Status Overview	passed
Status Info	

mofisher mofisher

Chromatogram

Entry Parameters

Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.89
QM Area	14695
QM Integration Mode	A
RM1 Area	17380
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0088
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	762
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

> RT: 42.27-44.27 SM: 3G

Entry Parameters

Compound Name	$123789-H x C D F$
QM Retention Time	43.27
QM Area	19908
QM Integration Mode	A
RM1 Area	25934
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0080
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	790
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDF}$
QM Retention Time	44.95
QM Area	24704
QM Integration Mode	A
RM1 Area	23614
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0046
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	1400
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.14-47.14 SM: 3G

Entry Parameters

Compound Name	$1234678-$ HpCDD
QM Retention Time	46.13
QM Area	15361
QM Integration Mode	A
RM1 Area	16321
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0056
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	1065
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234789-$-HpCDF
QM Retention Time	46.71
QM Area	19351
QM Integration Mode	A
RM1 Area	19418
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0056
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	1079
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 48.15-50.15 SM: 3G

Entry Parameters

Compound Name	OCDD
QM Retention Time	49.13
QM Area	24963
QM Integration Mode	A
RM1 Area	25170
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0074
Unqualified Amount (A)	5.000000
Adjusted Amount (A)	5.0000
Signal-to-Noise	1628
Client Flags	
Status Overview	passed
Status Info	

Status Info

Chromatogram

RT: 48.33-50.33 SM: 3G

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.33
QM Area	33832
QM Integration Mode	A
RM1 Area	33092
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0058
Unqualified Amount (A)	5.000000
Adjusted Amount (A)	5.0000
Signal-to-Noise	2212
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.53
QM Area	5107
QM Integration Mode	M
RM1 Area	4288
RM1 Integration Mode	M
Manint	1
Detection Limit (A)	0.0093
Unqualified Amount (A)	0.500000
Adjusted Amount (A)	0.5000
Signal-to-Noise	233
Client Flags	
Status Overview	passed
Status Info	

Quantitation Settings

Data File Parameter

Acq. Data	2017/02/01 02:43
Number of Entries	64
Comment	
Vial	4
Sample Name	CALDF21737B
Sample ID	CS101
Inst ID	DF18471-17JAN31
Client	
Analyst	jda02741
GC Column	DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
BatchNo	
Barcode	
Files Parameter	
Quan	y:117jan31117jan31-08.quan
Data	y:I17jan31117jan31-08.raw
Response	y:\responsefilesldf18471-17jan31dfical.resp
Script	C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC
Mass Ref	
Quan Parameter	
QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Single Point (Spec. RF)
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

Chromatogram

Entry Parameters

Compound Name	Total TCDF
QM Retention Time	29.82
QM Area	6702
QM Integration Mode	A
RM1 Area	5002
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0033
Unqualified Amount (A)	0.500000
Adjusted Amount (A)	0.5000
Signal-to-Noise	432
Client Fiags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total TCDD
QM Retention Time	30.59
QM Area	5065
QM Integration Mode	A
RM1 Area	3314
RM1 Integration Mode	M
ManInt	1
Detection Limit (A)	0.0033
Unqualified Amount (A)	0.500000
Adjusted Amount (A)	0.5000
Signal-to-Noise	428
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total PeCDF
QM Retention Time	36.96
QM Area	44059
QM Integration Mode	A
RM1 Area	67195
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0029
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	5.0000
Signal-to-Noise	2110
Client Flags	
Status Overview	passed (2)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total PeCDD
QM Retention Time	37.04
QM Area	12817
QM Integration Mode	A
RM1 Area	19144
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0077
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	847
Client Flags	
Status Overview	passed (1)

Status Info

Chromatogram

RT: 39.91-43.91 SM: 3G

Entry Parameters

Compound Name	Total HxCDF
QM Retention Time	41.91
QM Area	92120
QM Integration Mode	A
RM1 Area	112608
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0073
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	10.0000
Signal-to-Noise	867
Client Flags	
Status Overview	passed (4)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total H×CDD
QM Retention Time	42.65
QM Area	44474
QM Integration Mode	A
RM1 Area	55223
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0083
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	7.5000
Signal-to-Noise	771
Client Flags	
Status Overview	passed (3)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total HpCDD
QM Retention Time	45.68
QM Area	15361
QM Integration Mode	A
RM1 Area	16321
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0056
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	2.5000
Signal-to-Noise	1065
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

RT: 44.74-47.05 SM: 3G

Entry Parameters

Compound Name	Total HpCDF
QM Retention Time	45.90
QM Area	44055
QM Integration Mode	A
RM1 Area	43032
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0051
Unqualified Amount (A)	2.500000
Adjusted Amount (A)	5.0000
Signal-to-Noise	1240
Client Flags	
Status Overview	passed (2)
Status Info	

Quantitation Settings

Data File Parameter

Acq. Data
2017/02/01 02:43
Number of Entries
220
Comment
Vial
Sample Name
Sample ID
Inst ID
4
CALDF21737B
CS101
DF18471-17JAN31
Client
Analyst
GC Column
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
BatchNo
Barcode

> y:I17jan31117jan31-08.quan
y:I17jan31117jan31-08.raw
y:\responsefiles \df18471-17jan31dfical.resp
C:UCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJM]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	$\mathbf{2 . 5}$
Response Factor Mode	Single Point (Spec. RF)
Fit Caic. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

Chromatogram

Entry Parameters

Compound Name	2378 -TCDD
QM Retention Time	32.17
QM Area	5065
QM Integration Mode	A
RM1 Area	3174
RM1 Integration Mode	A
ManInt	1
Detection Limit (A)	0.0033
Unqualified Amount (A)	0.491609
Adjusted Amount (A)	n.d.
Signal-to-Noise	428
Client Flags	
Status Overview	failed
Status Info	Failed on: Ratio1A

Chromatogram

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.13
QM Area	735846
QM Integration Mode	A
RM1 Area	574667
RM1 Integration Mode	A
Manint	1
Detection Limit (A)	0.0093
Unqualified Amount (A)	69.742121
Adjusted Amount (A)	n.d.
Signal-to-Noise	19200
Client Flags	
Status Overview	failed
Status Info	Failed on: RT

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
2017/02/01 02:43

Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref
Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

220

4
CALDF21737B
CS101
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117jan31\17jan31-08.quan
y:\17jan31117jan31-08.raw
y :Iresponsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression 1.0
inst IC: OF19471-17JAN31/Client

Chromatogram

Entry Parameters

Compound Name	Total TCDD
QM Retention Time	30.59
QM Area	0
QM Integration Mode	A
RM1 Area	0
RM1 Integration Mode	A
ManInt	1
Detection Limit (A)	---
Unqualified Amount (A)	---
Adjusted Amount (A)	---
Signal-to-Noise	---
Client Flags	
Status Overview	failed
Status Info	Failed on:

No.	Compound Name	QM Retention Time	$\begin{aligned} & \text { RM1 Ratio } \\ & \text { (A) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ratiof } \\ & \text { Limit } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { Ratio1 } \\ \text { Status } \end{array}$	Percent Recovery (A)	$\begin{aligned} & \text { Recovery } \\ & \text { Limit } \end{aligned}$	Recovery Status	
1	2378-TCDF	31.14	0.7464	0.6450 -	0.8950	passed	100.00	0 -	0	passed
2	2378-TCDD	32.17	0.6544	0.6450 -	0.8950	passed	100.00	$0-$	0	passed
3	$12378+\mathrm{eCDF}$	36.66	1.5276	1.3150 -	1.7850	passed	100.00	0 -	0	passed
4	23478-8CDF	37.87	1.5227	1.3150 -	1.7850	passed	100.00	0 -	0	passed
5	12378-PeCDD	38.26	1.4937	1.3150 -	1.7850	passed	100.00	0 -	0	passed
6	123478-H×CDF	41.45	1.2856	1.0450 -	1.4350	passed	100.00	0 -	0	passed
7	123678 -HxCDF	41.60	1.2055	1.0450 -	1.4350	passed	100.00	0 -	0	passed
8	234678-HxCDF	42.27	1.1211	1.0450 -	1.4350	passed	100.00	$0 \cdot$	0	passed
9	$123478-\mathrm{HXCDD}$	42.46	1.2919	1.0450 -	1.4350	passed	100.00	0 -	0	passed
10	$123678-\mathrm{HxCDD}$	42.57	1.2502	1.0450 -	1.4350	passed	100.00	0.	0	passed
11	$123789-\mathrm{HxCDD}$	42.89	1.1927	1.0450 -	1.4350	passed	100.00	0 -	0	passed
12	123789-H×CDF	43.27	1.3027	1.0450 .	1.4350	passed	100.00	0 -	0	passed
13	1234678-HpCDF	44.95	0.9559	0.8750 -	1.2050	passed	100.00	0 -	0	passed
14	1234678-HpCDD	46.13	1.0625	0.8750 -	1.2050	passed	100.00	0 -	0	passed
15	1234789-HpCDF	46.71	1.0034	$0.8750-$	1.2050	passed	100.00	0 -	0	passed
16	OCDD	49.13	1.0083	0.7550 -	1.0250	passed	100.00	$0-$	0	passed
17	OCDF	49.33	0.9781	0.7550 -	1.0250	passed	100.00	0 -	0	passed
18	13C12-1278-TCDD (CRS)	32.53	0.8397	0.5450 -	0.8950	passed	100.00	0 -	O	passed
19	13C12-1234-TCDD	31.40	0.8060	0.6450 -	0.8950	passed	100.00	0 -	0	passed
20	$13 \mathrm{C} 12-123468-\mathrm{HxCDD}$	41.34	1.2569	1.0450 -	1.4350	passed	100.00	$0-$	0	passed
21	13C12-2378-TCDF	31.11	0.7932	0.6450 -	0.8950	passed	100.00	0 -	0	passed
22	13C12-2378-TCDD	32.13	0.7810	0.6450 -	0.8950	passed	900.00	0.	0	passed
23	13C12-12378-PeCDF	36.64	1.6059	1.3150 -	1.7850	passed	100.00	0 -	0	passed
24	13C12-23478-PeCDF	37.86	1.5786	1.3150 -	1.7850	passed	100.00	0 -	0	passed
25	13C12-12378-PeCDD	38.24	1.6170	1.3150 -	1.7850	passed	100.00	0 -	0	passed
26	13C12-123478-HxCDF	41.42	0.5169	0.4250 -	0.5950	passed	100.00	0.	0	passed
27	13C12-123678-HxCDF	41.58	0.5253	0.4250 -	0.5950	passed	100.00	0.	0	passed
28	13C12-234678-HxCDF	42.26	0.5314	0.4250 -	0.5950	passed	100.00	0.	0	passed
29	13C12-123478-HxCDD	42.44	1.2632	1.0450 .	1.4350	passed	100.00	0 -	0	passed
30	13C12-123678-HxCDD	42.55	1.2485	1.0450 -	1.4350	passed	100.00	0 -	0	passed
31	13C12-123789-H×CDD	42.88	1.3057	1.0450 -	1.4350	passed	100.00	0.	0	passed
32	13C12-123789-HxCDF	43.25	0.5384	0.4250 -	0.5950	passed	100.00	0 -	0	passed
33	13C12-1234678-HpCDF	44.94	0.4480	0.3650 -	0.5150	passed	100.00	0 -	0	passed
34	13C12-1234678-HPCDD	45.13	1.0620	$0.8750-$	1.2050	passed	100.00	0.	0	passed
35	13C 12 - 2234789 -HPCDF	46.70	0.4524	$0.3650-$	0.5150	passed	100.00	0 -	0	passed
36	13C12-OCDD	49.13	0.8878	0.7550 -	1.0250	passed	100.00	0 -	0	passed
37	13C12-OCDF	49.32	0.9010	0.7550 -	1.0250	passed	100.00	0 -	0	passed
38	Total TCDF	29.82	0.7464	0.6450 -	0.8950	---	100.00	0.	0	-
39	Total TCDD	30.59	0.6544	0.6450 -	0.8950	-	100.00	0.	0	-
40	Total PeCDF	36.96	1.5251	1.3150 -	1.7850	--	100.00	0 -	0	-
41	Total PeCDD	37.04	1.4937	$1.3150-$	1.7850	---	100.00	0 -	0	-
42	Total $\mathrm{H} \times \mathrm{CDF}$	41.91	1.2224	1.0450 -	1.4350	-	100.00	0 -	0	--
43	Total HxCDD	42.65	1.2417	1.0450 -	1.4350	--	100.00	0.	0	-
44	Total HpCDD	45.68	1.0625	08750 -	1.2050	--	100.00	0 -	\square	-
45	Total HPCDF	45.90	0.9768	$0.8750-$	1.2050	-	100.00	0 -	0	-
46	Single TCDF	31.14	0.7464	0.6450-	0.8950	passed	100.00	0 -	0	passed
47	Single TCDD	32.17	0.6544	0.6450 -	0.8950	passed	100.00	0 -	0	passed
48	Single PeCDD	38.26	1.4937	1.3150 -	1.7850	passed	100.00	0 -	0	passed
49	Single PeCDF	37.87	1.5227	$1.3150-$	1.7850	passed	100.00	0.	0	passed
50	Single PeCDF	36.66	1.5276	1.3150 -	1.7850	passed	100.00	0 -	0	passed
51	Single HPCDD	46.13	1.0625	0.8750 -	1.2050	passed	100.00	0 -	0	passed
52	Single $\mathrm{H} \times \mathrm{CDF}$	42.27	1.1211	$1.0450-$	1.4350	passed	100.00	0 -	0	passed
53	Single HXCDF	41.45	1.2856	1.0450 -	1.4350	passed	100.00	0 -	0	passed
54	Single + x \times CDF	41.60	1.2055	1.0450-	1.4350	passed	100.00	0 -	0	passed
55	Single HXCDF	43.27	1.3027	1.0450 -	1.4350	passed	100.00	0 -	0	passed
56	Single HxCDD	42.89	1.1827	1.0450 -	1.4350	passed	100.00	0 .	0	passed
57	Single HxCDD	42.46	1.2919	10450.	1.4350	passed	100.00	0 -	0	passed
58	Single $\mathrm{H} \times \mathrm{CDD}$	42.57	1.2502	1.0450 -	1.4350	passed	100.00	0 -	0	passed
59	Single HPCDF	44.95	0.9559	0.8750 -	1.2050	passed	100.00	0 -	0	passed
60	Single HPCDF	46.71	1.0034	0.8750 -	1.2050	passed	100.00	0 -	0	passed

No.	Compound Name	Status Overview	QM Retention Time	QM Area $\quad \begin{aligned} & \text { QM } \\ & \text { Mode }\end{aligned}$		RM1 Area	$\begin{aligned} & \text { RM1 } \\ & \text { Mode } \end{aligned}$		Detection Limit (A)	Unqualified Amount (A)	Adjusted Amount (A)	AdjSpecAMT	Signal-to-Nois	Client Flags
1	2378-TCDF	passed	31.14	6702	A	5002		A	0.0033	0.500000	0.5000	0.500000	432	
2	2378-TCDD	passed	32.17	5065	A	3314		M	0.0033	0.500000	0.5000	0.500000	428	
3	12376-PeCDF	passed	36.66	21515	A	32868		A	0.0030	2.500000	2.5000	2.500000	1998	
4	23476-PeCDF	passed	37.87	22543	A	34328		A	0.0027	2.500000	2.5000	2.500000	2223	
5	12378-PeCDD	passed	38.26	12817	A	19144		A	0.0077	2500000	2.5000	2.500000	647	
6	123478-HxCDF	passed	41.45	22382	A	28775		A	0.0074	2.500000	2.5000	2.500000	851	
7	123678-HXCDF	passed	41.50	24118	A	29074		A	0.0071	2500000	2.5000	2.500000	883	
8	$234676 \cdot \mathrm{HxCDF}$	passed	42.27	25712	A	28825		A	0.0066	2500000	2.5000	2.500000	943	
9	$123478-\mathrm{HxCDD}$	passed	42.46	14707	A	19000		A	0.0081	2.500000	2.5000	2.500000	776	
10	$123678-\mathrm{HxCDD}$	passed	42.57	15073	A	18843		A	0.0078	2.500000	2.5000	2.500000	773	
11	$123789-\mathrm{HxCDD}$	passed	42.69	14695	A	17380		A	0.0088	2.500000	2.5000	2.500000	762	
12	$123789-\mathrm{HxCDF}$	passed	43.27	19908	A	25934		A	0.0080	2.500000	2.5000	2.500000	790	
13	1234678-HpCDF	passed	44.95	24704	A	23614		A	0.0046	2500000	2.5000	2.500000	1400	
14	1234678-HPCDD	passed	46.13	15361	A	16321		A	0.0056	2500000	2.5000	2.500000	1065	
15	1234789-HPCDF	passed	46.71	19351	A	19418		A	0.0056	2.500000	2.5000	2.500000	1079	
16	OCDD	passed	49.13	24963	A	25170		A	0.0074	5.000000	5.0000	5.000000	1628	
17	OCDF	passed	49.33	33832	A	33092		A	00058	5.000000	5.0000	5.000000	2212	
18	13C12-1278-TCDD (CRS)	passed	32.53	5107	M	4288		M	0.0093	0.500000	0.5000	0.500000	233	
19	13C12-1234-TCDD	passed	31.40	759078	A	611806		A	0.0127	100.000000	100.0000	100.000000	19634	
20	13C12-123468-HxCDD	passed	41.34	633980	A	796873		A	0.0297	100.000000	100.0000	100.000000	8496	
21	13C12-2378-TCDF	passed	31.11	1383785	A	1097616		A	0.0071	100.000000	100.0000	100.000000	33535	
22	13C $\uparrow 2-2378$-TCDD	passed	32.13	735846	A	574667		A	0.0133	100.000000	100.0000	100.000000	19200	
23	13C12-12378-PeCDF	passed	36.64	839362	A	1347892		A	0.0329	100.000000	100.0000	100.000000	9752	
24	13C12-23478-PeCDF	passed	37.86	842742	A	1330312		A	0.0331	100.000000	100.0000	100.000000	10205	
25	13C $\uparrow 2-12378-\mathrm{PeCDD}$	passed	38.24	465777	A	753153		A	0.0267	100.000000	100.0000	100.000000	12745	
26	13C12-123478-hxCDF	passed	41.42	1190528	A	615413		A	0.0268	100.000000	100.0000	100.000000	9082	
27	13C12-123678-HxCDF	passed	41.58	1223239	A	642527		A	0.0260	100.000000	100.0000	100.000000	9420	
28	13C12-234678-HxCDF	passed	42.28	1134403	A	602766		A	0.0279	100.050000	100.0000	100.000000	9195	
29	13C12-123478-HxCDD	passed	42.44	568280	A	717831		A	0.0330	100.000000	100.0000	100.000000	7781	
30	13C12-123678-HxCDD	passed	42.55	588035	A	734173		A	0.0321	100.000000	100.0000	100.000000	8114	
31	13C12-123789-HxCOD	passed	42.88	549521	A	717532		A	0.0335	100.000000	100.0000	100.000000	7393	
32	13C12-123789-HxCDF	passed	43.25	1044162	A	562218		A	0.0302	100.000000	100.0000	100.000000	8353	
33	13C12-1234678-HPCDF	passed	44.94	1023948	A	458771		A	0.0296	100.000000	100.0000	100.000000	9027	
34	13C12-1234678-HpCDD	passed	46.13	550518	A	584872		A	0.0210	100.000000	100.0000	100.000000	13011	
35	13C12-1234789-HpCDF	passed	46.70	838064	A	379112		A	0.0360	100.000000	100.0000	100.000000	7621	
36	$13 \mathrm{C} 12-\mathrm{OCDD}$	passed	49.13	1047624	A	930080		A	0.0264	200.000000	200.0000	200.000000	21199	
37	13C12-OCDF	passed	49.32	1499937	A	1351383		A	0.0284	200.000000	200.0000	200.000000	19621	
38	Total TCDF	passed (1)	29.62	6702	A	5002		A	0.0033	0.500000	0.5000	0.500000	432	
39	Total TCDD	passed (1)	30.59	5065	A	3314		M	0.0033	0.500000	0.5000	0.500000	428	
40	Total PeCDF	passed (2)	36.96	44059	A	67195		A	0.0029	2.500000	5.0000	2.500000	2110	
41	Total PeCDD	passed (1)	37.04	12817	A	19144		A	0.0077	2.500000	2.5000	2.500000	847	
42	Total HxCDF	passed (4)	41.91	92120	A	112608		A	0.0073	2.500000	10.0000	2.500000	867	
43	Total HxCCD	passed (3)	42.65	44474	A	55223		A	0.0083	2.500000	7.5000	2.500000	771	
44	Total HPCDD	passed (1)	45.68	15361	A	16321		A	0.0056	2.500000	2.5000	2500000	1065	
45	Total HPCDF	passed (2)	45.90	44055	A	43032		A	0.0051	2.500000	5.0000	2.500000	1240	
46	Single TCDF	passed	31.14	6702	A	5002		A	0.0033	0.500000	0.5000	0.500000	432	
47	Single TCDD	passed	32.17	5065	A	3314		M	0.0033	0.500000	0.5000	0.500000	428	
48	Single PeCDD	passed	38.26	12817	A	19144		A	0.0077	2.500000	2.5000	2.500000	847	
49	Single PeCDF	passed	37.87	22543	A	34328		A	0.0028	2.500000	2.5000	2.500000	2223	
50	Single PeCDF	passed	36.66	21515	A	32868		A	0.0029	2.500000	2.5000	2.500000	4998	
51	Single HpCDD	passed	4613	15361	A	16321		A	0.0056	2.500000	2.5000	2.500000	1065	
52	Single HxCDF	passed	42.27	25712	A	28825		A	0.0068	2.500000	2.5000	2.500000	943	
53	Single HxCDF	passed	41.45	22382	A	28775		A	0.0073	2.500000	2.5000	2.500000	851	
54	Single $\mathrm{H} \times \mathrm{CDF}$	passed	49.60	24118	A	29074		A	0.0070	2.500000	2.5000	2.500000	883	
55	Single HxCDF	passed	43.27	19908	A	25934		A	0.0081	2.500000	2.5000	2.500000	790	
56	Single $H \times C D D$	passed	42.69	14695	A	17380		A	0.0086	2.500000	2.5000	2500000	762	
57	Single HxCDD	passed	42.46	14707	A	19000		A	0.0082	2.500000	2.5000	2.500000	776	
58	Single HxCCO	passed	42.57	15073	A	18643		A	0.0081	2.500500	2.5000	2500000	773	
59	Single HPCDF	passed	44.95	24704	A	23614		A	0.0045	2.500000	2.5000	2.500000	1400	
60	Single HPCDF	passed	46.71	19351	A	19418		A	0.0056	2.500000	2.5000	2.500000	1079	

RT: $22.50-51.00 ~$

17JAN31-08
*** file opened wed Feb 01 02:48:38 2017 ***

Started by	- Xcalibur
Instrument Internet name	- DFS MS
Instrument modev	
Instrument service number - DFS MS	
Workstation internet name - LX 0000×18470	

Analysis started at: 01-Feb-17 02:48:37

Analysis will stop at user request

Firmware Version: 2.02

MCAL file name:

Sequence : 62d69d10-234f-46c5-bc8a-53bf0dc2f3b7

MID procedure: PFK16MAR24+MDT

Page 1

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID window terminated after 34.750000 minutes
MID Window end time was 34.740000 minutes
Page 2

17JAN31-08
MID Window terminated after 39.800000 minutes MID Window end time was 39.800000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: c:\Xcalibur \backslash System $\backslash D F S \backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	96.0000
BQUAD	0.4500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	156.3333
ELEN	-45.0000	EmULT	1300.0000	ENS	175.0000
ENSBR	0.4500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	171.0000	EXSBR	-0.5300
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	13.9000
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0159	FVINLET	0.0275	FVSRC	0.0275
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	718.0000
LENS_SYM	12.7500	LM	1050.0000	LMII	500.0000
LMASS	96.0000	LKM	442.9723	MASS	96.0000
MDAC	1435550.5184	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2521.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-15.0000	RECURR	0.8962	ReLen	0.0000
RES	13122.1795	RPUSHER	-14.4982	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	664.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0180	TANAL	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	96.0000	XLENS_POT	880.0000
XLENS_SYM	-2.5000	YLENS_POT	602.0000	YLENS_SYM	-7.7500

```
Source Gauge: 1.9e-005 mbar
Analyzer Penning: 5.3e-008 mbar
Pirani Analyse: 1.6e-002 mbar
Pirani Source: 2.7e-002 mbar
Pirani Inlet System: 2.8e-002 mbar
```

Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 11863.
MID Time Window 2: Resolution is 11423.
MID Time Window 3: Resolution is 11447.
MID Time Window 4: Resolution is 12156.
Page 3
MID Time window 5: Resolution is 13685.
MID Time window 6: Resolution is 13122.
Amplifier offset: 88.
*** File closed Wed Feb 01 03:39:40 2017

Page 4
APPROVED
AlL01 Page 254 of 560

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 03:39
64

5
CALDF31737A
CS201
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:I17jan31117jan31-09.quan
y:I17jan31117jan31-09.raw
y: Iresponsefilesldf18471-17jan31dfical.resp
C:XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

No.	Compound Name	QM Retention Time	$\begin{aligned} & \text { Status } \\ & \text { Overview } \end{aligned}$	$\begin{aligned} & \text { Amount } \\ & \text { Status } \end{aligned}$	RM1 Time Status	$\begin{aligned} & \text { Ratio1 } \\ & \text { Status } \end{aligned}$	Recovery Status	RRT Status	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Status } \\ \text { Info } \end{array} \\ \hline \end{array}$
1	2378-TCDF	31.12	passed	passed	passec	passed	passed	passed	
2	2378-TCDD	32.46	passed	passed	passed	passed	passed	passed	
3	$12378 . \mathrm{PeCDF}$	36.65	passed	passed	passed	passed	passed	passed	
4	23478-PeCDF	37.87	passed	passed	passed	passed	passed	passed	
5	12378-PeCDD	36.24	passed	passed	passed	passed	passed	passed	
6	123478-HxCDF	41.43	passed	passed	passed	passed	passed	passed	
7	$123678-\mathrm{H} \times$ CDF	41.58	passed	passed	passed	passed	passed	passed	
8	$234678-\mathrm{HxCDF}$	42.25	passed	passed	passed	passed	passed	passed	
9	$123478-\mathrm{HxCDD}$	42.44	passed	passed	passed	passed	passed	passed	
10	$123678-\mathrm{HxCDD}$	42.55	passed	passed	passed	passed	passed	passed	
11	$123789-\mathrm{HxCDD}$	42.87	passed	passed	passed	passed	passed	passed	
12	123789-HxCDF	43.25	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.93	passed	passed	passed	passed	passed	passed	
14	1234878-HpCDD	46.11	passed	passed	passed	passed	passed	passed	
15	1234789-HpCDF	45.69	passed	passed	passed	passed	passed	passed	
16	OCDD	49.11	passed	pessed	passed	passed	passed	passed	
17	OCDF	49.31	passed	passed	passed	passed	passed	passed	
18	13C12-1278-TCDD (CRS)	32.52	passed	passed	passed	passed	passed	passed	
19	13C12-1234-TCDD	31.37	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.32	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	31.10	passed	passed	passed	passed	passed	passed	
22	13C12-2376-TCDD	32.13	passed	passed	passed	passed	passed	passed	
23	$13 \mathrm{C} 12-12378$ - eCDF	36.62	passed	passed	passed	passed	passed	passed	
24	13C12-23478.PeCDF	37.84	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.22	passed	passed	passed	passed	passed	passed	
25	13C12-123478-HxCDF	41.41	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.56	passed	passed	passed	passed	passed	passed	
28	13C12-234678-H×CDF	42.24	passed	passed	passed	passed	passed	passed	
29	$13 \mathrm{C} 12-123478-\mathrm{HxCDD}$	42.43	passed	passed	passed	passed	passed	passed	
30	13C12-123678-HxCDD	42.53	passed	passed	passed	passed	passed	passed	
31	13C12-123769-HxCDD	42.84	passed	passed	passed	passed	passed	passed	
32	13C12-123789-HxCDF	43.23	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HpCDF	44.82	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-HpCDD	46.11	passed	passed	passed	passed	pessed	passed	
35	13C12-1234789-HpCDF	46.68	passed	passed	passed	passed	passed	passed	
36	13C12-OCDD	49.11	passed	passed	passed	passed	passed	passed	
37	13C12-OCDF	49.30	passed	passed	passed	passed	passed	passed	
38	Total TCDF	29.81	passed (1)					-	
39	Total TCDD	30.58	passed (1)	--	-	--	-	-	
40	Total PeCDF	36.93	passed (2)	--	--	-	-	--	
41	Total PeCDD	37.02	passed (1)	---	---	---	-	--	
42	Total HxCDF	41.89	passed (4)	-	--	-	--	--	
43	Totai HxCDD	42.63	passed (3)	-	---	-	-	--	
44	Total HPCDD	45.68	passed (1)	-	-	--	--	-	
45	Total HPCDF	45.86	passed (2)	--	-	---	--	--	
46	Single TCDF	31.12	passed	passed	pessed	passed	passed	passed	
47	Single TCDD	32.16	passed	passed	passed	passed	pessed	passed	
48	Single PeCDD	38.24	passed	passed	passed	passed	passed	passed	
49	Single PeCDF	37.87	passed	passed	passed	passed	passed	passed	
50	Single PeCDF	36.65	passed	passed	passed	passed	passed	passed	
51	Single HpCDD	46.11	passed	passed	passed	passed	passed	passed	
52	Single HxCDF	42.25	passed	passed	passed	passed	passed	passed	
53	Single HxCDF	41.43	passed	passed	passed	passed	passed	passed	
54	Single $\mathrm{H} \times \mathrm{CDF}$	41.58	passed	passed	passed	passed	passed	passed	
55	Single $\mathrm{H} \times \mathrm{CDF}$	43.25	passed	passed	passed	passed	passed	passed	
56	Single HxCDD	42.87	passed	passed	passed	passed	passed	passed	
57	Single HxCDD	42.44	passed	passed	passed	passed	passed	passed	
58	Single HxCDO	42.55	passed	passed	passed	passed	passed	passed	
59	Single HPCDF	44.93	passed	passed	passed	passed	passed	passed	
60	Single HPCDF	46.69	passed	passed	passed	passed	passed	passed	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
2017/02/01 03:39
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode
Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Single Point (Spec. RF)
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

y:117jan31117jan31-09.quan
y:117jan31117jan31-09.raw
y :\responsefiles\df18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Non weighted Regression
1.0

Chromatogram

RT: 30.14-32.14 SM: 3G

Entry Parameters

Compound Name	2378 -TCDF
QM Retention Time	31.12
QM Area	31629
QM Integration Mode	A
RM1 Area	23651
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0028
Unqualified Amount (A)	2.000000
Adjusted Amount (A)	2.0000
Signal-to-Noise	1696
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.16-33.16 SM: 3G

Entry Parameters

Compound Name	2378 -TCDD
QM Retention Time	32.16
QM Area	21881
QM Integration Mode	A
RM1 Area	17082
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0034
Unqualified Amount (A)	2.000000
Adjusted Amount (A)	2.0000
Signal-to-Noise	1524
Client Fiags	
Status Overview	passed
Status Info	

Chromatogram

RT: 35.65-37.65 SM: 3G

Entry Parameters

Compound Name	$12378-$ PeCDF
QM Retention Time	36.65
QM Area	92762
QM Integration Mode	A
RM1 Area	147587
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0035
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	7457
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 36.87-38.87 SM: 3G

Entry Parameters

Compound Name	$23478-$ PeCDF
QM Retention Time	37.87
QM Area	104540
QM Integration Mode	A
RM1 Area	170811
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0029
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	8396
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 37.24-39.24 SM: 3G

Entry Parameters

Compound Name	$12378-\mathrm{PeCDD}$
QM Retention Time	38.24
QM Area	55524
QM Integration Mode	A
RM1 Area	90701
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0076
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	3287
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.43-42.43 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.43
QM Area	107321
QM Integration Mode	A
RM1 Area	137608
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0096
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2624
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.58-42.58 SM: 3G

Entry Parameters

Compound Name	$123678-\mathrm{HxCDF}$
QM Retention Time	41.58
QM Area	111365
QM Integration Mode	A
RM1 Area	138401
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0095
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2689
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	234678-HxCDF
QM Retention Time	42.25
QM Area	110315
QM Integration Mode	A
RM1 Area	133019
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0093
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2697
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.45-43.45 SM: 3G

Entry Parameters

Compound Name	123478-HxCDD
QM Retention Time	42.44
QM Area	69400
QM Integration Mode	A
RM1 Area	89195
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0099
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2528
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$123678-\mathrm{HxCDD}$
QM Retention Time	42.55
QM Area	67590
QM Integration Mode	A
RM1 Area	84688
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0103
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2386
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.86-43.86 SM: 3G

Entry Parameters

Compound Name	$123789-H x C D D$
QM Retention Time	42.87
QM Area	75205
QM Integration Mode	A
RM1 Area	90141
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0098
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2532
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 42.25-44.25 SM: 3G

Entry Parameters

Compound Name	$123789-H x C D F$
QM Retention Time	43.25
QM Area	96556
QM Integration Mode	A
RM1 Area	118734
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0109
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2309
Client Flags	
Status Overview	passed
Status Info	

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDF}$
QM Retention Time	44.93
QM Area	111505
QM Integration Mode	A
RM1 Area	114804
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0096
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2571
Client Flags	
Status Overview	passed
Status Info	

Chromatogram
RT: 45.12-47.12 SM: 3G

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDD}$
QM Retention Time	46.11
QM Area	70434
QM Integration Mode	A
RM1 Area	71895
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0106
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2266
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.69-47.69 SM: 3G

Entry Parameters

Compound Name	$1234789-$ HpCDF
QM Retention Time	46.69
QM Area	98436
QM Integration Mode	A
RM1 Area	99900
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0109
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2257
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	OCDD
QM Retention Time	49.11
QM Area	134573
QM Integration Mode	A
RM1 Area	115762
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0111
Unqualified Amount (A)	20.000000
Adjusted Amount (A)	20.0000
Signal-to-Noise	4422
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 48.31-50.31 SM: 3G

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.31
QM Area	169942
QM Integration Mode	A
RM1 Area	152697
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0079
Unqualified Amount (A)	20.000000
Adjusted Amount (A)	20.0000
Signal-to-Noise	6362
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

> RT: 31.48-33.48 SM: 3G

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.52
QM Area	22844
QM Integration Mode	A
RM1 Area	15401
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0095
Unqualified Amount (A)	2.000000
Adjusted Amount (A)	2.0000
Signal-to-Noise	574
Client Flags	
Status Overview	passed
Status Info	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Single Point (Spec. RF)
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

y:I17jan31117jan31-09.quan
y:\17jan31117jan31-09.raw
y:\responsefilesidf18471-17jan31dfical.resp
C: XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Cum
Dependend on Area
1.0
1.0
1.0
. 5
Single Point (Spec. RF)

Non weighted Regression
1.0

Chromatogram

Entry Parameters

Compound Name	Total TCDF
QM Retention Time	29.81
QM Area	31629
QM Integration Mode	A
RM1 Area	23651
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0028
Unqualified Amount (A)	2.000000
Adjusted Amount (A)	2.0000
Signal-to-Noise	1696
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total TCDD
QM Retention Time	30.58
QM Area	21881
QM Integration Mode	A
RM1 Area	17082
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0034
Unqualified Amount (A)	2.000000
Adjusted Amount (A)	2.0000
Signal-to-Noise	1524
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total PeCDF
QM Retention Time	36.93
QM Area	197302
QM Integration Mode	A
RM1 Area	318398
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0032
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	20.0000
Signal-to-Noise	7926
Client Flags	
Status Overview	passed (2)
Status Info	

Chromatogram

RT: 35.03-39.01 SM: 3G

Entry Parameters

Compound Name	Total PeCDD
QM Retention Time	37.02
QM Area	55524
QM Integration Mode	A
RM1 Area	90701
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0076
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	3287
Client Flags	
Status Overview	passed (1)
Status Info	

AIL01 Pagø 980 of 560

Chromatogram

RT: 39.89-43.89 SM: 3G

Entry Parameters

Compound Name	Total HxCDF
QM Retention Time	41.89
QM Area	425558
QM Integration Mode	A
RM1 Area	527761
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0098
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	40.0000
Signal-to-Noise	2580
Client Flags	
Status Overview	passed (4)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total HxCDD
QM Retention Time	42.63
QM Area	212195
QM Integration Mode	A
RM1 Area	264024
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0100
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	30.0000
Signal-to-Noise	2482
Client Flags	
Status Overview	passed (3)
Status info	

Entry Parameters

Compound Name	Total HpCDD
QM Retention Time	45.66
QM Area	70434
QM Integration Mode	A
RM1 Area	71895
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0106
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2266
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total HpCDF
QM Retention Time	45.88
QM Area	209941
QM Integration Mode	A
RM1 Area	214704
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0102
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	20.0000
Signal-to-Noise	2414
Client Flags	
Status Overview	passed (2)
Status Info	

Status Info

No	$\begin{aligned} & \text { Compound } \\ & \text { Neme } \end{aligned}$	$\begin{aligned} & \text { Quan. } \\ & \text { Mass } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ratio } \\ \text { Mass } 9 \\ \hline \end{array}$	$\begin{aligned} & \text { RT Window } \\ & {[\text { min] }} \end{aligned}$	$\begin{aligned} & \hline \text { Specitied } \\ & \text { RT [min] } \\ & \hline \end{aligned}$	QM Retention Time	RM1 Retention Time	RM1 Time Status	RRT Status	
1	2378-TCDF	$305.8987+/-5 \mathrm{ppm}$	303.9016 +/-5 ppm	0.67	31.12	31.12	31.14	passed		passed
2	2378-TCDD	321.8936 +/-5 5 pm	$319.8965+/-5 \mathrm{ppm}$	0.67	32.16	32.16	32.15	passed		passed
3	12378PeCDF	$341.8567+/-5 \mathrm{ppm}$	$339.8597+1.5 \mathrm{ppm}$	0.67	36.65	36.65	36.65	passed		passed
4	23478PeCDF	341.8567 +/-5 ppm	$339.8597+/ .5 \mathrm{ppm}$	0.67	37.87	37.87	37.87	passed		passed
5	12378-PeCDD	357.8516 +/-5 ppm	$355.8546+/-5 \mathrm{ppm}$	0.67	38.24	38.24	38.24	passed		passed
6	123478-HxCDF	375.8178 +/-5 ppm	$373.8208+1.5 \mathrm{ppm}$	0.67	41.43	41.43	41.43	passed		passed
7	$123678-\mathrm{HxCDF}$	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	0.67	41.58	41.58	41.58	passed		passed
8	234678 - HXCDF	375.8178 +/-5 ppm	$373 . \mathrm{B208}+1-5 \mathrm{ppm}$	0.67	42.25	42.25	42.25	passed		passed
9	$123478-\mathrm{HxCDD}$	$391.8127+/-5 \mathrm{ppm}$	$3898957+1-5 \mathrm{ppm}$	0.67	42.44	42.44	42.44	passed		passed
10	$123678-\mathrm{HxCDD}$	$391.8127+/-5$ ppm	$389.8157+/-5 \mathrm{ppm}$	0.67	42.55	42.55	42.55	passed		passed
11	$123789-\mathrm{HXCDD}$	391.8127 +/-5 ppm	389.8157 +/. 5 ppm	0.67	42.87	42.87	42.87	passed		passed
12	123789-HxCDF	$375.817 \mathrm{e}+$ +/ 5 ppm	373.8208 +/-5 5 pmm	0.67	43.25	43.25	43.26	passed		passed
13	1234678-HpCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	0.67	44.93	44.93	44.93	passed		passed
14	1234678-HpCDD	$425.7737+/-5 \mathrm{ppm}$	423.7766 +/-5 ppm	0.67	46.11	46.11	46.12	passed		passed
15	1234789.HpCDF	$409.7789+/ .5 \mathrm{ppm}$	407.7818 +/-5 ppm	0.67	46.69	46.69	46.69	passed		passed
16	OCDD	$459.7348+/ .5 \mathrm{ppm}$	$457.7377+/-5$ ppm	0.67	49.11	49.11	49.12	passed		passed
17	OCDF	443.7399 +/-5 ppm	441.7428 +/-5 ppm	0.67	49.31	49.31	49.31	passed		passed
18	13C12-1278-TCDD (CRS)	333.9339 +/-5 ppm	331.9368 +/-5 ppm	1.00	32.52	32.52	32.52	passed		passed
19	13C12-1234-TCDD	333.9339 +/-5 ppm	$331.9368+/ .5 \mathrm{ppm}$	0.67	31.37	31.37	31.37	passed		passed
20	13C 12-123468-HxCDD	$403.8529+/ .5 \mathrm{ppm}$	401.8559 +/-5 ppm	1.00	44.32	41.32	41.31	passed		passed
21	13C12-2378-TCDF	317.9389 +/-5 ppm	315.9419 +/-5 ppm	0.67	31.10	31.10	31.10	passed		passed
22	13C12-2378-TCDD	333.9339 +/-5 ppm	331.9368 +/-5 ppm	0.67	32.13	32.13	32.13	passed		passed
23	13C12-12378-PeCDF	353.8970 +/-5 ppm	351.9000 +/-5 ppm	0.67	36.62	36.62	36.62	passed		passed
24	13C12-23478-PeCDF	353.8970 +/-5 5pm	351.9000 +/-5 ppm	0.67	37.84	37.84	37.84	passed		passed
25	13C12-12378-PeCDD	369.8919 +/-5 ppm	367.8949 +/-5 ppm	0.67	38.22	38.22	38.22	passed		passed
26	13C12-123478-HxCDF	385.8610 +/- 5 ppm	$383.8639++$-5pm	0.67	41.41	41.41	41.41	passed		passed
27	13C12-123678-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+$ +/ 5 ppm	0.67	41.56	41.56	41.56	passed		passed
28	13C12-234678-HxCDF	385.8610 +/-5 ppm	$383.8639+$ +/ 5 ppm	0.67	42.24	42.24	42.24	passed		passed
29	13C12-123478-HxCDD	$403.8529+/-5 \mathrm{ppm}$	401.8559 +1-5 ppm	0.67	42.43	42.43	42.43	passed		passed
30	13C12-123678-HxCDD	$403.8529+/-5 \mathrm{ppm}$	$401.8559+1-5 \mathrm{ppm}$	0.67	42.53	42.53	42.53	passed		passed
31	13C12-123789-HxCDD	$403.8529+/$-5 ppm	$401.8559+/-5 \mathrm{ppm}$	0.67	42.84	42.84	42.84	passed		passed
32	13C12-123789-HxCDF	385.8610 +/-5 ppm	$383.8639+1.5 \mathrm{ppm}$	0.67	43.23	43.23	43.23	passed		passed
33	13C12-1234678-HPCDF	419.8220 +/-5 ppm	$417.8253+/-5 \mathrm{ppm}$	0.67	44.92	44.92	44.92	passed		passed
34	13C12-1234678-HpCDD	$437.8140+/ .5 \mathrm{ppm}$	$435.8169+$ + 5 ppm	0.67	46.11	46.11	46.11	passed		passed
35	13C12-1234789-HpCDF	419.8220 +/. 5 ppm	$417.8253+/-5 \mathrm{ppm}$	0.67	46.68	46.68	46.68	passed		passed
36	13C12-OCDD	$471.7750+/ .5 \mathrm{ppm}$	469.7779 +/-5 ppm	0.67	49.11	49.11	49.11	passed		passed
37	13C12-OCDF	$455.7802+/ .5 \mathrm{ppm}$	$453.7831+$ /-5 ppm	1.00	49.30	49.30	49.30	passed		passed
38	Total TCDF	$305.8987+f$ - 5 ppm	303.9016 +/-5 ppm	7.54	29.81	29.81	29.81	-		-
39	Total TCDD	$321.8936+1-5 \mathrm{ppm}$	319.8965 +/. 5 ppm	5.61	30.58	30.58	30.58	-		-
40	Total PeCDF	$341.8567+1-5 \mathrm{ppm}$	$339.8597+1 / 5 \mathrm{ppm}$	6.06	36.93	36.93	36.93	-		-
41	Total PeCDD	$357.8516+1-5 \mathrm{ppm}$	$355.8546+/-5 \mathrm{ppm}$	3.62	37.02	37.02	37.02	-		-
42	Total HxCDF	375.8178 +f-5 ppm	$373.8208+/-5 \mathrm{ppm}$	3.63	41.89	41.89	41.89	-		-
43	Total HxCDD	$391.8127+1-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	2.37	42.63	42.63	42.63	-		-
44	Total HpCDD	$425.7737+$ + 5 ppm	$423.7766+/-5 \mathrm{ppm}$	1.06	45.66	45.66	45.66	-		-
45	Total HPCDF	$409.7789+1-5 \mathrm{ppm}$	$407.7818+1-5 \mathrm{ppm}$	2.10	45.88	45.88	45.88	-		-
46	Single TCDF	$305.8987+1-5 \mathrm{ppm}$	303.9016 +/-5 ppm	7.54	31.12	31.12	31.14	passed		passed
47	Single TCDD	$321.8936+/-5 \mathrm{ppm}$	$319.9965+/-5 \mathrm{ppm}$	5.61	32.16	32.16	32.16	passed		passed
48	Single PeCDD	$357.8516+/-5 \mathrm{ppm}$	$355.8546+/-5 \mathrm{ppm}$	3.62	38.24	38.24	38.24	passea		passed
49	Singie PeCDF	$341.8567+$ +- 5 ppm	$339.8597+/-5 \mathrm{ppm}$	6.06	37.87	37.87	37.87	passed		passed
50	Single PeCDF	$344.8567+/-5 \mathrm{ppm}$	$339.8597+/-5 \mathrm{ppm}$	6.06	36.65	36.65	36.65	passed		passed
51	Single HPCDD	$425.7737+/-5 \mathrm{ppm}$	423.7766 +/-5 ppm	1.06	46.19	46.11	46.12	passed		passed
52	Single HxCDF	$375.8778+/-5 \mathrm{ppm}$	373.8208 +/-5 ppm	363	42.25	42.25	42.25	passed		passed
53	Single HxCDF	375.8178 +/-5 ppm	373.8208 +/-5 ppm	3.63	41.43	41.43	41.43	passed		passed
54	Single HxCDF	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	3.63	41.58	41.58	41.58	passed		passed
55	Single $\mathrm{H} \times \mathrm{CDF}$	$375.8178+/-5 \mathrm{ppm}$	$373.8208+1.5 \mathrm{ppm}$	3.63	43.25	43.25	43.26	passed		passed
56	Single HxCDD	$391.8127+i-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	2.37	42.87	42.97	42.87	passed		passed
57	Single HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	2.37	4244	42.44	42.44	passed		passed
58	Single HxCDD	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	2.37	42.55	42.55	42.55	passed		passed
59	Single $H P C D F$	4097789 +/-5 ppm	$407.7818+/$ - 5 ppm	2.10	44.93	44.93	44.93	passed		passed
60	Single HPCDF	409.7789 +/-5 ppm	$407.7818+1.5 \mathrm{ppm}$	2.10	46.69	46.69	46.69	passed		passed

No.	Compound Name	$\begin{aligned} & \text { Status } \\ & \text { Overview } \end{aligned}$	QM Retention Time	QM Area	QM Mode		RM1 Area	$\begin{aligned} & \text { RM1 } \\ & \text { Mode } \end{aligned}$		Detection Limit (A)	Unqualified Amount (A)	Adjusted Amount (A)	AdjSpecamt	Signal-to-Nois	$\left\{\begin{array}{l} \text { Client } \\ \text { Flags } \end{array}\right.$
1	2378-TCDF	passed	31.12	31629		A	23651		A	0.0028	2.000000	20000	2.000000	1696	
2	2378-TCOD	passed	32.16	21881		A	17082		A	0.0034	2.000000	2.0000	2.000000	1524	
3	12378-PeCDF	passed	36.65	92762		A	147587		A	0.0035	10.000000	10.0000	10.000000	7457	
4	23478-PeCDF	passed	37.87	104540		A	170814		A	0.0029	10.000000	10.0000	10.000000	8396	
5	12378-PeCDD	passed	38.24	55524		A	90701		A	0.0076	10.000000	10.0000	10.000000	3287	
6	$123478 . \mathrm{HxCDF}$	passed	41.43	107321		A	137608		A	0.0096	10.000000	10.0000	10.000000	2624	
7	$123678-\mathrm{H} \times \mathrm{CDF}$	passed	41.58	111365		A	138401		A	0.0095	10.000000	10.0000	10.000000	2689	
8	234678-H×CDF	passed	42.25	110315		A	133019		A	0.0093	10.000000	10.0000	10.000000	2697	
9	123478-HXCDD	passed	42.44	69400		A	89195		A	0.0099	10.000000	10.0000	10.000000	2528	
10	$123678-\mathrm{HxCDO}$	passed	42.55	67590		A	84688		A	0.0103	10.000000	10.0000	10.000000	2386	
11	123789-H×CDD	passed	42.87	75205		A	90141		A	0.0098	10.000000	10.0000	10.000000	2532	
12	123789-HxCDF	passed	43.25	96556		A	118734		A	0.0109	10.000000	10.0000	10.000000	2309	
13	1234678-HpCDF	passed	44.93	111505		A	114804		A	0.0096	10.000000	10.0000	10.000000	2571	
14	$1234678-\mathrm{HpCDD}$	passed	46.11	70434		A	71895		A	0.0106	10.000000	10.0000	10.000000	2266	
15	1234789-HpCDF	passed	46.69	98436		A	99900		A	0.0109	10.000000	10.0000	10.000000	2257	
16	OCDD	passed	49.11	134573		A	115762		A	0.0111	20.000000	20.0000	20.000000	4422	
17	OCDF	passed	49.31	169942		A	152697		A	0.0079	20.000000	20.0000	20.000000	6362	
18	13C12-1278-TCDO (CRS)	passed	32.52	22844		A	15409		A	0.0095	2.000000	2.0000	2.000000	574	
19	13C12-1234-TCDD	passed	31.37	808178		A	662288		A	0.0123	100.000000	100.0000	100.000000	20249	
20	13C12-123468-HxCDD	passed	41.32	717819		A	911917		A	0.0300	100.000000	100.0000	100.000000	8340	
21	${ }^{13 C 12-2378-T C D F ~}$	passed	31.10	1545520		A	1261062		A	0.0074	100.000000	100.0000	100.000000	33356	
22	13C12-2378-TCDD	passed	32.13	809922		A	663354		A	0.0123	100.000000	100.0000	100.000000	21117	
23	13C12-12378-PeCDF	passed	36.62	978544		A	1556140		A	0.0293	100.000000	100.0000	100.000000	10922	
24	13C12-23478-PeCDF	passed	37.84	984613		A	1521769		A	0.0296	100.000000	100.0000	100.000000	11259	
25	13C12-12378-PeCDD	passed	38.22	541394		A	865010		A	0.0156	100.000000	100.0000	100.000000	22189	
26	13C12-123478-HxCDF	passed	41.41	1370072		A	707227		A	0.0243	100.000000	100.0000	100.000000	10449	
27	$13 \mathrm{C} 12-123678-\mathrm{H} \times \mathrm{CDF}$	passed	41.56	1412661		A	760561		A	0.0232	100.000000	100.0000	100.000000	10892	
28	${ }^{13 C 12-234678-H x C D F ~}$	passed	42.24	1321539		A	697387		A	0.0250	100.000000	100.0000	100.000000	10591	
29	13C12-123478-HxCDD	passed	42.43	672815		A	873530		A	0.0316	100.000000	100.0000	100.000000	8584	
30	13C12-123678-HxCDD	passed	42.53	679999		A	850432		A	0.0319	100.000000	100.0000	100.000000	8523	
31	13C12-123789-HxCDD	passed	42.84	670540		A	829773		A	0.0325	100.000000	100.0000	100.000000	8061	
32	13C12-123789-HxCDF	passed	43.23	1237959		A	646124		A	0.0268	100.000000	100.0000	100.000000	9505	
33	13C12-1234678-HpCDF	passed	44.92	1203015		A	548526		A	0.0347	100.000000	100.0000	100.000000	7981	
34	13C12-1234678-HpCDD	passed	45.11	656057		A	694053		A	0.0216	100.000000	100.0000	100.000000	13097	
35	13C12-1234789-HPCDF	passed	46.68	997321		A	454681		A	0.0418	100.000000	100.0000	100.000000	6624	
36	13C12-OCDO	passed	4911	1267817		A	1139034		A	0.0197	200.000000	200.0000	200.000000	28759	
37	13C12-OCDF	passed	4930	1830640		A	1658657		A	0.0219	200.000000	200.0000	200.000000	26053	
38	Total TCDF	passed (1)	29.81	31629		A	23651		A	0.0028	2.000000	2.0000	2000000	1636	
39	Total TCDD	passed (1)	30.58	21881		A	17082		A	0.0034	2.000000	2.0000	2.000000	1524	
40	Total PeCDF	passed (2)	36.93	197302		A	318398		A	0.0032	10.000000	20.0000	10.000000	7926	
41	Total PeCDD	passed (1)	37.02	55524		A	90701		A	0.0076	10.000000	10.0000	10.000000	3287	
42	Total HxCDF	passed (4)	41.89	425558		A	527761		A	0.0098	10.000000	40.0000	10.000000	2580	
43	Total HxCDD	passed (3)	42.63	212195		A	264024		A	0.0100	10.000000	30.0000	10.000000	2482	
44	Total HPCDD	passed (1)	45.66	70434		A	71895		A	0.0106	10.000000	10.0000	10.000000	2266	
45	Total HpCDF	passed (2)	45.88	209941		A	214704		A	0.0102	10.000000	20.0000	10.000000	2414	
46	Single TCDF	passed	31.12	31629		A	23651		A	0.0028	2.000000	2.0000	2.000000	1698	
47	Single TCOD	passed	32.16	21881		A	17082		A	0.0034	2000000	2.0000	2000000	1524	
48	Single PeCDD	passed	38.24	55524		A	90701		A	0.0076	10.000000	10.0000	10.000000	3287	
49	Single PeCDF	passed	37.87	104540		A	170811		A	0.0030	10.000000	10.0000	10.000000	8396	
50	Single PeCDF	passed	36.65	92762		A	147587		A	0.0034	10.000000	100000	10.000000	7457	
51	Single HPCDD	passed	46.11	70434		A	71895		A	0.0106	10.000000	10.0000	10.000000	2266	
52	Single $H \times C D F$	passed	42.25	110315		A	133019		A	0.0096	10.000000	10.0000	10.000000	2697	
53	Single $\mathrm{H} \times \mathrm{CDF}$	passed	41.43	107321		A	137608		A	0.0095	10.000000	10.0000	10.000000	2624	
54	Single $\mathrm{H} \times \mathrm{CDF}$	passed	41.58	111365		A	138401		A	0.0093	70.000000	10.0000	10.000000	2689	
55	Singie $\mathrm{H} \times \mathrm{CDF}$	passed	43.25	96556		A	118734		A	0.0108	10.000000	10.0000	10.000000	2309	
56	Single HxCDO	passed	42.87	75205		A	90141		A	0.0096	10.000000	10.0000	10.000000	2532	
57	Single $\mathrm{H} \times$ CDD	passed	42.44	69400		A	89195		A	0.0100	10.000000	10.0000	10.000000	2528	
58	Single $\mathrm{H} \times$ CDD	passed	42.55	67590		A	84688		A	0.0104	10.000000	10.0000	10.000000	2386	
59	Single HPCDF	passed	4493	191505		A	114804		A	0.0096	10.000000	10.6000	10.000000	2571	
60	Single HpCDF	passed	46.69	98436		A	99900		A	0.0109	10.000000	10.0000	10.000000	2257	

*** file opened Wed Feb 01 03:45:10 2017 ***

Started by	- Xcalibur
Instrument	Internet name
Instrument mode1	DFS MS
Instrument service number	DFS MS
SNOOOOXXXX	
Workstation internet name - LX18470	

Analysis started at: 01-Feb-17 03:45:10
Analysis will stop at user request

Firmware Version: 2.02

MCAL file name:

Sequence : 62d69d10-234f-46c5-bc8a-53bf0dc2f3b7

MID procedure: PFK16MAR24+MDT

Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
Window \# 3			
mass F	int	gr	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
Window \# 4 mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
Window \# 5 mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
Window \# 6			
mass F	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes MID Window end time was 21.000000 minutes MID Window terminated after 34.750000 minutes MID Window end time was 34.740000 minutes

Page 2

MID Window terminated after 39.800000 minutes MID Window end time was 39.800000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\Xcalibur\System\DFS\MSI\17JAN26.DFSTune

```
DFS - Parameter
```

ACCU	1000.0000	BCORRS	0.0170	BMASS	95.5000
BQUAD	0.4500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	156.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	175.0000
ENSBR	0.4500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	171.0000	EXSBR	-0.5300
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	13.9000
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0157	FVINLET	0.0276	FVSRC	0.0272
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	718.0000
LENS_SYM	12.7500	LM	1050.0000	LMII	500.0000
LMASS	95.5000	LKM	442.9723	MASS	95.5000
MDAC	1429287.2593	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2521.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-15.0000	RECURR	0.8962	RELEN	0.0000
RES	13526.1016	RPUSHER	-14.5861	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	664.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0180	TANAL	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	95.5000	XLENS_POT	880.0000
XLENS_SYM	-2.5000	YLENS_POT	602.0000	YLENS_SYM	-7.7500

$$
\begin{array}{ll}
\text { Source Gauge: } & 2.0 \mathrm{e}-005 \text { mbar } \\
\text { Analyzer Penning: } & 5.2 \mathrm{e}-008 \text { mbar } \\
\text { Pirani Analyse: } & 1.5 \mathrm{e}-002 \text { mbar } \\
\text { Pirani Source: } & 2.7 \mathrm{e}-002 \text { mbar } \\
\text { Pirani Inlet System: } & 2.8 \mathrm{e}-002 \text { mbar }
\end{array}
$$

Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 11437.
MID Time Window 2: Resolution is 11372.
MID Time Window 3: Resolution is 11130.
MID Time Window 4: Resolution is 11505.

```
MID Time window 5: Resolution is 14477. MID Time window 6: Resolution is 13526.
Amplifier offset: 88.
```


17JAN31-09

Page 4

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 04:36
64
6
CALDF41737A
CS301
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117jan31117jan31-10.quan
y:I17jan31117jan31-10.raw
y :\responsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

No.	$\begin{aligned} & \text { Compound } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \text { QM Retention } \\ & \text { Time } \end{aligned}$	$\begin{aligned} & \text { Status } \\ & \text { Overview } \end{aligned}$	Amount Status	$\begin{aligned} & \text { RM1 Time } \\ & \text { Status } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ratio1 } \\ \text { Status } \\ \hline \end{array}$	Recovery Status Status	RRT Status	$\begin{aligned} & \text { Status } \\ & \text { Into } \\ & \hline \end{aligned}$
1	2378-TCDF	31.13	passed	passed	passed	passed	passed	passed	
2	2378-TCDD	32.15	passed	passed	passed	passed	passed	passed	
3	12378-PeCDF	36.65	passed	passed	passed	passed	passed	passed	
4	23478-PeCDF	37.86	passed	passed	passed	passed	passed	passed	
5	12378-PeCDD	38.24	passed	passed	passed	passed	passed	passed	
6	$123478-\mathrm{HxCDF}$	41.42	passed	passed	passed	passed	passed	passed	
7	$123678-\mathrm{HxCDF}$	41.57	passed	passed	passed	passed	passed	passed	
8	234678-HxCDF	42.26	passed	passed	passed	passed	passed	passed	
9	$123478-\mathrm{HxCDD}$	42.43	passed	passed	passed	passed	passed	passed	
10	$123678-\mathrm{HxCDD}$	42.55	passed	passed	passed	passed	passed	passed	
11	$123789-\mathrm{HxCDD}$	42.86	passed	passed	passed	passed	passed	passed	
12	123789-HxCDF	43.25	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.94	passed	passed	passed	passed	passed	passed	
14	1234678-HPCDD	46.11	passed	passed	passed	passed	passed	passed	
15	1234789-HPCDF	45.68	passed	passed	passed	passed	passed	passed	
16	OCDD	49.12	passed	passed	passed	passed	passed	passed	
17	OCDF	49.32	passed	passed	passed	passed	passed	passed	
18	13C12-1278-TCDD (CRS)	32.51	passed	passed	passed	passed	passed	passed	
19	13C12-1234-TCDC	31.38	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.31	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	31.11	passed	passed	passed	passed	passed	passed	
22	13C12-2378-TCDD	32.13	passed	passed	passed	passed	passed	passed	
23	13C42-12378-PeCDF	36.62	passed	passed	passed	passed	passed	passed	
24	13C12-23478-PeCDF	37.84	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.23	passed	passed	passed	passed	passed	passed	
26	13C12-123478-H×CDF	41.41	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.56	passed	passed	passed	passed	passed	passed	
28	13C12-234678-HxCDF	42.24	passed	passed	passed	passed	passed	passed	
29	13C12-123478-HxCDD	42.42	passed	passed	passed	passed	passed	passed	
30	13C12-123678-H×CDD	42.54	passed	passed	passed	passed	passed	passed	
31	13C12-123789-H×CDD	42.85	passed	passed	passed	passed	passed	passed	
32	13C12-123789-HxCDF	43.24	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HpCDF	44.93	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-HPCDD	46.10	passed	passed	passed	passed	passed	passed	
35	13C12-1234789-HpCDF	46.67	passed	passed	passed	passed	passed	passed	
36	13C12-OCDD	49.10	passed	passed	passed	passed	passed	passed	
37	13C12-OCDF	49,30	passed	passed	passed	passed	passed	passed	
38	Total TCDF	29.82	passed (1)	-	--	---	-	-	
39	Total TCOD	30.59	passed (1)	-	--	---	--	-	
40	Total PeCDF	36.94	passed (2)	-	-	---	-	-	
41	Total PeCDD	37.03	passed (1)	-	-	--	-	--	
42	Total $\mathrm{H} \times \mathrm{CDF}$	41.88	passed (4)	--	--	- -	-	-	
43	Total $\mathrm{H} \times \mathrm{COD}$	42.62	passed (3)	---	--	--	-	-	
44	Total HpCDD	45.65	passed (1)	-	-	-	--	-	
45	Total HPCDF	45.87	passed (2)	-	-	---	--	-	
46	Single TCDF	31.13	passed	passed	passed	passed	passed	passed	
47	Single TCDD	32.15	passed	passed	passed	passed	passed	passed	
48	Single PeCDD	38.24	passed	passed	passed	passed	passed	passed	
49	Single PeCDF	37.86	passed	passed	passed	passed	passed	passed	
50	Single PeCDF	36.65	passed	passed	passed	passed	passed	passed	
51	Single HpCDD	46.11	passed	passed	passed	passed	passed	passed	
52	Single $\mathrm{H} \times \mathrm{CDF}$	42.26	passed	passed	passed	passed	passed	passed	
53	Single $\mathrm{H} \times \mathrm{CDF}$	41.42	passed	passed	passed	passed	passed	passed	
54	Singie $\mathrm{H} \times$ CDF	41.57	passed	passed	passed	passed	passed	passed	
55	Single $H \times C D F$	43.25	passed	passed	passed	passed	passed	passed	
56	Single $\mathrm{H} \times \mathrm{COD}$	42.86	passed	passed	passed	passed	passed	passed	
57	Single HxCOD	42.43	passed	passed	passed	passed	passed	passed	
58	Single HxCDD	42.55	passed	passed	passed	passed	passed	passed	
59	Single HPCDF	44.94	passed	passed	passed	passed	passed	passed	
60	Single HpCDF	46.68	passed	passed	passed	passed	passed	passed	

Quantitation Settings

Data File Parameter

Acq. Data	2017/02/01 04:36
Number of Entries	64
Comment	
Vial	6
Sample Name	CALDF41737A
Sample ID	CS301
Inst ID	
Client	jda02741
Analyst	DB5MS $60 \mathrm{M} \times$ 0.25um $\times 0.25 \mathrm{~mm}$
GC Column	
BatchNo	
Barcode	
Files Parameter	y:117jan31117jan31-10.quan'
Quan	y:117jan31117jan31-10.raw
Data	y:Iresponsefilesldf18471-17jan31dfical.resp
Response	C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC
Script	
Mass Ref	
Quan Parameter	Compatibility off
QualBrowser Compatibility	Sum QM RM1
Sum Area/Height	Dependend on Area
Quantitation Status	1.0
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	2.5
Det. Limit Factor [hDLF]	Single Point (Spec. RF)
Response Factor Mode	Linear Fit
Fit Calc. Mode	Non weighted Regression
Regression Mode	1.0
Weighted Regression Factor	

Chromatogram

RT: 30.15-32.15 SM: 3G

Entry Parameters

Compound Name	2378-TCDF
QM Retention Time	31.13
QM Area	126925
QM Integration Mode	A
RM1 Area	101187
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0048
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	5296
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	2378 -TCDD
QM Retention Time	32.15
QM Area	83956
QM Integration Mode	A
RM1 Area	64932
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0056
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	4430
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$12378-P e C D F$
QM Retention Time	36.65
QM Area	404299
QM Integration Mode	A
RM1 Area	637239
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0058
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	21658
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 36.87-38.87 SM: 3G

Entry Parameters

Compound Name	23478 -PeCDF
QM Retention Time	37.86
QM Area	458862
QM Integration Mode	A
RM1 Area	723138
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0048
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	25623
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 37.24-39.24 SM: 3G

Entry Parameters

Compound Name	$12378-\mathrm{PeCDD}$
QM Retention Time	38.24
QM Area	253735
QM Integration Mode	A
RM1 Area	395844
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0132
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	9517
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.42-42.42 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.42
QM Area	490884
QM Integration Mode	A
RM1 Area	608801
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0178
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6810
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.58-42.58 SM: 3G

Entry Parameters

Compound Name	$123678-\mathrm{HxCDF}$
QM Retention Time	41.57
QM Area	497196
QM Integration Mode	A
RM1 Area	618722
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0178
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6912
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.26-43.26 SM: 3G

Entry Parameters	
Compound Name	$234678-\mathrm{HxCDF}$
QM Retention Time	42.26
QM Area	490433
QM Integration Mode	A
RM1 Area	614127
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0180
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	7069
Client Flags	
Status Overview	passed
Status Info	

Sample CALDF41737A/Cs30

Chromatogram

RT: 41.43-43.43 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDD}$
QM Retention Time	42.43
QM Area	316134
QM Integration Mode	A
RM1 Area	393975
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0187
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6577
Client Flags	
Status Overview	passed

Status Info

Chromatogram

Entry Parameters

Compound Name	$123678-\mathrm{HxCDD}$
QM Retention Time	42.55
QM Area	311420
QM Integration Mode	A
RM1 Area	400139
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0189
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6719
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.86
QM Area	325889
QM Integration Mode	A
RM1 Area	412542
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0182
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6819
Client Flags	
Status Overview	passed

Status Info

Chromatogram

Entry Parameters

Compound Name	$123789-H \times C D F$
QM Retention Time	43.25
QM Area	423867
QM Integration Mode	A
RM1 Area	531146
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0204
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6184
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDF}$
QM Retention Time	44.94
QM Area	513505
QM Integration Mode	A
RM1 Area	539020
RM 1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0160
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	7792
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.12-47.12 SM: 3G

Entry Parameters

Compound Name	$1234678-$ HpCDD
QM Retention Time	46.11
QM Area	328495
QM Integration Mode	A
RM1 Area	345592
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0182
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6938
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234789-\mathrm{HpCDF}$
QM Retention Time	46.68
QM Area	446612
QM Integration Mode	A
RM1 Area	482805
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0187
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6747
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	OCDD
QM Retention Time	49.12
QM Area	623186
QM Integration Mode	A
RM1 Area	555804
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0200
Unqualified Amount (A)	100.000000
Adjusted Amount (A)	100.0000
Signal-to-Noise	12844
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.32
QM Area	813641
QM Integration Mode	A
RM1 Area	739445
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0144
Unqualified Amount (A)	100.000000
Adjusted Amount (A)	100.0000
Signal-to-Noise	17357
Client Flags	
Status Overview	passed

Status Info

Chromatogram

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.51
QM Area	81841
QM Integration Mode	A
RM1 Area	71666
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0108
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	2783
Client Flags	
Status Overview	passed
Status Info	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Single Point (Spec. RF)
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

y:117jan31117jan31-10.quan
y:I17jan31117jan31-10.raw
y:\responsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
1.0

Chromatogram

Entry Parameters

Compound Name	Total TCDF
QM Retention Time	29.82
QM Area	126925
QM Integration Mode	A
RM1 Area	101187
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0048
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	5296
Client Fiags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total TCDD
QM Retention Time	30.59
QM Area	83956
QM Integration Mode	A
RM1 Area	64932
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0056
Unqualified Amount (A)	10.000000
Adjusted Amount (A)	10.0000
Signal-to-Noise	4430
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram
RT: 33.68-40.20 SM: 3G

Entry Parameters

Compound Name	Total PeCDF
QM Retention Time	36.94
QM Area	863161
QM Integration Mode	A
RM1 Area	1360377
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0053
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	100.0000
Signal-to-Noise	23646
Client Flags	
Status Overview	passed (2)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total PeCDD
QM Retention Time	37.03
QM Area	253735
QM Integration Mode	A
RM1 Area	395844
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0132
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	9517
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram
RT: 39.91-43.86 SM: 3G

Entry Parameters

Compound Name	Total HxCDF
QM Retention Time	41.88
QM Area	1902380
QM Integration Mode	A
RM1 Area	2372796
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0185
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	6744
Client Flags	
Status Overview	passed (4)
Status Info	

Status Info

Chromatogram

Entry Parameters

Compound Name	Total HxCDD
QM Retention Time	42.62
QM Area	953444
QM Integration Mode	A
RM1 Area	1206656
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0186
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	150.0000
Signal-to-Noise	6705
Client Flags	
Status Overview	passed (3)
Status Info	

Status Info

Chromatogram

Entry Parameters

Compound Name	Total HpCDD
QM Retention Time	45.65
QM Area	328495
QM Integration Mode	A
RM1 Area	345592
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0182
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	50.0000
Signal-to-Noise	6938
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total HpCDF
QM Retention Time	45.87
QM Area	960117
QM Integration Mode	A
RM1 Area	1021825
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0173
Unqualified Amount (A)	50.000000
Adjusted Amount (A)	100.0000
Signal-to-Noise	7270
Client Flags	
Status Overview	passed (2)
Status Info	

No.	Compound Name	$\begin{array}{\|l\|} \hline \text { Quan. } \\ \text { Mass } \\ \hline \end{array}$	$\begin{aligned} & \text { Ratio } \\ & \text { Mass } 1 \end{aligned}$	$\begin{aligned} & \text { RT Window } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{aligned} & \hline \text { Specified } \\ & \text { RT [min] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { QM Retention } \\ & \text { Time } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { RM1 Retention } \\ & \text { Time } \\ & \hline \end{aligned}$	RM1 Time Status	RRT Status	
1	2378-TCDF	305.8987 +/-5 ppm	303.9015 +/-5 ppm	0.67	31.13	34.13	31.13	passed		passed
2	2378-TCDD	$321.8936+/ .5 \mathrm{ppm}$	319.8965 +/-5 ppm	0.67	32.15	32.15	32.15	passed		passed
3	12378 -PeCDF	$341.8567+/ .5 \mathrm{ppm}$	$339.8597+/-5 \mathrm{ppm}$	0.67	36.65	36.65	36.65	passed		pessed
4	23478-PeCDF	341.8567 +/-5 ppm	$339.8597+/-5 \mathrm{ppm}$	0.67	37.86	37.85	37.86	passed		passed
5	12378-PeCDD	357.8516 +/-5 ppm	355.8546 +/-5 ppm	0.67	38.24	38.24	38.24	passed		passed
6	123478-HxCDF	375.8178 +/-5 ppm	373.8208 +/-5 ppm	0.67	41.42	41.42	41.42	passed		passed
7	123678-HxCDF	375.8178 +/-5 ppm	373.8208 +/-5 ppm	0.67	41.57	41.57	41.57	passed		passed
8	234678-HxCDF	$375.8178+1-5 \mathrm{ppm}$	373.8208 +/-5 ppm	0.67	42.26	42.26	42.26	passed		passed
9	$123478-\mathrm{HxCDD}$	$394.8127+/ .5 \mathrm{ppm}$	389.8157 +/-5 ppm	0.67	42.43	42.43	42.44	passed		passed
10	123679-HxCDD	391.6127 +/. 5 ppm	389.8157 +/-5 ppm	0.67	42.55	42.55	42.55	passed		passed
11	1237日9-HxCDD	391.8127 +/-5 ppm	$389.8157+/-5 \mathrm{ppm}$	0.67	42.86	42.86	42.86	passed		passed
12	1237日9-HxCDF	375.8178 +/-5 ppm	373.8208 +/-5 ppm	0.67	43.25	43.25	43.25	passed		passed
13	1234679-HpCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	0.67	44.94	44.94	44.94	passed		passed
14	1234678-HPCDD	$425.7737+/-5 \mathrm{ppm}$	$423.776 \mathrm{E}+/-5 \mathrm{ppm}$	0.67	46.11	46.19	46.19	passed		passed
15	1234789-HpCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	0.67	46.68	46.68	46.68	passed		passed
16	OCDD	$459.7348+/ .5 \mathrm{ppm}$	457.7377 +/. 5 ppm	0.67	49.12	49.12	49.12	passed		passed
17	OCDF	$443.7399+/-5 \mathrm{ppm}$	441.7428 +/- 5 ppm	0.67	49.32	49.32	49.32	passed		passed
18	13C12-1278-TCDD (CRS)	$333.9339+/-5 \mathrm{ppm}$	331.9368 +/-5 ppm	1.00	32.51	32.51	32.51	passed		passed
19	13C12-1234-TCDD	$333.9339+i-5 \mathrm{ppm}$	331.9368 +/. 5 ppm	0.67	31.38	31.38	31.38	passed		passed
20	13C 12-123468-HxCDD	$403.8529+1.5 \mathrm{ppm}$	401.8559 +/- 5 ppm	1.00	41.31	41.31	41.31	passed		passed
21	13C12-2378-TCDF	317.9389 +/-5 5 pmm	315.9419 +/-5 ppm	0.67	31.11	31.11	31.11	passed		passed
22	13C12-2378-TCDD	333.9339 +/-5 ppm	331.9368 +/-5 ppm	0.67	32.13	32.13	32.13	passed		passed
23	13C12-12378PeCDF	353.8970 +/-5 ppm	351.9000 +/-5 ppm	0.67	36.62	36.62	36.62	passed		passed
24	13C12-23478-PeCDF	353.9970 +/-5 ppm	351.9000 +/-5 ppm	0.67	37.84	37.84	37.44	passed		passed
25	13C12-12378-PeCDD	369.8919 +/-5 ppm	367.8949 +/-5 ppm	0.67	39.23	38.23	38.23	passed		passed
26	13C12-123478-HxCDF	385.8610 +/- 5 ppm	$383.8639+$ + 5 ppm	0.67	41.41	41.41	41.41	passed		passed
27	13С12-123678-HxCDF	385.8610 +/- 5 ppm	$383.8639+/-5 \mathrm{ppm}$	0.67	41.56	41.56	41.56	passed		passed
28	13C^2-234678-HxCDF	385.8610 +/-5 ppm	$383.8639+/ .5 \mathrm{ppm}$	0.67	42.24	42.24	42.24	passed		passed
29	13C 12-123478-HxCDD	$403.8529+/-5 \mathrm{ppm}$	401.8559 +/-5 ppm	0.67	42.42	42.42	42.42	passed		passed
30	13C 12-123678-HxCDD	403.8529 +/-5 ppm	401.8559 +/- 5 ppm	0.67	42.54	42.54	42.54	passed		passed
31	13C12-123789-HxCDD	$403.8529+/ .5 \mathrm{ppm}$	401.8559 +/-5 ppm	0.67	42.85	42.85	42.85	passed		passed
32	13C12-123769-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+/-5 \mathrm{ppm}$	0.67	43.24	43.24	43.24	passed		passed
33	13C12-1234676-HpCDF	$419.8220+1.5 \mathrm{ppm}$	$417.8253+j$ - 5 ppm	0.67	44.93	44.93	44.93	passed		passed
34	${ }^{13 C 12-1234678-H P C D D ~}$	$437.8140+/-5 \mathrm{ppm}$	$435.8169++-5 \mathrm{ppm}$	0.67	46.10	46.10	46.11	passed		passed
35	13C12-1234789-HpCDF	$419.8220+/ .5 \mathrm{ppm}$	417.8253 +/-5 ppm	0.67	46.67	46.67	46.67	passed		passed
36	13C12-OCDD	$471.7750+/-5 \mathrm{ppm}$	$469.7779+/-5 \mathrm{ppm}$	0.67	49.10	49.10	49.10	passed		passed
37	13C12-OCDF	$455.7802+/ .5 \mathrm{ppm}$	$453.7831+/-5 \mathrm{ppm}$	1.00	49.30	49.30	49.30	passed		passed
38	Total TCDF	$305.9987+/-5 \mathrm{ppm}$	303.9016 +/-5 ppm	760	29.82	29.82	29.82	--		-
39	Total TCDD	$321.8936+/-5 \mathrm{ppm}$	319.8965 +/- 5 ppm	5.60	30.59	30.59	30.59	-		-
40	Total PeCDF	$341.8567+/-5 \mathrm{ppm}$	$339.8597+/-5 \mathrm{ppm}$	5.93	36.94	36.94	36.94	-		-
41	Total PeCDD	357.8516 +/-5 ppm	$355.8546+/-5 \mathrm{ppm}$	3.56	37.03	37.03	37.03	-		-
42	Total HxCDF	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	3.59	41.88	47.88	41.88	-		-
43	Total $\mathrm{H} \times \mathrm{CDO}$	$391.8127+/-5 \mathrm{ppm}$	$389.8157+1-5 \mathrm{ppm}$	2.50	42.62	42.62	42.62	-		-
44	Total HpCDD	$425.7737+1-5 \mathrm{ppm}$	$423.7766+1-5 \mathrm{ppm}$	1.05	45.65	45.65	45.55	--		-
45	Total HpCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	2.10	45.87	45.87	45.87	-		-
46	Single TCDF	305.8987 +/- 5 ppm	$303.9016+1-5 \mathrm{ppm}$	760	31.13	31.13	31.13	passed		passed
47	Single TCDD	321.8936 +/-5 ppm	319.8965 +/-5 ppm	5.60	32.15	32.15	32.15	passed		passed
48	Single PeCDD	357.8516 +/-5 ppm	$355.8546+/-5 \mathrm{ppm}$	3.56	38.24	39.24	38.24	passed		passed
49	Single PeCDF	$341.8567+1-5 \mathrm{ppm}$	$339.8597+/ .5 \mathrm{ppm}$	5.93	37.86	37.86	37.86	passed		passed
50	Single PeCDF	347.8567 +f-5 ppm	$339.8597+/-5 \mathrm{ppm}$	5.93	36.65	36.65	36.65	passed		passed
51	Single HpCDD	$425.7737+/ .5 \mathrm{ppm}$	$423.7766+/-5 \mathrm{ppm}$	1.05	46.11	46.11	46.11	passed		passed
52	Single HxCDF	$375.8178+/ .5 \mathrm{ppm}$	$373.8208+1-5 \mathrm{ppm}$	3.59	42.26	42.26	42.26	passed		passed
53	Single $H \times C D F$	$375.8178+/$ - 5 ppm	$373.8208+1-5 \mathrm{ppm}$	3.59	41.42	41.42	41.42	passed		passed
54	Single HxCDF	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/ .5 \mathrm{ppm}$	3.59	41.57	41.57	41.57	passed		passed
55	Single HxCDF	375.8178 +/-5 ppm	$373.8208+/-5 \mathrm{ppm}$	3.59	43.25	43.25	43.25	passed		passed
56	Single HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/ .5 \mathrm{ppm}$	2.50	42.86	42.86	42.86	passed		passed
57	Single HxCDD	$391.8127+/-5 \mathrm{ppm}$	$3898157+/-5 \mathrm{ppm}$	2.50	42.43	42.43	42.44	passed		passed
58	Singla HxCDD	$391.8127+/-5 \mathrm{ppm}$	389.8157 +/-5 ppm	2.50	42.55	42.55	42.55	passed		passed
59	Single HPCDF	409.7769 +/- 5 ppm	$407.7818+1-5 \mathrm{ppm}$	2.10	44.94	44.94	44.94	passad		passed
60	Single HpCDF	$409.7789+/-5 \mathrm{ppm}$	$407.7818+(-5 \mathrm{ppm}$	2.10	46.68	46.68	46.68	passad		passed

No.	$\begin{aligned} & \text { Compound } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \hline \text { QM Retention } \\ & \text { Time } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RM1 Ratio } \\ & \text { (A) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ratio1 } \\ & \text { Limit } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { Ratio1 } \\ \text { Status } \end{array}$	Percent Recovery (A)	$\begin{aligned} & \text { Recovery } \\ & \text { Limit } \\ & \hline \end{aligned}$	Recovery Status	
1	2378-TCDF	34.13	0.7972	0.6450 -	0.8950	passed	100.00	C-	0	passed
2	2378-TCDD	32.15	0.7734	0.6450 -	0.8950	passed	100.00	0 -	0	passed
3	12378 -PeCDF	36.65	1.5762	1.3150 -	1.7850	passed	100.00	0.	0	passed
4	23478-PeCDF	37.86	1.5759	$1.3150-$	1.7850	passed	100.00	0 -	0	passed
5	12378-PeCDD	38.24	1.5601	1.3150 -	1.7850	passed	100.00	$0-$	0	passed
6	123478 -HxCDF	41.42	1.2402	$1.0450-$	1.4350	passed	100.00	0 -	0	passed
7	123678 -HxCDF	41.57	1.2444	1.0450 -	1.4350	passed	100.00	0 -	0	passed
8	234678 -HxCDF	42.26	1.2522	1.0450 -	1.4350	passed	100.00	0 -	0	passed
9	$123478-\mathrm{HxCDD}$	42.43	1.2462	$1.0450-$	1.4350	passed	100.00	0 -	0	passed
10	$123678-\mathrm{HxCDD}$	42.55	1.2849	1.0450 -	1.4350	passed	100.00	0 -	0	passed
11	123789-H×CDD	42.86	1.2659	1.0450 -	1.4350	passed	100.00	0 -	0	passed
12	123789 -H×CDF	43.25	1.2531	1.0450 -	1.4350	passed	100.00	0 -	0	passed
13	1234678-HpCDF	44.94	1.0497	0.8750 -	1.2050	passed	100.00	0 -	0	passed
14	1234678-HPCDD	46.11	1.0520	0.8750 -	1.2050	passed	100.00	0.	0	passed
15	1234789-HpCDF	46.68	1.0810	0.8750 -	1.2050	passed	100.00	0 -	0	passed
16	OCDD	49.12	0.8919	0.7550 -	1.0250	passed	100.00	0 -	0	passed
17	OCDF	49.32	0.9088	0.7550 -	1.0250	passed	100.00	0 -	0	passed
18	13C12-1278-TCDD (CRS)	32.51	0.8757	0.6450 -	0.8950	passed	100.00	0 -	0	passed
19	13C12-1234-TCDD	31.38	0.7594	0.6450 -	0.8950	passed	100.00	0 -	0	passed
20	13C12-123468-HxCDD	41.31	1.2471	1.0450 -	1.4350	passed	100.00	0 -	0	passed
21	13C12-2378-TCDF	31.11	0.7911	0.6450 -	0.8950	passed	100.00	0 -	0	passed
22	13C 12-2378-TCDD	32.13	0.8081	0.6450 -	0.8950	passed	100.00	0.	0	passed
23	13C12-12378-PeCDF	36.62	1.6035	1.3150 .	1.7850	passed	100.00	0 -	0	passed
24	13C12-23478-PeCDF	37.84	1.6031	1.3150 -	1.7850	passed	100.00	0 .	0	passed
25	13C12-12378-PeCDD	38.23	1.6162	1.3150 -	1.7850	passed	10000	0.	0	passed
26	13C12-183478-HxCDF	41.41	0.5243	0.4250 -	0.5950	passed	100.00	0 -	0	passed
27	13C ${ }^{\text {2 }}$-123678- $\mathrm{Hx}_{\mathrm{X}} \mathrm{CDF}$	41.56	0.5371	0.4250 -	0.5950	passed	100.00	0 -	0	passed
28	13C12-234678-HxCDF	42.24	0.5375	0.4250 -	0.5950	passed	100.00	0 -	0	passed
29	13C12-123478-HxCDD	42.42	12807	1.0450 -	1.4350	passed	10000	0 -	0	passed
30	13C12-123678-HxCDD	42.54	1.2688	1.0450 -	1.4350	passed	100.00	0 -	0	passed
31	13C12-123789-HxCDD	42.85	1.2290	1.0450 -	1.4350	passed	100.00	0 -	0	passed
32	13C12-123789-HxCDF	43.24	0.5059	0.4250 -	0.5950	passed	100.00	0 -	0	passed
33	13C12-1234678-HpCDF	44.93	0.4561	0.3650 -	0.5150	passed	100.00	0 -	0	passed
34	13C12-1234678-HpCDD	46.10	10896	0.8750 -	1.2050	passed	100.00	0 -	0	passed
35	13C 12-1234789-HpCDF	46.57	0.4608	0.3650 -	0.5150	passed	100.00	0 -	0	passed
36	$13 C 12-O C D D$	49.10	0.8832	0.7550 -	1.0250	passed	100.00	0 -	0	passed
37	13C12-OCDF	49.30	0.8988	0.7550 -	1.0250	passed	100.00	0 -	0	passed
38	Total TCDF	29.82	0.7972	0.6450 -	0.8950	--	100.00	0 -	0	-
39	Total TCDD	30.59	0.7734	0.6450 -	0.8950	--	100.00	0 -	0	--
40	Total PeCDF	36.94	1.5760	1.3150 -	1.7850	-	100.00	0 -	0	-
41	Total PeCDD	37.03	1.5601	1.3150 -	1.7850	---	100.00	0 -	0	-
42	Total HxCDF	41.88	1.2473	1.0450 .	1.4350	--	100.00	0 -	0	-
43	Total H×CDD	42.62	1.2656	1.0450 -	1.4350	--	100.00	0 -	0	-
44	Total HPCDD	45.65	1.0520	0.8750 -	1.2050	-	100.00	0 -	0	-
45	Total HpCDF	45.87	1.0643	0.8750 -	1.2050	-	100.00	0 -	0	--
46	Single TCDF	31.13	0.7972	0.6450 -	0.8950	passed	100.00	0 -	0	passed
47	Single TCDD	32.15	0.7734	0.6450 -	0.8950	passed	100.00	0.	0	passed
48	Single PeCDD	38.24	1.5601	1.3150 -	1.7850	passed	100.00	0.	0	passed
49	Single PeCDF	37.86	1.5759	1.3150 -	1.7850	passed	100.00	0 -	0	passed
50	Single PeCDF	36.65	1.5762	1.3150 -	1.7850	passed	900.00	0 -	0	passed
51	Single HpCDD	46.11	1.0520	0.8750 -	1.2050	passed	100.00	0 -	0	passed
52	Single HxCDF	42.26	1.2522	1.0450 -	1.4350	passed	100.00	0 -	0	passed
53	Single HxCDF	41.42	1.2402	1.0450 -	1.4350	passed	100.00	0 -	0	passed
54	Single $\mathrm{H} \times$ CDF	41.57	1.2444	1.0450 -	1.4350	passed	100.00	0 -	0	passed
55	Single $\mathrm{H} \times \mathrm{CDF}$	43.25	1.2531	1.0450 -	1.4350	passed	100.00	0.	0	passed
56	Single HxCDD	42.86	1.2659	1.0450 -	1.4350	passed	100.00	0 -	0	passed
57	Single HxCDD	42.43	1.2462	1.0450 -	1.4350	passed	100.00	0 -	0	passed
58	Single HxCDD	42.55	1.2849	1.0450 -	1.4350	passed	100.00	0 -	0	passed
59	Single HpCDF	44.94	1.0497	0.8750 -	1.2050	passed	100.00	0 -	0	passed
60	Single HpCDF	46.68	1.0810	0.8750 -	1.2050	passed	100.00	0 -	0	passed

No.	Compound Name	$\begin{aligned} & \text { Status } \\ & \text { Overview } \end{aligned}$	$\begin{aligned} & \text { QM Retention } \\ & \text { Time } \\ & \hline \end{aligned}$	QM Area	QM Mode		RM1 Area	$\begin{array}{\|l\|} \hline \text { RM1 } \\ \text { Mode } \\ \hline \end{array}$		Detection Limit (A)	Unqualified Amount (A)	Adjusted Amount (A)	AdjSpecAMT	Signal-to-Noi	Client Flags
1	2378-TCDF	passed	31.13	126925		A	101187		A	0.0048	10.000000	10.0000	10.000000	5296	
2	2378-TCDD	passed	32.15	83956		A	64932		A	0.0056	10.000000	10.0000	10.000000	4430	
3	12378-FeCDF	passed	36.65	404299		A	637239		A	0.0058	50.000000	50.0000	50.000000	21668	
4	23478-PeCDF	passed	37.86	458862		A	723138		A	0.0048	50.000000	50.0000	50.000000	25623	
5	12378 -PeCDD	passed	38.24	253735		A	395844		A	0.0132	50.000000	50.0000	50.000000	9517	
6	123478-HxCDF	passed	41.42	450884		A	608801		A	0.0178	50.000000	50.0000	50.000000	6810	
7	123678-HxCDF	passed	41.57	497196		A	618722		A	0.0178	50.000000	50.0000	50.000000	6912	
8	$234678-\mathrm{HxCDF}$	passed	42.26	490433		A	614127		A	0.0180	50.000000	50.0000	50.000000	7069	
9	123478-HxCDD	passed	42.43	316134		A	393975		A	0.0187	50.000000	50.0000	50.000000	6577	
10	$123578-\mathrm{HxCDD}$	passed	42.55	311420		A	400139		A	0.0189	50.000000	50.0000	50.000000	6719	
11	$123789-\mathrm{HxCDD}$	passed	42.86	325889		A	412542		A	0.0182	50.000000	50.0000	50.000000	6819	
12	$123789-\mathrm{HxCDF}$	passed	43.25	423867		A	531146		A	0.0204	50.000000	50.0000	50.000000	6184	
13	1234678-HpCDF	passed	44.94	513505		A	539020		A	0.0160	50.000000	50.0000	50.000000	7792	
14	1234678-HPCDD	passed	46.11	328495		A	345592		A	0.0482	50.000000	50.0000	50.000000	6938	
15	1234789-HpCDF	passed	4668	446612		A	482805		A	0.0187	50.000000	50.0000	50.000000	6747	
16	OCDD	passed	49.12	623186		A	555804		A	0.0200	100.000000	100.0000	100.000000	12844	
17	OCDF	passed	49.32	813641		A	739445		A	0.0144	100.000000	100.0000	100.000000	17357	
18	13C12-1278-TCDD (CRS)	passed	32.51	81841		A	71666		A	0.0108	10.000000	10.0000	10.000000	2783	
19	13C12-1234-TCDD	passed	31.38	699860		A	531465		A	0.0135	100.000000	100.0000	100.000000	18510	
20	13C12-123468-HxCDD	passed	41.31	651172		A	812068		A	0.0293	100.000000	100.0000	100.000000	8541	
21	${ }^{13 C} 12-2378-T C D F$	passed	31.11	1283399		A	1015238		A	0.0049	100.000000	100.0000	100.000000	49989	
22	13C12-2378-TCDD	passed	32.13	555964		A	530090		A	0.0140	100.000000	100.0000	100.000000	18660	
23	13C12-12378-PeCDF	passed	36.62	834243		A	1337730		A	0.0387	100.000000	100.0000	100.000000	8204	
24	13C12-23478-PeCDF	passed	37.84	829051		A	1329085		A	0.0389	100.000000	100.0000	100.000000	8695	
25	13C12-12378-PeCDD	passed	38.23	475589		A	768629		A	0.0220	100.000000	100.0000	100.000000	15805	
26	13C 12-123478-HxCDF	passed	41.41	1215294		A	637137		A	0.0253	100.000000	100.0000	100.000000	9939	
27	$13 \mathrm{C} 12-123678-\mathrm{HxCDF}$	passed	41.56	1280748		A	687838		A	0.0238	100.000000	100.0000	100.000000	10449	
28	13C $\uparrow 2-234678-\mathrm{HxCDF}$	passed	42.24	1174974		A	631583		A	0.0260	100.000000	100.0000	100.000000	$958{ }^{\circ}$	
29	13C12-123478-HxCDD	passed	42.42	583701		A	747548		A	0.0322	100.000000	100.0000	100.000000	7988	
30	13C12-123678-HxCDD	passed	42.54	526475		A	794849		A	c. 0301	100.000000	100.0000	100.000000	8417	
31	13C12-123789-HxCDD	passed	42.85	609150		A	748663		A	0.0315	100.000000	100.0000	100.000000	8033	
32	13C12-123789-HxCDF	passed	43.24	1132496		A	572927		A	0.0275	100.000000	100.0000	100.000000	9208	
33	13C12-1234678-HPCDF	passed	44.93	1119082		A	510406		A	0.0293	100.000000	100.0000	100.000000	9196	
34	13C12-1234678-HpCDD	passed	46.10	611901		A	666738		A	0.0235	100.000000	100.0000	100.000000	11289	
35	13C12-1234789-HpCDF	passed	46.67	940960		A	433602		A	0.0348	100.000000	100.0000	100.000000	7516	
36	13C12-OCDD	passed	49.10	1220301		A	1077794		A	0.0192	200.000000	200.0000	200.000000	27779	
37	13C+2-OCDF	passed	49.30	1775785		A	1596161		A	0.0238	200.000000	200.0000	200.000000	22716	
38	Total TCDF	passed (1)	29.82	126925		A	101187		A	0.0048	10.000000	10.0000	10.000000	5296	
39	Total TCDD	passed (1)	30.59	83956		A	64932		A	0.0056	10.000000	10.0000	10.000000	4430	
40	Total PeCDF	passed (2)	36.94	863161		A	1360377		A	0.0053	50.000000	700.0000	50.000000	23646	
41	Total PeCDD	passed (1)	37.03	253735		A	395844		A	0.0132	50.000000	50.0000	50.000000	9517	
42	Total HxCDF	passed (4)	41.88	1902380		A	2372796		A	0.0185	50.000000	200.0000	50.000000	6744	
43	Total HxCDD	passed (3)	42.62	953444		A	1206656		A	0.0186	50.000000	150.0000	50.000000	6705	
44	Total HpCDD	passed (1)	45.65	328495		A	345592		A	0.0182	50.000000	50.0000	50.000000	6938	
45	Total HpCDF	passed (2)	45.87	960117		A	1021825		A	0.0173	50.000000	100.0000	50.000000	7270	
45	Single TCDF	passed	31.13	126925		A	101187		A	0.0048	10.000000	10.0000	10.000000	5296	
47	Single TCDD	passed	32.15	83956		A.	64932		A	0.0056	10.000000	10.0000	10.000000	4430	
48	Single PeCDD	passed	38.24	253735		A	395844		A	0.0132	50.000000	50.0000	50.000000	9517	
49	Single PeCDF	passed	37.86	458862		A	723138		A	0.0049	50.000000	50.0000	50.000000	25623	
50	Single PeCDF	passed	36.65	404299		A	637239		A	0.0056	50.000000	50.0000	50.000000	21668	
51	Single HPCDD	passed	46.11	328495		A	345592		A	0.0182	50.000000	50.0000	50.000000	6938	
52	Single HxCDF	passed	42.26	490433		A	614127		A	0.0178	50.000000	50.0000	50.000000	7069	
53	Single HxCDF	passed	41.42	490884		A	608801		A	0.0179	50.000000	50.0000	50.000000	6810	
54	Single HxCDF	passed	41.57	497196		A	618722		A	0.0177	50.000000	50.0000	50.000000	6912	
55	Single HxCDF	passed	43.25	423867		A	531146		A	0.0206	50.000000	50.0000	50.000000	6184	
56	Single HxCDD	passed	42.86	325889		A	412542		A	0.0181	50.000000	50.0000	50.000000	6819	
57	Single HxCDD	passed	42.43	315134		A	393975		A	0.0189	50.020000	50.0000	50.000000	6577	
58	Single $H \times C D D$	passed	42.55	314420		A	400139		A	0.0188	50.000000	50.0000	50.000000	6719	
59	Single HpCDF	passed	44.94	513505		A	539020		A	0.0162	50.000000	50.0000	50.000000	7792	
60	Single HpCDF	passed	46.68	446612		A	482805		A	0.0184	50.000000	50.0000	50.000000	6747	

File Name: Y:I17JAN31117JAN31-10
Sample ID: CS301

Acq. Data: 2/1/2017 4:36:17 AM
Instrument ID: DF18471-17JAN31 Sample Name: CALDF41737A PFK Reference Lock Mass Traces

*** file opened Wed Feb 01 04:41:42 2017 ***

Started by	- Xcalibur
Instrument Internet name	- DFS MS
Instrument mode1	DFS MS
Instrument service number	SN0000XXXX
Workstation internet name - LX18470	

Analysis started at: 01-Feb-17 04:41:42

Analysis will stop at user request

Firmware Version: 2.02

MCAL file name:

Sequence : 62d69d10-234f-46c5-bc8a-53bf0dc2f3b7

MID procedure: PFK16MAR24+MDT

Mid Time Windows:
Start Measure End Cycletime

$\#$	1	$11: 30$	min	$9: 30 \mathrm{~min}$	$21: 00 \mathrm{~min}$	1.00	sec
$\#$	2	$21: 00$	min	$13: 44 \mathrm{~min}$	$34: 44 \mathrm{~min}$	1.00	sec
$\#$	3	$34: 44$	min	$5: 03 \mathrm{~min}$	$39: 47$	min	0.90
sec							
$\#$	4	$39: 47 \mathrm{~min}$	$4: 27 \mathrm{~min}$	$44: 15 \mathrm{~min}$	0.80	sec	
$\#$	5	$44: 15 \mathrm{~min}$	$3: 45 \mathrm{~min}$	$48: 00 \mathrm{~min}$	0.80	sec	
$\#$	6	$48: 00 \mathrm{~min}$	$3: 00 \mathrm{~min}$	$51: 00 \mathrm{~min}$	0.80 sec		

Mid Masses:
Window \# 1

$$
\text { mass } F \text { int gr time (ms) }
$$

218.0129
218.9851120

220.0100	1	1	95
230.0532	2	1	47

$230.0532 \quad 2 \quad 1 \quad 4$
$232.0502 \quad 2 \quad 1 \quad 4$

251.9739	1	1	9
253.9710	1	1	9

$264.0142 \quad 2 \quad 1 \quad 4$
$266.0112 \quad 2 \quad 1 \quad 47$

285.9350	1	1	95
287.9320	1	1	95

292.9819	C	20	1	4
297.9752	2	1	47	

299.9723	2	1	47

window \#

mass	F	int	gr
time	(ms)		
292.9819	1	20	1
303.9011	1	1	118
305.8981	1	1	118
315.9413	5	1	23
317.9384	5	1	23
319.8960	1	1	118
321.8930	1	1	118

Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 C	20	1	5
375.8364	2	1	59
Window \# 3 mass	int	gr	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
Window \# 4			
${ }_{373}$ mass F	int	$g r$	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
Window \# 5			
mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
window \# 6 mass	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes MID Window end time was 21.000000 minutes MID Window terminated after 34.750000 minutes MID Window end time was 34.740000 minutes

Page 2

17JAN31-10
MID Window terminated after 39.800000 minutes MID Window end time was 39.800000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: c:\Xcalibur\system\DFS\MSI\17JAN26.DFSTune
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	95.0000
BQUAD	0.4500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	156.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	175.0000
ENSBR	0.4500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	171.0000	EXSBR	-0.5300
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	13.9000
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0151	FVINLET	0.0275	FVSRC	0.0275
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	718.0000
LENS_SYM	12.7500	LM	1050.0000	LMII	500.0000
LMASS	95.0000	LKM	442.9723	MASS	95.0000
MDAC	1423018.7233	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2521.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-15.0000	RECURR	0.8952	RELEN	0.0000
RES	12861.3326	RPUSHER	-14.5568	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	664.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0180	TANAL	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	95.0000	XLENS_POT	880.0000
XLENS_SYM	-2.5000	YLENS_POT	602.0000	YLENS_SYM	-7.7500

$\begin{array}{ll}\text { Source Gauge: } & 2.0 \mathrm{e}-005 \mathrm{mbar} \\ \text { Analyzer Penning: } & 5.2 \mathrm{e}-008 \mathrm{mbar} \\ \text { Pirani Analyse: } & 1.5 \mathrm{e}-002 \mathrm{mbar} \\ \text { Pirani Source: } & 2.7 \mathrm{e}-002 \mathrm{mbar} \\ \text { Pirani Inlet System: } & 2.8 \mathrm{e}-002 \text { mbar }\end{array}$
Scantype is magnetic

Sourcemode is EI POS

MID Time Window 1: Resolution is 11263.
MID Time Window 2: Resolution is 11997.
MID Time Window 3: Resolution is 11911.
MID Time Window 4: Resolution is 11852.
Page 3

MID Time Window 5: Resolution is 14486. MID Time window 6: Resolution is 12861.

Amplifier offset: 88.

Page 4

Quantitation Settings

Data File Parameter

Acq. Data	2
Number of Entries	6
Comment	

Vial 7

Sample Name CALDF51737A
Sample ID CS401
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor
y:I17jan31117jan31-11.quan
y:I17jan31\17jan31-11.raw
y:Iresponsefilesldf18471-17jan31dfical.resp
C:UCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

No.	Compound Name	QM Retention Time	$\begin{array}{\|l\|} \hline \text { Status } \\ \text { Overview } \end{array}$	Amount Status	RM1 Time Status	$\begin{aligned} & \text { Ratio1 } \\ & \text { Status } \end{aligned}$	Recovery Status	RRT Status	$\begin{array}{\|l} \hline \text { Status } \\ \text { Info } \\ \hline \end{array}$
1	2378-TCDF	31.11	passed	passed	passed	passed	passed	passed	
2	2378-TCDD	32.15	passed	passed	passed	passed	passed	passed	
3	12378-PeCDF	36.64	passed	passed	passed	passed	passed	passed	
4	23478-PeCDF	37.86	passed	passed	passed	passed	passed	passed	
5	12378-PeCDD	38.24	passed	passed	passed	passed	passed	passed	
6	123478-HxCDF	41.42	passed	passed	passed	passed	passed	passed	
7	123678-HXCDF	41.57	passed	passed	passed	passed	passed	passed	
8	234678-HxCDF	42.24	passed	passed	passed	passed	passed	passed	
9	123478 -HxCDD	42.43	passed	passed	passed	passed	passed	passed	
10	$123678-\mathrm{HxCDD}$	42.55	passed	passed	passed	passed	passed	passed	
11	123789-HxCDD	42.86	passed	passed	passed	passed	passed	passed	
12	123789-HxCDF	43.25	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.94	passed	passed	passed	passed	passed	passed	
14	1234678-HPCDD	46.11	passed	passed	pessed	passed	passed	passed	
15	1234789-HpCDF	46.68	passed	passed	passed	passed	passed	passed	
16	OCDD	49.12	passed	passed	passed	passed	passed	passed	
17	OCDF	49.31	passed	passed	passed	passed	passed	passed	
18	13C12-1278-TCDD (CRS)	32.50	passed	passed	passed	passed	passed	passed	
19	13C 12-1234-TCDD	31.37	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.31	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	31.09	passed	passed	passed	passed	passed	passed	
22	13C12-2378-TCDD	32.12	passed	passed	passed	passed	passed	passed	
23	13C 12-12378-PeCDF	36.63	passed	passed	passed	passed	passed	passed	
24	13C 12-23478-PeCDF	37.84	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.21	passed	passed	passed	passed	passed	passed	
26	13C12-123478-HxCDF	41.41	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.55	passed	passed	passed	passed	passed	passed	
28	13C12-234678-HxCDF	42.23	passed	passed	passed	passed	passed	passed	
29	13C12-123478-HxCDD	42.42	passed	passed	passed	passed	passed	passed	
30	13C12-123678-HxCDD	42.54	passed	passed	passed	passed	passed	passed	
31	$13 \mathrm{C} 12-123799-\mathrm{HxCDD}$	42.85	passed	passed	passed	passed	passed	passed	
32	13C12-123799-HxCDF	43.24	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HPCDF	44.92	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-HpCDD	46.10	passed	passed	passed	passed	passed	passed	
35	13C12-1234789-HpCDF	46.67	passed	passed	passed	passed	passed	passed	
36	$13 \mathrm{C} 12-\mathrm{OCDD}$	49.11	passed	passed	passed	passed	passed	passed	
37	13C12-OCDF	49.29	passed	passed	passed	passed	passed	passed	
38	Total TCDF	29.91	passed (1)	-	-	--	-	-	
39	Total TCDD	30.57	passed (1)	-	-	---	-	-	
40	Total PeCDF	36.92	passed (2)	--	-	-	--	-	
41	Total PeCDD	37.01	passed (1)	--	-	-	-	- -	
42	Total HxCDF	41.88	passed (4)	-	-	--	--	-	
43	Total HxCDD	42.62	passed (3)	--	-	-	--	--	
44	Total HpCDD	45.65	passed (1)	--	-	-	-	--	
45	Total HPCDF	45.87	passed (2)	-	-	-	--	-	
46	Single TCDF	31.11	passed	passed	passed	passed	passed	passed	
47	Single TCDD	32.15	passed	passed	passed	passed	passed	passed	
48	Single PeCDD	38.24	passed	passed	passed	passed	passed	passed	
49	Single PeCDF	37.86	passed	passed	passed	passed	passed	passed	
50	Single PeCDF	36.64	passed	passed	passed	passed	passed	passed	
51	Single HpCDD	46.11	passed	passed	passed	passed	passed	passed	
52	Single HxCDF	41.42	passed	passed	passed	passed	passed	passed	
53	Single $H \times C D F$	41.57	passed	passed	passed	passed	passed	passed	
54	Singie $H \times C D F$	42.24	passed	passed	passed	passed	passed	passed	
55	Single $H \times \mathrm{CDF}$	43.25	passed	passed	passed	passed	passed	passed	
56	Single $\mathrm{H} \times \mathrm{CDD}$	42.86	passed	passed	passed	passed	passed	passed	
57	Single HxCDD	42.43	passed	passed	passed	passed	passed	passed	
58	Single HxCDD	42.55	passed	passed	passed	passed	pessed	passed	
59	Single HpCDF	44.94	passed	passed	passed	passed	passed	passed	
60	Singie HPCDF	46.68	passed	passed	passed	passed	passed	passed	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 05:32
64

7
CALDF51737A
CS401
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:I17jan31117jan31-11.quan
y:I17jan31117jan31-11.raw
y :Iresponsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

Chromatogram

RT: 30.13-32.13 SM: 3G

Entry Parameters

Compound Name	2378-TCDF
QM Retention Time	31.11
QM Area	421958
QM Integration Mode	A
RM1 Area	330587
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0086
Unqualified Amount (A)	40.000000
Adjusted Amount (A)	40.0000
Signal-to-Noise	11116
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.14-33.14 SM: 3G

Entry Parameters

Compound Name	2378-TCDD
QM Retention Time	32.15
QM Area	277270
QM Integration Mode	A
RM1 Area	218013
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0087
Unqualified Amount (A)	40.000000
Adjusted Amount (A)	40.0000
Signal-to-Noise	11096
Client Flags	
Status Overview	passed

Status Info

Chromatogram

RT: 35.64-37.64 SM: 3G

Entry Parameters

Compound Name	$12378-$ PeCDF
QM Retention Time	36.64
QM Area	1357309
QM Integration Mode	A
RM1 Area	2134135
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0104
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	48296
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 36.86-38.86 SM: 3G

Entry Parameters

Compound Name	$23478-\mathrm{PeCDF}$
QM Retention Time	37.86
QM Area	1543609
QM Integration Mode	A
RM1 Area	2400669
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0089
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	56980
Client Flags	
Status Overview	passed
Status Info	

Status Info

Chromatogram

Entry Parameters	
Compound Name	$12378-$ PeCDD
QM Retention Time	38.24
QM Area	839707
QM Integration Mode	A
RM1 Area	1336188
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0236
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	21038
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.42-42.42 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.42
QM Area	1697242
QM Integration Mode	A
RM1 Area	2156528
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0346
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	14219
Client Flags	
Status Overview	passed
Status Info	

Status Info

Chromatogram

RT: 40.57-42.57 SM: 3G

Entry Parameters

Compound Name	123678-HxCDF
QM Retention Time	41.57
QM Area	1699347
QM Integration Mode	A
RM1 Area	2109214
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0353
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	13996
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters	
Compound Name	234678 -HxCDF
QM Retention Time	42.24
QM Area	1717946
QM Integration Mode	A
RM1 Area	2166663
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0353
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	14277
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.43-43.43 SM: 3G

Entry Parameters

Compound Name	123478-HxCDD
QM Retention Time	42.43
QM Area	1089099
QM Integration Mode	A
RM1 Area	1377848
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0279
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	17698
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.55-43.55 SM: 3G

Entry Parameters

Compound Name	$123678-\mathrm{HxCDD}$
QM Retention Time	42.55
QM Area	1124697
QM Integration Mode	A
RM1 Area	1418066
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0276
Unqualifed Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	18169
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters	
Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.86
QM Area	1132177
QM Integration Mode	A
RM1 Area	1406034
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0271
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	18318
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters	
Compound Name	$123789-H \times C D F$
QM Retention Time	43.25
QM Area	1538459
QM Integration Mode	A
RM1 Area	1917754
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0384
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	12980
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDF}$
QM Retention Time	44.94
QM Area	1823122
QM Integration Mode	A
RM1 Area	1901238
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0333
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	14938
Client Flags	
Status Overview	passed
Status Info	

REVIEWED

Chromatogram

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDD}$
QM Retention Time	46.11
QM Area	1174428
QM Integration Mode	A
RM1 Area	1221579
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0308
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	16218
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234789-\mathrm{HpCDF}$
QM Retention Time	46.68
QM Area	1609411
QM Integration Mode	A
RM1 Area	1690021
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0369
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	13645
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	OCDD
QM Retention Time	49.12
QM Area	2194846
QM Integration Mode	A
RM1 Area	1979000
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0338
Unqualified Amount (A)	400.000000
Adjusted Amount (A)	400.0000
Signal-to-Noise	29921
Client Flags	
Status Overview	passed
Status Info	

AIL01 Pag๔ 349 of 560

Chromatogram

RT: 48.31-50.31 SM: 3G

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.31
QM Area	3002159
QM Integration Mode	A
RM1 Area	2732906
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0301
Unqualified Amount (A)	400.000000
Adjusted Amount (A)	400.0000
Signal-to-Noise	33771
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.48-33.48 SM: 3G

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.50
QM Area	273619
QM Integration Mode	A
RM1 Area	218531
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0123
Unqualified Amount (A)	40.000000
Adjusted Amount (A)	40.0000
Signal-to-Noise	8660
Client Flags	
Status Overview	passed
Status Info	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref
Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [HSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 05:32
64
7
CALDF51737A
CS401
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:I17jan31117jan31-11.quan
y:\17jan31117jan31-11.raw
y: r esponsefiles $1 d f 18471$-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression 1.0

Chromatogram

RT: 25.63-33.99 SM: 3G

Entry Parameters

Compound Name	Total TCDF
QM Retention Time	29.81
QM Area	421958
QM Integration Mode	A
RM1 Area	330587
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0086
Unqualified Amount (A)	40.000000
Adjusted Amount (A)	40.0000
Signal-to-Noise	11116
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total TCDD
QM Retention Time	30.57
QM Area	277270
QM Integration Mode	A
RM1 Area	218013
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0087
Unqualified Amount (A)	40.000000
Adjusted Amount (A)	40.0000
Signal-to-Noise	11096
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total PeCDF
QM Retention Time	36.92
QM Area	2900918
QM Integration Mode	A
RM1 Area	4534803
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0096
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	400.0000
Signal-to-Noise	52638
Client Flags	
Status Overview	passed (2)
Status Info	

Chromatogram

RT: 35.06-38.97 SM: 3G

Entry Parameters

Compound Name	Total PeCDD
QM Retention Time	37.01
QM Area	839707
QM Integration Mode	A
RM1 Area	1336188
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0236
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	21038
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

RT: 39.91-43.86 SM: 3G

Entry Parameters

Compound Name	Total HxCDF
QM Retention Time	41.88
QM Area	6652993
QM Integration Mode	A
RM1 Area	8350159
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0359
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	800.0000
Signal-to-Noise	13868
Client Flags	
Status Overview	passed (4)

Status Info

APPROVED AIL01 Page 857 of 560

Chromatogram

RT: 41.25-44.00 SM: 3G

Entry Parameters

Compound Name	Total HxCDD
QM Retention Time	42.62
QM Area	3345973
QM Integration Mode	A
RM1 Area	4201947
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0275
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	600.0000
Signal-to-Noise	18062
Client Flags	
Status Overview	passed (3)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total HpCDD
QM Retention Time	45.65
QM Area	1174428
QM Integration Mode	A
RM1 Area	1221579
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0308
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	16218
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total HpCDF
QM Retention Time	45.87
QM Area	3432533
QM Integration Mode	A
RM1 Area	3591259
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0351
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	400.0000
Signal-to-Noise	14292
Client Flags	
Status Overview	passed (2)
Status Info	

No.	Compound Name	$\begin{aligned} & \text { Quan. } \\ & \text { Mass. } \end{aligned}$	Ratio Mass 1	$\begin{aligned} & \text { RT Window } \\ & \text { [min] } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { Specified } \\ \text { RT [min] } \\ \hline \end{array}$	QM Retention Time	$\begin{aligned} & \text { RM1 Retention } \\ & \text { Time } \\ & \hline \end{aligned}$	RM1 Time Status	RRT Status
1	2378-TCDF	305.8987 +/-5 ppm	303.9016 +/-5 ppm	0.67	31.11	31.14	31.13	passed	passed
2	2378-TCDD	321.8936 +/. 5 ppm	$319.8965+/-5 \mathrm{pprn}$	0.67	32.15	32.15	32.15	passed	passed
3	12378PeCDF	$341.8567+/-5 \mathrm{ppm}$	$339.8597+1.8 \mathrm{ppm}$	0.67	36.64	36.64	36.64	passed	passed
4	23478-PeCDF	341.8567 +/-5 ppm	$339.8597+/-5 \mathrm{ppm}$	0.67	37.86	37.86	37.86	passed	passed
5	12376-PeCDD	$357.8516+/-5 \mathrm{ppm}$	355.8546 +/-5 ppm	0.67	38.24	38.24	38.24	passed	passed
6	123478-HxCDF	$375.8176+/-5 \mathrm{ppm}$	$373.8208+/$-5 ppm	0.67	41.42	41.42	41.42	passed	passed
7	123678-HxCDF	$375.8178+/-5 \mathrm{ppm}$	$373.8208+1.5 \mathrm{ppm}$	0.67	41.57	41.57	41.57	passed	passed
8	234678-HxCDF	$375.8176+/-5 \mathrm{ppm}$	$373.8208+1.5 \mathrm{ppm}$	0.67	42.24	42.24	42.25	passed	passed
9	123478-HxCDD	$391.8127+/-5 \mathrm{ppm}$	389.8157 +/- 5 ppm	0.67	42.43	42.43	42.43	passed	passed
10	123678-HxCDD	391.8127 +/-5 ppm	389.8157 +/-5 ppm	0.67	42.55	42.55	42.55	passed	passed
11	$123789-\mathrm{HxCDD}$	$391.8127+/-5 \mathrm{ppm}$	$389.8157+1-5 \mathrm{ppm}$	0.67	42.86	42.66	42.86	passed	passed
12	123789-HxCDF	375.8178 +/-5 ppm	$373.8208+/ .5 \mathrm{ppm}$	0.67	43.25	43.25	43.25	passed	passed
13	1234678-HPCDF	$409.7789+$ +-5 ppm	407.7818 +/-5 ppm	0.67	44.94	44.94	44.94	passed	passed
14	1234678-HpCDD	$425.7737+/-5 \mathrm{ppm}$	423.7766 +/-5 ppm	0.67	46.11	46.11	46.11	passed	passed
15	1234789-HPCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	0.67	46.68	46.68	46.68	passed	passed
16	OCDD	459.7348 +/-5 ppm	$457.7377+1-5$ ppm	0.67	49.12	49.12	49.12	passed	passed
17	OCDF	$443.7399+/-5 \mathrm{ppm}$	$441.7428+1-5 \mathrm{ppm}$	0.67	49.31	49.31	49.31	passed	passed
18	13C 12-1278-TCDD (CRS)	$333.9339+/ .5$ ppm	331.9368 +/-5 ppm	1.00	32.50	32.50	32.51	passed	passed
19	13C12-1234-TCDD	$333.9339+/ .5 \mathrm{ppm}$	331.9368 +/-5 ppm	0.67	31.37	31.37	31.37	pessed	passed
20	13C12-123468-HxCDD	$403.8529++5 \mathrm{ppm}$	$401.8559+1.5 \mathrm{ppm}$	9.00	41.31	41.31	41.31	passed	passed
21	13C12-2378-TCDF	317.9389 +/-5 ppm	315.9419 +/-5 ppm	0.67	31.09	31.09	31.09	passed	passed
22	13C12-2378-TCDD	$333.93399+/-5 \mathrm{ppm}$	331.9368 +/-5 ppm	0.67	32.12	32.12	32.12	passed	passed
23	13C12-12378-PeCDF	353.8970 +/-5 ppm	351.9000 +/-5 ppm	0.67	36.63	36.63	36.63	passed	passed
24	13C12-23478-PeCDF	$353.8970+/ .5 \mathrm{ppm}$	351.9000 +/-5 ppm	0.67	37.84	37.84	37.84	passed	passed
25	13C12-12378-PeCDD	$369.6919+/-5 \mathrm{ppm}$	$367.8949+/-5 \mathrm{ppm}$	0.67	36.21	38.21	38.21	passed	passed
26	13C12-123478-HxCDF	385.8610 +/-5 ppm	383.8639 +/-5 5 pm	0.67	4141	41.41	41.41	passed	passed
27	13C12-123678-HxCDF	385.8610 +/-5 ppm	$383.8639++/ .5 \mathrm{ppm}$	0.67	41.55	41.55	41.55	passed	passed
28	13C12-234678-HxCDF	$385.8610+/-5 \mathrm{ppm}$	383.8639 +/-5 ppm	0.57	42.23	42.23	42.23	passed	passed
29	13C12-123478-HxCDD	$403.8529+/ .5 \mathrm{ppm}$	401.8559 +/- 5 ppm	0.67	42.42	42.42	42.42	passed	passed
30	13C12-123678-HxCDD	$403.8529+1-5 \mathrm{ppm}$	$401.8559+/ .5 \mathrm{ppm}$	0.67	42.54	42.54	42.54	passed	passed
31	13C12-123789-HxCDD	$403.8529+/-5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	0.67	42.65	42.85	42.85	passed	passed
32	13C12-123789-HxCDF	$385.8610+/ .5 \mathrm{ppm}$	383.8639 +/- 5 ppm	0.67	43.24	43.24	43.24	passed.	passed
33	13C12-1234678-HPCDF	419.8220 +/-5 ppm	$417.8253+1.5 \mathrm{ppm}$	0.67	44.92	44.92	44.92	passed	passed
34	13C12-1234678-HPCDD	437.8140 +/-5 ppm	435.8169 +/-5 ppm	0.67	46.10	46.10	46.10	passed	passed
35	13C12-1234789-HPCDF	$419.8220+/-5 \mathrm{ppm}$	$417.8253+/-5 \mathrm{ppm}$	0.67	46.67	46.67	46.67	passed	passed
36	13C12-OCDD	$471.7750+/-5 \mathrm{ppm}$	469.7779 +/. 5 ppm	0.67	49.11	49.11	49.11	passed	passed
37	13C12-OCDF	$455.7802+1 / 5 \mathrm{ppm}$	$453.7831+/ .5 \mathrm{ppm}$	1.00	49.29	49.29	49.31	passed	passed
38	Total TCDF	305.8987 +/-5 ppm	$303.9016+/ / 5 \mathrm{ppm}$	7.60	29.81	29.81	29.81	-	-
39	Total TCDD	321.8936 +/-5 ppm	319.6965 +/-5 pprn	5.60	30.57	30.57	30.57	-	-
40	Total PeCDF	$341.8567+1.5 \mathrm{ppm}$	$339.8597+/-5 \mathrm{ppm}$	5.93	36.92	36.92	36.92	--	-
41	Total PeCDE	357.8516 +/-5 ppm	355.8546 +/-5 ppm	3.56	37.01	37.01	37.09	-	-
42	Total $\mathrm{H} \times \mathrm{CDF}$	375.8178 ++-5 ppm	$373.8208+/ .5$ pprn	3.59	41.88	41.86	41.88	-	-
43	Total HxCDD	$391.8127+$ +/-5pm	$389.8157+/-5 \mathrm{ppm}$	2.50	42.62	42.62	42.62	-	-
44	Total HpCDD	$425.7737+$ +/ 5 ppm	$423.7766+/-5 \mathrm{ppm}$	1.05	45.65	45.65	45.65	--	-
45	Total HPCDF	409.7789 +/- 5 ppm	407.7818 +/-5 ppm	2.10	45.87	45.87	45.87	--	-
46	Single TCDF	305.8987 +/-5 $\mathbf{~ p p m}$	$303.9016+/ .5 \mathrm{ppm}$	7.60	31.11	31.11	31.13	passed	passed
47	Single TCDD	$321.8936+$ +/-5 ppm	$319.8965+/ .5 \mathrm{ppm}$	5.60	32.15	32.15	32.15	passed	passed
48	Single PeCDD	357.8516 +/. 5 ppm	355.8546 +/-5 ppm	3.56	38.24	38.24	38.24	passed	passed
49	Single PeCDF	$341.8567+$ +- 5 ppm	$339.8597+1-5 \mathrm{ppm}$	5.93	37.86	37.86	37.86	passed	passed
50	Single PeCDF	$341.8567+$ +/-5 ppm	$339.8597+1-5 \mathrm{ppm}$	5.93	36.64	36.64	36.64	passed	passed
51	Single $\mathrm{H} P \mathrm{CDD}$	$425.7737+$ +/ 5 ppm	423.7766 +/-5 ppm	1.05	46.11	46.14	46.19	passed	passed
52	Single HxCDF	$375.8178+/-5 \mathrm{ppm}$	373.8208 +/-5 ppm	3.55	41.42	41.42	41.42	passed	passed
53	Single $\mathrm{H} \times \mathrm{CDF}$	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	3.59	41.57	41.57	41.57	passed	passed
54	Single $\mathrm{H} \times \mathrm{CDF}$	$375.8178+/-5 \mathrm{ppm}$	373.8208 +/-5 ppm	3.59	42.24	42.24	42.25	passed	passed
55	Single $\mathrm{H} \times \mathrm{CDF}$	375.8178 +/-5 ppm	$373.8208+1.5 \mathrm{ppm}$	3.59	43.25	43.25	43.25	passed	passed
56	Single HXCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+l-5 \mathrm{ppm}$	2.50	42.86	42.86	42.86	passed	passed
57	Singie $\mathrm{H} \times$ CDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	2.50	4243	42.43	42.43	passed	passed
58	Single HXCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+j-5 \mathrm{ppm}$	2.50	42.55	42.55	42.55	passed	passed
59	Single HPCDF	409.7789 +/-5 ppm	$407.7818+/-5 \mathrm{ppm}$	2.10	44.94	44.94	44.94	passed	passed
60	Single HPCDF	$409.7789+/-5 \mathrm{cpm}$	$407.7818+/-5 \mathrm{ppm}$	2.10	46.6B	46.68	46.68	passed	passed

No.	Compound Name	$\begin{array}{\|l\|} \hline \text { OM Retention } \\ \text { Time } \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \text { RM1 Ratio } \\ \text { (A) } \end{array} \\ & \hline \end{aligned}$	Ratio1 Limit		Ratio1 Status	Percent Recovery (A)		$\begin{aligned} & \text { Recovery } \\ & \text { Limit } \end{aligned}$	Recovery Status	
1	2378-TCDF	31.11	0.7835	0.6450 -	0.8950	passed		100.00	0 -	0	passed
2	2378-TCDD	32.15	0.7863	0.6450 -	0.8950	passed		100.00	0 -	0	passed
3	12378.PeCDF	36.64	1.5723	4.3150 -	1.7850	passed		100.00	0 -	0	passed
4	23478-eCDF	37.86	1.5552	1.3150 -	1.7850	passed		100.00	0 -	0	passed
5	12378-PeCDD	38.24	1.5913	1.3150 -	1.7850	passed		100.00	0 -	0	passed
6	123478-HxCDF	41.42	1.2706	1.0450 -	1.4350	passed		100.00	0 -	0	passed
7	$123678-\mathrm{HxCDF}$	41.57	1.2412	1.0450 -	1.4350	passed		100.00	0 -	0	passed
8	234678-HxCDF	42.24	1.2612	1.0450 -	1.4350	passed		100.00	0 -	0	passed
9	123478-HxCDD	42.43	1.2651	1.0450 -	1.4350	passed		100.00	0 -	0	passed
10	\{23678-HxCDD	42.55 .	1.2608	1.0450 -	1.4350	passed		100.00	0 -	0	passed
11	123789-HxCDD	42.86	1.2419	1.0450 -	1.4350	passed		100.00	0 .	0	passed
12	$123789-\mathrm{HxCDF}$	43.25	1.2465	1.0450 -	1.4350	passed		100.00	0 -	0	passed
13	1234678-HPCDF	44.94	1.0428	$0.8750-$	1.2050	passed		100.00	0 -	0	passed
14	1234678-HpCDD	46.11	1.0401	0.8750 -	1.2050	passed		100.00	0 -	0	passed
15	1234789-HpCDF	46.68	1.0501	0.8750 -	1.2050	passed		100.00	0 -	0	passed
16	OCDD	49.12	0.9017	0.7550 -	10250	passed		100.00	0 -	0	passed
17	OCDF	49.31	0.9103	0.7550 -	1.0250	passed		100.00	0 -	0	passed
18	13C12-1278-TCDD (CRS)	32.50	0.7987	0.6450 -	0.8950	passed		100.00	0 -	0	passed
19	13C12-1234-TCOD	31.37	0.8067	0.6450 -	0.8950	passed		10.0 .00	0 -	0	passed
20	13C12-123468-HxCDD	41.31	1.2494	1.0450 -	1.4350	passed		100.00	0 -	0	passed
21	13C12-2378-TCDF	31.09	0.7968	0.6450 -	0.8950	passed		100.00	0 -	0	passed
22	13C12-2378-TCDD	32.12	0.7981	0.6450 -	0.8950	passed		100.00	0 -	0	passed
23	13C12-12378-PeCDF	36.63	1.5627	1.3150 -	1.7850	passed		100.00	0 -	0	passed
24	13C12-23478- e CDF	37.84	1.5495	1.3150 -	1.7850	passed		100.00	0 -	0	passed
25	13C12-12378-PeCDD	38.21	1.5884	1.3150 -	1.7850	passed		100.00	0 -	0	passed
26	13C12-123478-HxCDF	41.41	0.5106	0.4250 -	0.5950	passed		100.00	0 -	0	passed
27	13C12-123678-HxCDF	41.55	0.5439	0.4250 -	0.5950	passed		100.00	0 -	0	passed
28	13C12-234678-HxCDF	42.23	0.5372	0.4250 -	0.5950	passed		100.00	0.	0	passed
29	13C12-123478-HxCDD	42.42	1.2637	1.0450 -	1.4350	passed		100.00	0 -	0	passed
30	13C12-123678-HxCDD	42.54	1.2783	$1.0450-$	1.4350	passed		100.00	0 -	0	passed
31	13C12-123789-HxCDD	42.85	1.2945	1.0450 -	1.4350	passed		100.00	0 -	0	passed
32	13C12-123789-HxCDF	43.24	0.5321	0.4250 -	0.5950	passed		100.00	0 -	0	passed
33	13C12-1234678-HpCDF	44.92	0.4534	0.3650 -	0.5150	passed		100.00	0 -	0	passed
34	13C12-1234678-HPCDD	46.10	1.0465	0.8750 -	1.2050	passed		100.00	0 -	0	passed
35	13C 12-1234789-HpCDF	46.67	0.4522	0.3650 -	0.5150	passed		100.00	0 -	0	passed
36	13C12-OCDO	49.11	0.8969	0.7550 -	1.0250	passed		100.00	0 -	0	passed
37	13C12-OCDF	49.29	0.9023	0.7550 -	1.0250	passed		100.00	$0-$	0	passed
38	Total TCDF	29.81	0.7835	0.6450 -	0.8950	-		100.00	0 -	0	---
39	Total TCOD	30.57	0.7863	0.6450 -	0.8950	-		100.00	0 -	0	-
40	Total PeCDF	36.92	1.5632	1.3150 -	1.7850	-		100.00	0 -	0	-
41	Total PeCDD	37.01	1.5913	1.3150 -	1.7850	--		100.00	0 -	0	-
42	Total $\mathrm{H} \times \mathrm{CDF}$	41.88	1.2551	9.0450 -	1.4350	-		100.00	0 -	0	-
43	Total HxCDD	42.62	1.2558	1.0450 -	1.4350	--		100.00	0 -	0	-
44	Total HpCDD	45.65	1.0401	0.8750 -	1.2050	-		100.00	0 -	0	-
45	Total HPCDF	45.87	1.0462	0.8750 -	1.2050	-		100.00	0 -	0	-
46	Single TCDF	31.11	0.7835	0.6450 -	0.8950	passed		100.00	0 -	0	passed
47	Single TCDD	32.15	0.7863	0.6450 -	0.8950	passed		100.00	0 -	0	passed
48	Single PeCDO	38.24	1.5913	1.3150 -	1.7850	passed		100.00	0 -	0	passed
49	Single PeCDF	37.86	1.5552	1.3150 -	1.7850	passed		100.00	0 -	0	passed
50	Single PeCDF	36.64	1.5723	1.3150 -	1.7850	passed		100.00	0 -	. 0	passed
51	Single HpCDD	46.11	1.0401	0.8750 -	1.2050	passed		100.00	0 -	0	passed
52	Single HXCDF	41.42	1.2706	1.0450 -	1.4350	passed		100.00	$0 \cdot$	0	passed
53	Single HxCDF	41.57	1.2412	1.0450 -	1.4350	passed		100.00	0 -	0	passed
54	Single $H \times C D F$	42.24	1.2612	1.0450 -	1.4350	passed		100.00	$0-$	0	passed
55	Single HxCDF	43.25	1.2465	1.0450 -	1.4350	passed		100.00	0 -	0	passed
56	Single HxCDD	42.86	1.2419	1.0450 -	1.4350	passed		100.00	0 -	0	passed
57	Single HxCDD	42.43	1.2651	1.0450 -	1.4350	passed		100.00	0 -	0	passed
58	Single HxCDD	42.55	1.2608	1.0450 -	1.4350	passed		100.00	0 -	0	passed
59	Single HpCDF	44.34	1.0428	0.8750 -	1.2050	passed		100.00	0 -	0	passed
60	Singie HPCDF	46.68	1.0501	0.8750 -	1.2050	passed		100.00	0.	0	passed


```
Started by - Xcalibur
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SN0000XXXX
workstation internet name - LX18470
```

Analysis started at: 01-Feb-17 05:38:17

Analysis will stop at user request

Firmware Version: 2.02

MCAL file name:

Sequence : 62d69d10-234f-46c5-bc8a-53bf0dc2f3b7

MID procedure: PFK16MAR24+MDT

Mid Time Windows:
Start
Measure
End
cycletime

\#	1	$11: 30 \mathrm{~min}$	$9: 30 \mathrm{~min}$	$21: 00 \mathrm{~min}$
\#	2	$21: 00 \mathrm{~min}$	$13: 44 \mathrm{~min}$	$34: 44 \mathrm{~min}$
\#	3	$34: 44 \mathrm{~min}$	$5: 03 \mathrm{~min}$	$39: 47 \mathrm{~min}$
\#	4	$39: 47 \mathrm{~min}$	$4: 27 \mathrm{~min}$	$44: 15 \mathrm{~min}$
\#	5	$44: 15 \mathrm{~min}$	$3: 45 \mathrm{~min}$	$48: 00 \mathrm{~min}$
$\#$	6	$48: 00 \mathrm{~min}$	$3: 00 \mathrm{~min}$	$51: 00 \mathrm{~min}$

1.00 sec
1.00 sec
0.90 sec
0.80 sec
\# 6 48:00 min $3: 00 \mathrm{~min}$ 51:00 min
0.80 sec

Mid Masses: window \# 1
mass F int gr time (ms)
$218.0129 \quad 1 \quad 1 \quad 95$
218.9851
$220.0100 \quad 1 \quad 1 \quad 95$
$230.0532 \quad 2 \quad 1 \quad 47$
$\begin{array}{llll}232.0502 & 2 & 1 & 47\end{array}$
$251.9739 \quad 1 \quad 1 \quad 95$
$253.9710 \quad 1 \quad 1 \quad 95$
264.0142 2 1 47
$\begin{array}{llll}266.0112 & 2 & 1 & 47\end{array}$
$285.9350 \quad 1 \quad 1 \quad 95$
$287.9320 \quad 1 \quad 1 \quad 95$

292.9819	c	20	1	4
297.9752	2	1	47	

299.9723	2	1	47

window \# 2
mass F int gr time (ms)
292.9819
303.9011
305.8981
315.9413
317.9384
319.8960
321.8930

20	1	5
1	1	118
1	1	118
5	1	23
5	1	23
1	1	118
1	1	118

Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
window \# 3			
mass F	int	gr	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
Window \# 4			
mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 C	20	1	5
445.7550	2	1	58
Window \# 5			
mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
Window \# 6			
mass F	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID Window terminated after 34.750000 minutes
MID Window end time was 34.740000 minutes
Page 2

17JAN31-11
MID Window terminated after 39.800000 minutes MID Window end time was 39.800000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Wiridow end time was 51.000000 minutes

Tune file name: C:\Xcalibur \backslash System \backslash DFS $\backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	94.5000
BQUAD	0.4500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	156.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	175.0000
ENSBR	0.4500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	171.0000	EXSBR	-0.5300
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	13.9000
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0154	FVINLET	0.0275	FVSRC	0.0275
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IoNen	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	718.0000
LENS_SYM	12.7500	LM	1050.0000	LMII	500.0000
LMASS	94.5000	LKM	442.9723	MASS	94.5000
MDAC	1416744.8971	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2521.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-15.0000	RECURR	0.8957	RELEN	0.0000
RES	12956.5230	RPUSHER	-14.6007	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	664.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	sLow	10.0000	SS	2.0000
SW	0.0180	TANAL	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	94.5000	XLENS_POT	880.0000
XLENS_SYM	-2.5000	YLENS_POT	602.0000	YLENS_SYM	-7.7500

```
Source Gauge: \(\quad 1.9 \mathrm{e}-005\) mbar
Analyzer Penning: \(\quad 5.2 \mathrm{e}-008\) mbar
Pirani Analyse: \(1.5 \mathrm{e}-002\) mbar
Pirani Source: \(\quad 2.7 \mathrm{e}-002 \mathrm{mbar}\)
Pirani Inlet System: 2.8e-002 mbar
```

Scantype is magnetic

Sourcemode is EI POS

Page 3

17JAN31-11
MID Time Window 5: Resolution is 13042. MID Time Window 6: Resolution is 12956.

Amplifier offset: 88.
$\underset{\substack{* \\ * * *}}{ }$ File closed Wed Feb 01 06:29:20 2017

Page 4

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 06:29
64

8
CALDF61737A
CS501
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117jan31117jan31-12.quan
y:\17jan31117jan31-12.raw
y :「responsefilesldf18471-17jan31dfical.resp
C:XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

No.	Compound Name	QM Retention Time	Status Overview	Amount Status	RM1 Time Status	Ratiol Status	Recovery Status	RRT Status	$\begin{array}{\|l\|} \hline \text { Status } \\ \text { Info } \end{array}$
1	2378-TCDF	31.13	passed	passed	passed	passed	passed	passed	
2	2378-TCDD	32.15	passed	passed	passed	passed	passed	passed	
3	12378-PeCDF	36.64	passed	passed	passed	passed	passed	passed	
4	23478-PeCDF	37.86	passed	passed	passed	passed	passed	passed	
5	12378-PeCDD	38.25	passed	passed	passed	passed	passed	passed	
5	123478-H×CDF	41.43	passed	passed	passed	passed	passed	passed	
7	123678-H×CDF	41.58	passed	passed	passed	passed	passed	passed	
8	234678-HxCDF	42.26	passed	passed	passed	passed	passed	passed	
9	123478-H×CDD	42.44	passed	passed	passed	passed	passed	passed	
10	$123678-\mathrm{HxCDD}$	42.55	passed	passed	passed	passed	passed	passed	
11	$123789-\mathrm{H} \times \mathrm{CDD}$	42.86	passed	passed	passed	passed	passed	passed	
12	1237 ¢9-HxCDF	43.25	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.94	passed	passed	passed	passed	passed	passed	
14	$1234578-\mathrm{HPCDD}$	46.12	passed	passed	passed	passed	passed	passed	
15	1234789-HPCDF	46.68	passed	passed	passed	passed	passed	passed	
15	OCDD	49.13	passed	passed	passed	passed	passed	passed	
17	OCDF	49.32	passed	passed	passed	passed	passed	passed	
18	13C12-1278-TCOD (CRS)	32.51	passed	passed	passed	passed	passed	passed	
19	13C12-1234-TCDD	31.37	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.31	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	31.09	passed	passed	passed	passed	passed	passed	
22	13C12-2378-TCDD	32.12	passed	passed	passed	passed	passed	passed	
23	13C12-12378-PeCDF	36.63	passed	passed	passed	passed	passed	passed	
24	13C12-23478-PeCDF	37.85	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.23	passed	passed	passed	passed	passed	passed	
26	13C12-123478-HxCDF	41.42	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.56	passed	passed	passed	passed	passed	passed	
28	13C12-234678-HxCDF	42.24	passed	passed	passed	passed	passed	passed	
29	13C12-123478-HxCDD	42.43	passed	passed	passed	passed	passed	passed	
30	13C12-123678-H×CDD	42.54	passed	passed	passed	passed	passed	passed	
31	13C12-123799-HxCDD	42.85	passed	passed	passed	passed	passed	passed	
32	13C12-123799-HxCDF	43.24	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HpCDF	44.93	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-MpCDD	46.12	passed	passed	passed	passed	passed	passed	
35	13C12-1234799-HpCDF	46.67	passed	passed	passed	passed	passed	passed	
36	13C12-OCDD	49.12	passed	passed	passed	passed	passed	passed	
37	13C 12-OCDF	49.31	passed	passed	passed	passed	passed	passed	
38	Total TCDF	29.81	passed (1)	-	-	-	-	-	
39	Total TCDD	30.57	passed (1)	-	-	-	-	-	
40	Total PeCDF	36.92	passed (2)	-	-	-	-	-	
41	Total PeCDD	37.03	passed (1)	-	-	-	-	-	
42	Total HxCDF	41.88	passed (4)	-	-	-	-	-	
43	Total HxCDD	42.62	passed (3)	-	\cdots	-	--	-	
44	Total HPCDD	45.67	passed (1)	--	-	-	-	-	
45	Total HpCDF	45.87	passed (2)	-	--	-	-	-	
45	Single TCDF	31.13	passed	passed	passed	passed	passed	passed	
47	Single TCDD	32.15	passed	passed	passed	passed	passed	passed	
48	Single PeCDD	38.25	passed	passed	pessed	passed	passed	passed	
49	Single PeCDF	37.86	passed	passed	passed	passed	passed	passed	
50	Single PeCDF	36.64	passed	passed	passed	passed	passed	passed	
51	Single HpCDD	45.12	passed	passed	passed	passed	passed	passed	
52	Single HxCDF	42.26	passed	passed	passed	passed	passed	passed	
53	Single $\mathrm{H} \times$ CDF	41.43	passed	passed	passed	passed	passed	passed	
54	Single $\mathrm{H} \times \mathrm{CDF}$	41.50	passed	passed	passed	passed	passed	passed	
55	Single $\mathrm{H} \times$ CDF	43.25	passed	passed	passed	passed	passed	passed	
56	Single HxCDD	42.55	passed	passed	passed	passed	passed	passed	
57	Single $\mathrm{H} \times C D D$	42.44	passed	passed	passed	passed	passed	passed	
58	Single HxCDD	42.66	passed	passed	passed	passed	passed	passed	
59	Single HPCDF	44.94	passed	passed	passed	passed	passed	passed	
60	Single HPCDF	46.68	passed	passed	passed	passed	passed	passed	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 06:29
64

8
CALDF61737A
CS501
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117jan31117jan31-12.quan
y:117jan31117jan31-12.raw
y :Iresponsefiles\df18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression
1.0

Chromatogram

Entry Parameters

Compound Name	2378 -TCDF
QM Retention Time	31.13
QM Area	2925614
QM Integration Mode	A
RM1 Area	2286155
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0126
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	39839
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.14-33.14 SM: 3G

Entry Parameters	
Compound Name	$2378-$ TCDD
QM Retention Time	32.15
QM Area	1873000
QM Integration Mode	A
RM1 Area	1469325
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0139
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	36462
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 35.64-37.64 SM: 3G

Entry Parameters

Compound Name	$12378-\mathrm{PeCDF}$
QM Retention Time	36.64
QM Area	8892501
QM Integration Mode	A
RM1 Area	13823636
RM 1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0125
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	199858
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 36.86-38.86 SM: 3G

Entry Parameters

Compound Name	23478-PeCDF
QM Retention Time	37.86
QM Area	10092325
QM Integration Mode	A
RM1 Area	15748932
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0104
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	239353
Client Flags	
Status Overview	passed
Status Info	

[^8]
Chromatogram

RT: 37.25-39.25 SM: 3G

Entry Parameters

Compound Name	$12378-\mathrm{PeCDD}$
QM Retention Time	38.25
QM Area	5665435
QM Integration Mode	A
RM1 Area	8689913
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0325
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	77939
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.43-42.43 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.43
QM Area	10628454
QM Integration Mode	A
RM1 Area	13191762
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0665
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	38367
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$123678-H x C D F$
QM Retention Time	41.58
QM Area	10916132
QM Integration Mode	A
RM1 Area	13704794
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0651
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	39032
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.26-43.26 SM: 3G

Entry Parameters

Compound Name	$234678-\mathrm{HxCDF}$
QM Retention Time	42.26
QM Area	10650094
QM Integration Mode	A
RM1 Area	13338334
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0635
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	40232
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.45-43.45 SM: 3G

Entry Parameters

Compound Name	123478-HxCDD
QM Retention Time	42.44
QM Area	7047619
QM Integration Mode	A
RM1 Area	8763815
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0427
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	59546
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.55-43.55 SM: 3G

Entry Parameters

Compound Name	$123678-\mathrm{HxCDD}$
QM Retention Time	42.55
QM Area	7143701
QM Integration Mode	A
RM1 Area	8861153
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0409
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	59609
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.86
QM Area	7223715
QM Integration Mode	A
RM1 Area	8914626
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0426
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	58490
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 42.25-44.25 SM: 3G

Entry Parameters

Compound Name	$123789-\mathrm{HxCDF}$
QM Retention Time	43.25
QM Area	9613342
QM Integration Mode	A
RM1 Area	12031691
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0721
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	35037
Client Flags	
Status Overview	passed

Status info

Chromatogram

RT: 43.93-45.93 SM: 3G

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDF}$
QM Retention Time	44.94
QM Area	11048929
QM Integration Mode	A
RM1 Area	11536604
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0596
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	41416
Client Flags	
Status Overview	passed
Stas Info	

Status Info

Chromatogram

> RT: 45.13-47.13 SM: 3G

Entry Parameters

Compound Name	1234678-HpCDD
QM Retention Time	46.12
QM Area	7145705
QM Integration Mode	A
RM1 Area	7438140
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0612
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	40840
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.69-47.69 SM: 3G

Entry Parameters

Compound Name	$1234789-H p C D F$
QM Retention Time	46.68
QM Area	9858490
QM Integration Mode	A
RM1 Area	10273358
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0689
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	36074
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

> RT: 48.12-50.12 SM: 3G

Entry Parameters	
Compound Name	OCDD
QM Retention Time	49.13
QM Area	13861054
QM Integration Mode	A
RM1 Area	12358162
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0563
Unqualified Amount (A)	2000.000000
Adjusted Amount (A)	2000.0000
Signal-to-Noise	89512
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.32
QM Area	18694084
QM Integration Mode	A
RM1 Area	16836788
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0449
Unqualified Amount (A)	2000.000000
Adjusted Amount (A)	2000.0000
Signal-to-Noise	114509
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.48-33.48 SM: 3G

Entry Parameters

Compound Name	$13 C 12-1278-T C D D$
QM Retention Time	32.51
QM Area	1903734
QM Integration Mode	A
RM1 Area	1541979
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0092
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	57755
Client Flags	
Status Overview	passed
Status Info	

AIL01 Page 389 of 560

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref
Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/01 06:29
64

8
CALDF61737A
CS501
DF18471-17JAN31
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117jan31117jan31-12.quan
y:I17jan31117jan31-12.raw
y : Iresponsefiles ldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Single Point (Spec. RF)
Linear Fit
Non weighted Regression 1.0

Chromatogram

RT: 25.63-33.99 SM: 3G

Entry Parameters

Compound Name	Total TCDF
QM Retention Time	29.81
QM Area	2925614
QM Integration Mode	A
RM1 Area	2286155
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0126
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	39839
Client Flags	
Status Overview	passed (1)
Status Info	

AIL01 Page 891 of 560

Sample CALDF61737A/CS50
Inst ID: DF18971-17JAN31/Client

Chromatogram

Entry Parameters	
Compound Name	Total TCDD
QM Retention Time	30.57
QM Area	1873000
QM Integration Mode	A
RM1 Area	1469325
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0139
Unqualified Amount (A)	200.000000
Adjusted Amount (A)	200.0000
Signal-to-Noise	36462
Client Flags	
Status Overview	passed (1)
Status Info	

Status Info

Chromatogram

RT: 33.66-40.18 SM: 3G

Entry Parameters

Compound Name	Total PeCDF
QM Retention Time	36.92
QM Area	18984826
QM Integration Mode	A
RM1 Area	29572568
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0114
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	2000.0000
Signal-to-Noise	219606
Client Flags	
Status Overview	passed (2)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total PeCDD
QM Retention Time	37.03
QM Area	5665435
QM Integration Mode	A
RM1 Area	8689913
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0325
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	77939
Client Flags	
Status Overview	passed (1)
Status Info	

Chromatogram

RT: 39.91-43.86 SM: 3G

Entry Parameters

Compound Name	Total HxCDF
QM Retention Time	41.88
QM Area	41808022
QM Integration Mode	A
RM1 Area	52266580
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0668
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	4000.0000
Signal-to-Noise	38167
Client Flags	
Status Overview	passed (4)
Status Info	

Status Info

Chromatogram

Entry Parameters

Compound Name	Total HxCDD
QM Retention Time	42.62
QM Area	21415035
QM Integration Mode	A
RM1 Area	26539594
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0420
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	3000.0000
Signal-to-Noise	59215
Client Flags	
Status Overview	passed (3)
Status Info	

Chromatogram

Entry Parameters

Compound Name	Total HpCDD
QM Retention Time	45.67
QM Area	7145705
QM Integration Mode	A
RM1 Area	7438140
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0612
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	1000.0000
Signal-to-Noise	40840
Client Flags	
Status Overview	passed (1)
Status Info	

RT: 44.72-47.03 SM: 3G

Entry Parameters

Compound Name	Total HpCDF
QM Retention Time	45.87
QM Area	20907418
QM Integration Mode	A
RM1 Area	21809962
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0641
Unqualified Amount (A)	1000.000000
Adjusted Amount (A)	2000.0000
Signal-to-Noise	38745
Client Flags	
Status Overview	passed (2)
Status Info	

Status Info

No.	Compound Name	$\begin{aligned} & \text { Quan. } \\ & \text { Mass } \end{aligned}$	Ratio Mass 1	$\begin{aligned} & \text { RT Window } \\ & {[\mathrm{min}]} \end{aligned}$	Specified RT [min]	$\begin{array}{\|l\|} \hline \text { QM Retention } \\ \text { Time } \\ \hline \end{array}$	$\begin{aligned} & \text { RM1 Retention } \\ & \text { Time } \\ & \hline \end{aligned}$	RM1 Time Status	RRT Status
1	2378-TCDF	$305.8987+1.5 \mathrm{ppm}$	303.9016 +/-5 ppm	0.67	31.13	37.13	31.13	passed	passed
2	2378-TCOD	$321.8936+/-5 \mathrm{ppm}$	319.8965 +/- 5 ppm	0.67	32.15	32.15	32.15	passed,	passed
3	12378 - ${ }^{\text {ecDF }}$	$341.8567+/-5 \mathrm{ppm}$	$339.8597+/-5 \mathrm{ppm}$	0.67	36.64	36.64	36.64	passed	passed
4	23478-PeCDF	$341.8567+/-5 \mathrm{ppm}$	$339.8597+/-5 \mathrm{ppm}$	0.67	37.86	37.86	37.86	passed	passed
5	12378-PeCDD	$357.8516+/-5 \mathrm{ppm}$	$355.8546+/ .5 \mathrm{ppm}$	0.67	38.25	38.25	38.25	passed	passed
6	$123478-\mathrm{HxCDF}$	$375.8176+/ .5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	0.67	41.43	41.43	41.43	passed	passed
7	$123678-\mathrm{HxCDF}$	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	0.67	41.58	41.56	41.58	passed	passed
8	234678-HxCDF	375.8178 +/-5 ppm	$373.8208+5-5 \mathrm{ppm}$	0.67	42.26	42.26	42.26	passed	passed
9	$123478-\mathrm{HxCOD}$	$391.8127+/ .5 \mathrm{ppm}$	$389.6157+/-5 \mathrm{ppm}$	0.67	42.44	42.44	42.44	passed	passed
10	$123678 \mathrm{H} \times \mathrm{COO}$	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	0.67	42.55	42.55	42.57	passed	passed
11	$123789-\mathrm{HxCDD}$	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	0.67	42.86	42.86	42.8日	passed	passed
12	$123789-\mathrm{HxCDF}$	$375.8178+1-5 \mathrm{ppm}$	$373.8208+!-5 \mathrm{ppm}$	0.67	43.25	43.25	43.27	passed	passed
13	1234678-HpCDF	$409.7789+/-5 \mathrm{ppm}$	$407.7818+/ .5$ ppm	0.67	44.94	44.94	44.94	passed	passed
14	1234678-HpCDD	$425.7737+/ .5 \mathrm{ppm}$	$423.7766+/-5 \mathrm{ppm}$	0.67	46.12	46.12	46.13	passed	passed
15	1234789-HpCDF	$409.7789+/ .5 \mathrm{ppm}$	$407.7818+/-5 \mathrm{ppm}$	0.67	46.68	46.68	46.70	passed	passed
16	OCDD	$459.7348+/-5 \mathrm{ppm}$	$457.7377+/-5 \mathrm{ppm}$	0.67	49.13	49.13	49.13	passed	passed
17	OCDF	$443.7399+/ .5 \mathrm{ppm}$	$441.7428+f-5 \mathrm{ppm}$	0.67	49.32	49.32	49.32	passed	passed
18	13C12-1278-TCDD (CRS)	333.9339 +/-5 ppm	331.9368 +/-5 ppm	1.00	32.51	32.51	32.51	passed	passed
19	13C12-1234-TCOD	333.9339 +/-5 ppm	331.9368 +/-5 ppm	0.67	31.37	31.37	31.37	passed	passed
20	13C12-123468-HxCDD	$403.8529+/-5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	1.00	41.31	41.31	41.31	passed	passed
21	13C12-2378-TCOF	317.9389 +i-5 ppm	$315.9419+/-5 \mathrm{ppm}$	0.67	31.09	31.09	31.09	passed	passed
22	13C 12-237B-TCDD	333.9339 +/-5 ppm	331.9368 +/-5 ppm	0.67	32.12	32.12	32.12	passed	passed
23	13C $12-12378$ - ${ }^{\text {eCDF }}$	353.8970 +/-5 ppm	351.9000 +/-5 ppm	0.67	36.63	36.63	36.63	passed	passed
24	13C12-23478-PeCDF	353.8970 +/-5 ppm	351.9000 +/-5 ppm	0.67	37.85	37.85	37.85	passed	passed
25	13C12-12378-PeCDD	369.8919 +/-5 ppm	367.8949 +/-5 $\mathbf{~ p p m}$	0.67	38.23	38.23	38.23	passed	passed
26	13C12-123478-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+$ + 5 ppm	0.67	41.42	41.42	41.42	passed	passed
27	13C12-923678-HxCDF	385.8610 +/-5 ppm	383.8639 +/-5 ppm	0.67	44.56	41.56	41.56	passed	passed
28	13C12-234678-HxCDF	385.8610 +/-5 ppm	383.8639 +/-5 ppm	0.67	42.24	42.24	42.24	passed	passed
29	13C12-123478-HxCDD	$403.8529+/-5 \mathrm{ppm}$	401.8559 +/-5 ppm	0.67	42.43	42.43	42.43	passed	passed
30	13C12-123678-HxCDD	$403.8529+/-5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	0.67	42.54	42.54	42.54	passed	passed
31	13C12-123789-HxCDD	$403.8529+$ + 5 ppm	401.8559 +/-5 ppm	0.67	42.85	42.85	42.85	passed	passed
32	13C12-123789-HxCDF	385.8610 +/-5 ppm	$383.6639+/-5 \mathrm{ppm}$	0.67	43.24	43.24	43.24	passed	passed
33	13C12-1234678-HPCDF	419.8220 +/-5 ppm	$417.8253+/-5 \mathrm{ppm}$	0.67	44.93	44.93	44.93	passed	passed
34	13C12-1234678-HPCDD	$437.8140+1.5 \mathrm{ppm}$	$435.8169+/-5 \mathrm{ppm}$	0.67	46.12	46.12	46.12	passed	passed
35	13C12-1234789-HPCDF	419.8220 +/-5 ppm	$417.8253+/-5 \mathrm{ppm}$	0.67	46.67	46.67	46.68	passed	passed
36	13C12-OCDD	$471.7750+/-5 \mathrm{ppm}$	$469.7779+1.5$ ppm	0.67	49.12	49.12	49.12	passed	passed
37	13C 12-OCDF	455.7802 +/-5 ppm	$453.7831+/-5 \mathrm{ppm}$	1.00	49.31	49.31	49.31	passed	passed
38	Total TCDF	305.8987 +/-5 ppm	$303.9016+/-5 \mathrm{ppm}$	7.60	29.81	29.81	29.81	-	-
39	Total TCDD	321.8936 +/-5 ppm	319.8965 +/. 5 ppm	5.60	30.57	30.57	30.57	-	-
40	Total PeCDF	$341.8567+1.5 \mathrm{ppm}$	$339.8597+/-5 \mathrm{pjm}$	5.93	36.92	36.92	36.92	--	\cdots
41	Total PeCDD	357.8516 +/-5 ppm	$355.8546+/ .5 \mathrm{ppm}$	3.56	37.03	37.03	37.03	-	
42	Total $\mathrm{H} \times \mathrm{CDF}$	375.8178 +/-5 ppm	373.8208 +/-5 ppm	3.59	41.88	41.88	41.88	-	\cdots
43	Total HxCDD	$391.8127+$ +/. 5 ppm	389.8157 +/- 5 ppm	2.50	42.62	42.62	42.62	--	
44	Total HPCDD	$425.7737+/-5 \mathrm{ppm}$	423.7766 +/-5 ppm	1.05	45.67	45.67	45.67	-	-
45	Total HpCDF	409.7789 +/-5 5 pm	407.7818 +/-5 ppm	2.10	45.87	45.87	45.87	-	-
46	Single TCDF	305.8987 +/-5 ppm	303.9016 +/. 5 ppm	7.60	31.13	31.13	31.13	passed	passed
47	Single TCDD	$321.8936+/ .5 \mathrm{ppm}$	319.8965 +/-5 ppm	5.60	32.15	32.15	32.15	passed	passed
48	Single PeCDD	357.8516 +/-5 ppm	$355.8546+1 / 5 \mathrm{ppm}$	3.56	38.25	38.25	38.25	passed	passed
49	Single PeCDF	341.8567 +/-5 ppm	$339.8597+/-5 \mathrm{ppm}$	5.93	37.86	37.86	37.86	passed	passed
50	Single PeCDF	$341.8567+$ +/-5 ppm	$339.8597+/$-5 ppm	5.93	36.64	36.64	36.64	passed	passed
51	Single HPCDD	$425.7737+$ +-5 ppm	$423.7766+/-5 \mathrm{ppm}$	1.05	46.12	46.12	46.13	passed	passed
52	Single HxCDF	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	3.59	42.26	42.26	42.26	passed	passed
53	Single HxCDF	$375.8178+/$ - 5 ppm	$373.8208+/-5 \mathrm{ppm}$	3.59	41.43	41.43	41.43	passed	passed
54	Single $\mathrm{H} \times$ CDF	375.8178 +/-5 ppm	$373.8208+/-5 \mathrm{ppm}$	3.59	41.58	41.58	41.58	passed	passed
55	Single HXCDF	375.8178 +/-5 ppm	$373.8208+/-5 \mathrm{ppm}$	3.59	43.25	43.25	43.27	passed	passed
56	Single HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/ .5 \mathrm{ppm}$	2.50	42.55	42.55	42.57	passed	passed
57	Single HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/ .5 \mathrm{ppm}$	2.50	42.44	42.44	42.44	passed	passed
58	single HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	250	42.86	42.86	42.88	passed	passed
59	Single HPCDF	$409.7789 \mathrm{t}+\mathrm{5}$ ppm	407.7818 +/. 5 ppm	210	44.94	44.94	44.94	passed	passed
60	Single HPCDF	$409.7789+/-5 \mathrm{ppm}$	407.7818 +/-5 ppm	210	48.68	48.68	46.70	passed	passed

No.	Compound Name	QM Retention Time	$\begin{aligned} & \text { RM1 Ratio } \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & \text { Ratio1 } \\ & \text { Limit } \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { Ration } \\ \text { Status } \end{array}$	Percent Recovery (A)	Recovery Limit	Recovery Status	
\uparrow	2378-TCDF	31.13	0.7814	0.6450-	0.8950	passed	100.00	0 -	0	passed
2	2378-TCDD	32.15	0.7845	0.6450 -	0.8950	passed	100.00	0 -	0	passed
3	12378 PeCDF	36.64	1.5545	1.3150 -	1.7850	passed	100.00	0 -	0	passed
4	23478.eCDF	37.86	1.5605	1.3150 -	1.7850	passed	100.00	0 -	0	passed
5	12378 -PeCDD	38.25	1.5338	1.3150.	1.7850	passed	100.00	0 -	0	passed
6	123478-HxCDF	41.43	1.2412	1.0450 -	1.4350	passed	100.00	0 -	0	passed
7	123678 -HxCDF	41.58	1.2555	1.0450 -	1.4350	passed	100.00	0 -	0	passed
8	234678-HxCDF	42.26	1.2524	1.0450 -	1.4350	passed	100.00	0 -	0	passed
9	123478-HxCDD	42.44	1.2435	1.0450 -	1.4350	passed	100.00	0 -	0	passed
10	123678-HxCDD	42.55	1.2404	1.0450 -	1.4350	passed	100.00	0.	0	passed
19	123789-HxCDD	42.66	1.2341	1.0450 -	1.4350	passed	100.00	0 -	0	passed
12	123789 -HxCDF	43.25	1.2516	1.0450 -	1.4350	passed	100.00	0 -	0	passed
13	$1234678-\mathrm{HpCDF}$	44.94	1.0441	0.8750 -	1.2050	passed	100.00	0 -	0	passed
14	1234678-HPCDD	46.12	1.0409	0.8750 -	1.2050	passed	100.00	0 -	0	passed
15	1234789-HpCDF	46.68	1.0421	0.8750 -	1.2050	passed	100.00	0 -	0	passed
16	OCDD	49.13	0.8916	0.7550 -	1.0250	passed	100.00	0 -	0	passed
17	OCDF	49.32	0.9006	0.7550 -	1.0250	passed	100.00	0 -	0	passed
18	13C12-1278-TCDD (CRS)	32.51	0.8100	0.6450 -	0.8950	passed	100.00	0 -	0	passed
19	13C12-1234-TCDD	31.37	0.7859	0.6450 -	0.6950	passed	100.00	0.	0	passed
20	13C12-123468-HxCDD	41.31	1.2745	1.0450 -	1.4350	passed	100.00	0.	0	passed
21	13C12-2378-TCDF	31.09	0.8117	0.6450 -	0.8950	passed	100.00	0 -	0	passed
22	13C12-2378-TCDD	32.12	0.7735	0.6450 -	0.8950	passed	100.00	0 -	0	passed
23	13C12-12378-PeCDF	36.63	1.5956	1.3150 -	1.7850	passed	100.00	0 -	0	passed
24	13C12-23478-PeCDF	37.85	1.5783	1.3150 -	1.7850	passed	100.00	0.	0	passed
25	13C12-42378-PeCDD	38.23	1.5982	1.3150 -	1.7850	passed	100.00	0.	0	passed
26	13C12-123478-HxCDF	41.42	0.5299	0.4250 -	0.5950	passed	100.00	0 -	0	passed
27	13C12-123678-HxCDF	41.56	0.5231	0.4250 -	0.5950	passed	100.00	0 -	0	passed
28	13C12-234678-HxCDF	42.24	0.5181	0.4250 -	0.5950	passed	100.00	0 -	0	passed
29	13C12-123478-HxCDD	42.43	1. 2964	1.0450 -	1.4350	passed	100.00	0 -	0	passed
30	${ }^{13 C 12-123678-H x C D D ~}$	42.54	1.2505	1.0450 -	1.4350	passed	100.00	0 -	0	passed
31	$13 \mathrm{C} 12-123769-\mathrm{HxCDD}$	42.85	1.2089	1.0450 -	1.4350	passed	100.00	0.	0	passed
32	13C12-123789-H×CDF	43.24	0.5338	0.4250 -	0.5950	passed	100.00	0.	0	passed
33	13C12-1234678-HpCDF	44.93	0.4466	0.3650 -	0.5150	passed	100.00	0 -	0	passed
34	13C12-1234676-HpCDD	46.12	1.0731	0.8750 -	1.2050	passed	100.00	0 -	0	passed
35	13C 12-1234789-HpCDF	46.67	0.4520	0.3650 -	0.5150	passed	100.00	0 -	0	passed
36	13C12-OCDD	49.12	0.6966	0.7550 -	1.0250	passed	100.00	0 -	0	passed
37	13C12-OCDF	49.31	0.9090	0.7550 -	1.0250	passed	100.00	0 -	0	passed
38	Total TCDF	29.61	0.7814	0.6450 -	0.8950	--	100.00	0 -	0	
39	Total TCDD	30.57	0.7845	0.6450 -	0.6950	--	100.00	0 -	0	-
40	Total PeCDF	36.92	1.5577	1.3150 -	1.7850	---	100.00	0 -	0	-
41	Total PeCDD	37.03	1.5338	$1.3150-$	1.7850	---	100.00	0 -	0	-
42	Total HxCDF	41.86	1.2502	1.0450 -	1.4350	--	100.00	0 -	0	-
43	Total HxCDD	42.62	1.2393	1.0450 -	1.4350	--	100.00	0 -	0	--
44	Total HPCDD	45.67	1.0409	$0.8750-$	1.2050	---	100.00	0 -	0	-
45	Total HPCDF	45.67	1.0432	0.8750 -	1.2050	-	100.00	0 -	0	-
46	Single TCDF	31.13	0.7814	0.6450 -	0.8950	passed	100.00	0 -	0	passed
47	Single TCDD	32.15	07845	0.6450 -	0.8950	passed	100.00	0 -	0	passed
48	Single PeCDD	38.25	1.5338	1.3150 -	1.7850	passed	100.00	0 -	0	passed
49	Single PeCDF	37.86	1.5605	1.3150 -	1.7850	passed	100.00	0 -	0	passed
50	Single PeCDF	36.64	1.5545	1.3150 -	1.7850	passed	100.00	0 -	0	passed
5	Single HpCDD	46.12	1.0409	0.8750 -	1.2050	passed	100.00	0 -	0	passed
52	Single $H \times C D F$	42.26	1.2524	1.0450 -	1.4350	passed	100.00	0 -	0	passed
53	Single $H \times C D F$	41.43	1.2412	1.0450 -	1.4350	passed	100.00	0 -	0	passed
54	Single $\mathrm{H} \times \mathrm{CDF}$	41.58	1.2555	$1.0450-$	1.4350	passed	100.00	0 -	0	passed
55	Single $\mathrm{H} \times \mathrm{CDF}$	43.25	1.2516	1.0450 -	1.4350	passed	100.00	0 -	0	passed
56	Single HxCDD	42.55	1.2404	1.0450 -	1.4350	passed	100.00	0 -	0	passed
57	Single HxCDD	42.44	1.2435	1.0450 -	1.4350	passed	100.00	0 -	0	passed
58	Single HxCDD	42.86	1.2341	1.0450 -	1.4350	passed	100.00	0 -	0	passed
59	Single HPCDF	44.94	1.044 T	0.8750 -	1.2050	passed	100.00	0 -	0	passed
60	Single HpCDF	46.68	1.0421	0.8750 -	1.2050	passed	100.00	0 -	0	passed

No.	Compound Name	Status Overview	QM Retention Time	QM Area	$\begin{array}{\|l\|} \hline \text { QM } \\ \text { Made } \end{array}$		RM1 Area	RM4 Mode		Detection Limit (A)	Unqualified Amount (A)	Adjusted Amount (A)	AdjSpecam T	Signal-to-Nots	Client Fiags
1	2378-TCDF	passed	3 3. 13	2925614		A	2286155		A	0.0126	200.000000	200.0000	200.000000	39839	
2	2378-TCDD	passed	32.15	1873000		A	1469325		A	0.0139	200.000000	200.0000	200.000000	36462	
3	$12378 . \mathrm{PeCDF}$	passed	36.64	8892501		A	13823636		A	0.0125	1000.000000	1000.0000	1000.000000	199858	
4	23478-PeCDF	passed	37.86	10092325		A	15748932		A	0.0104	1000.000000	1000.0000	1000.000000	239353	
5	12378-PeCDD	passed	38.25	5665435		A	8689913		A	0.0325	1000.000000	1000.0000	1000.000000	77939	
6	123478 - $\mathrm{H} \times$ CDF	passed	41.43	10628454		A	13191762		A	0.0665	1000.000000	1000.0000	1000.000000	38367	
7	$123678-\mathrm{HxCDF}$	passed	41.58	10916132		A	13704794		A	0.0651	1000.000000	1000.0000	1000.000000	39032	
8	$234678-\mathrm{HXCDF}$	passed	42.26	10650094		A	13338334		A	0.0635	1000.000000	10000000	1000.000000	40232	
9	$123478 \cdot \mathrm{HxCDD}$	passed	42.44	7047619		A	8763815		A	0.0427	1000.000000	1000.0000	1000.000000	59546	
10	123678-HxCDD	passed	42.55	7943701		A	8861153		A	0.0409	1000.000000	1000.0000	1000.000000	59609	
11	123789-HxCDO	passed	42.86	7223715		A	8914626		A	0.0426	1000.000000	1000.0000	1000.000000	58490	
12	123789-HxCDF	passed	43.25	9613342		A	12031694		A	0.0729	1000.000000	1000.0000	1000.000000	35037	
13	1234878-HpCDF	passed	44.94	11048929		A	11536604		A	0.0596	1000.000000	1000.0000	1000.000000	41416	
14	1234678-HpCDD	passed	46.12	7145705		A	7438140		A	0.0612	1000.000000	1000.0000	1000.000000	40840	
15	1234789-HpCDF	passed	46.68	9858490		A	10273358		A	0.0689	1000.000000	1000.0000	1000.000000	36074	
16	OCDD	passed	49.13	13861054		A	12358162		A	0.0563	2000.000000	2000.0000	2000.000000	89512	
17	OCDF	passed	49.32	18694084		A	16836788		A	0.0449	2000.000000	2000.0000	2000.000000	114509	
18	13C12-1278-TCDD (CRS)	passed	32.51	1903734		A	1541979		A	0.0092	200.000000	200.0000	200.000000	57755	
19	13C12-1234-TCDD	passed	31.37	757553		A	595345		A	0.0117	100.000000	100.0000	100.000000	21337	
20	13C12-123468-HxCDD	passed	41.31	661493		A	842665		A	0.0230	100.000000	100.0000	100.000000	10879	
21	13C12-2378-TCDF	passed	31.09	1438831		A	1167848		A	0.0055	100.000000	100.0000	100.000000	43986	
22	13C12-2378-TCDD	passed	32.12	774919		A	599403		A	0.0115	100.000000	100.0000	100.000000	22229	
23	13C12-12378-PeCDF	passed	36.63	943634		A	1505676		A	0.0232	100.000000	100.0000	100.000000	13817	
24	13C12-23478-PeCDF	passed	37.85	970164		A	1537246		A	0.0227	100.000000	100.0000	100.000000	14828	
25	13C12-12378-PeCDD	passed	38.23	535139		A	855265		A	0.0157	100.000000	100.0000	100.000000	21458	
26	13C12-123478-HxCDF	passed	41.42	1355663		A	718427		A	0.0222	100.000000	100.0000	100.000000	11343	
27	13C12-123678-HxCDF	passed	41.56	1478861		A	773573		A	0.0204	100.000000	100.0000	100.000000	12185	
28	13C12-234878-HxCDF	passed	42.24	1354516		A	701827		A	0.0224	100.000000	100.0000	100.000000	11701	
29	13C12-123478-HxCDD	passed	42.43	687944		A	891969		A	0.0219	100.000000	100.0000	100.000000	11852	
30	13C12-123678-HxCDD	passed	42.54	734048		A	917892		A	0.0209	100.000000	100.0000	100.000000	12777	
31	13C12-123789-HxCDD	passed	42.85	696966		A	842567		A	0.0224	100.000000	100.0000	100.000000	11346	
32	13C12-123789-HxCDF	passed	43.24	1281815		A	684267		A	0.0234	100.000000	100.0000	100.000000	10920	
33	13C12-1234678-HPCDF	passed	44.93	1263197		A	564149		A	0.0252	100.000000	100.0000	100.000000	10993	
34	13C12-1234678-HpCDD	passed	46.12	694726		A	745485		A	0.0223	100.000000	100.0000	100.000000	12212	
35	13C12-1234789-HPCDF	passed	46.67	1100679		A	497553		A	0.0288	100.000000	100.0000	100.000000	9333	
36	13C12-OCDD	passed	49.12	1396882		A	1252394		A	0.0144	200.000000	200.0000	200.000000	39787	
37	13C12-OCDF	passed	49.31	2074084		A	1885297		A	0.0155	200.000000	200.0000	200.000000	36607	
38	Total TCDF	passed (1)	29.81	2925614		A	2286155		A	0.0126	200.000000	200.0000	200.000000	39839	
39	Total TCDD	passed (1)	30.57	1873000		A	1469325		A	0.0139	200.000000	200.0000	200.000000	36462	
40	Total PeCDF	passed (2)	36.92	18984826		A	29572568		A	0.0114	1000.000000	2000.0000	1000.000000	219606	
41	Total PeCDD	passed (1)	37.03	5665435		A	8689913		A	0.0325	1000.000000	1000.0000	1000.000000	77939	
42	Total HxCDF	passed (4)	41.88	41808022		A	52266580		A	0.0868	1000.000000	4000.0000	1000.000000	38167	
43	Total HXCDD	passed (3)	42.62	21415035		A	26539594		A	0.0420	1000.000000	3000.0000	1000.000000	59215	
44	Total HpCDD	passed (1)	45.67	7145705		A	7438140		A	0.0612	1000.000000	1000.0000	1000.000000	40840	
45	Total HPCDF	passed (2)	45.87	20907418		A	21809962		A	0.0641	1000.000000	2000.0000	1000.000000	38745	
46	Single TCDF	passed	31.93	2925674		A	2286155		A	0.0126	200.000000	200.0000	200.000000	39839	
47	Single TCDD	passed	32.15	1873000		A	1469325		A	0.0139	200.000000	200.0000	200.000000	36462	
48	Single PeCDD	passed	38.25	5665435		A	8689913		A	0.0325	1000.000000	1000.0000	1000.000000	77939	
49	Single PeCDF	passed	37.86	10092325		A	15748932		A	0.0107	1000.000000	1000.0000	1000.000000	239353	
50	Single PeCDF	passed	36.64	8892501		A	13823636		A	0.0122	1000.000000	1000.0000	1000.000000	199858	
51	Single HpCDD	passed	46.12	7145705		A	7438140		A	0.0612	1000.000000	1000.0000	1000.000000	40840	
52	Single HXCDF	passed	42.26	10650094		A	13338334		A	0.0654	1000.000000	1000.0000	1000.000000	40232	
53	Single HxCDF	passed	41.43	10628454		A	13191762		A	0.0658	1000.000000	1000.0000	1000.000000	38367	
54	Single HXCDF	passed	41.58	10916132		A	13704794		A	0.0637	1000.000000	1000.0000	1000.000000	39032	
55	Single HxCDF	passed	43.25	9613342		A	12031691		A	0.0724	1000.000000	1000.0000	1000.000000	35037	
56	Single $H \times C D D$	passed	42.55	7143701		A	8861153		A	0.0420	1000.000000	1000.0000	1000.000000	59609	
57	Single HxCDD	passed	42.44	7047619		A	8763815		A	0.0425	1000.000000	1000.0000	1000.000000	59546	
58	Single $H \times C D D$	passed	42.86	7223715		A	8914626		A	0.0416	1000.000000	1000.0000	1000.000000	58490	
59	Single HPCDF	passed	44.94	11048929		A	11536604		A	0.0605	1000.000000	1000.0000	1000.000000	41416	
60	Single HpCDF	passed	46.68	9858490		A	10273358		A	0.0678	1000.000000	1000.0000	1000.000000	36074	


```
Started by - Xcalibur
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SN0000XXXX
Workstation internet name - LX18470
```

Analysis started at: 01-Feb-17 06:34:47

Analysis will stop at user request

Firmware Version: 2.02

MCAL file name:

Sequence : 62d69d10-234f-46c5-bc8a-53bf0dc2f3b7

MID procedure: PFK16MAR24+MDT

Mid Time Windows:
Start Measure End Cycletime

\# 1	11:30 min	0	21:00 min	1.00
\# 2	21:00 min	13:44 min	34:44 min	1.00 se
\# 3	34:44 min	5:03 min	39:47 min	0.90 se
\# 4	39:47 min	4:27 min	44:15 min	0.80
5	44:15 m	3:45 min	48:00 min	0.80

Mid Masses:
Window \# 1
mass F int gr time (ms)
218.0129
218.98511
220.0100
$230.0532 \quad 2 \quad 1 \quad 9$
$232.0502 \quad 2 \quad 1 \quad 47$
$251.9739 \quad 1 \quad 1 \quad 95$
$253.9710 \quad 1 \quad 1 \quad 95$
$264.0142 \quad 2 \quad 1 \quad 47$
$266.0112 \quad 2 \quad 1 \quad 47$
$285.9350 \quad 1 \quad 1 \quad 95$
$\begin{array}{rrrr}287.9320 & 1 & 1 & 95\end{array}$
$\begin{array}{lrrrr}292.9819 & \text { C } & 20 & 1 & 4 \\ 297.9752 & 2 & 1 & 47\end{array}$
$\begin{array}{llll}299.9723 & 2 & 1 & 47\end{array}$
window \# 2
$\operatorname{mass}_{9819} \mathrm{~F}$ int gr time (ms)
$292.9819120 \quad 1 \quad 5$
303.9011
305.8981
315.9413
317.9384
319.896
321.8930

118
118
23
23
118
Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
window \# 3			
mass F	int	$g r$	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
window \# 4			
mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
window \# 5			
mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
$\begin{gathered} \text { Window \# } 6 \\ \text { mass } F \end{gathered}$	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes MID Window end time was 21.000000 minutes MID Window terminated after 34.750000 minutes MID Window end time was 34.740000 minutes

Page 2

17JAN31-12
MID Window terminated after 39.800000 minutes MID Window end time was 39.800000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: $\mathrm{C}: \backslash X c a l i b u r \backslash s y s t e m \backslash D F S \backslash M S I \backslash 17 J A N 26$. DFSTune
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	94.0000
BQUAD	0.4500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	156.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	175.0000
ENSBR	0.4500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	171.0000	EXSBR	-0.5300
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	13.9000
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0155	FVINLET	0.0279	FVSRC	0.0276
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	718.0000
LENS_SYM	12.7500	LM	1050.0000	LMII	500.0000
LMASS	94.0000	LKM	442.9723	MASS	94.0000
MDAC	1410466.8076	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2521.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-15.0000	RECURR	0.8972	RELEN	0.0000
RES	13763.9385	RPUSHER	-14.5861	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	664.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0180	TANAL	$0 . .0000$	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	94.0000	XLENSSPOT	880.0000
XLENS_SYM	-2.5000	YLENS_POT	602.0000	YLENS_SYM	-7.7500

$$
\begin{array}{ll}
\text { Source Gauge: } & 1.9 \mathrm{e}-005 \text { mbar } \\
\text { Analyzer Penning: } & 5.2 \mathrm{e}-008 \text { mbar } \\
\text { Pirani Analyse: } & 1.5 \mathrm{e}-002 \text { mbar } \\
\text { Pirani Source: } & 2.8 \mathrm{e}-002 \text { mbar } \\
\text { Pirani Inlet System: } & 2.8 \mathrm{e}-002 \text { mbar }
\end{array}
$$

Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 11699.
MID Time Window 2: Resolution is 11774.
MID Time Window 3: Resolution is 11134.
MID Time Window 4: Resolution is 12079.
Page 3

17JAN31-12
MID Time Window 5: Resolution is 12985. MID Time window 6: Resolution is 13763.

Amplifier offset: 87.
$\underset{\sim \pm}{\star \approx}$ File closed wed Feb 01 07:25:50 2017

Page 4

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref
Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/07 20:39
26

2

TDTFWD ST1701737A
CPS03
DF18471-17FEB07
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117feb07\17feb07-13.quan
y : $117 \mathrm{feb} 07 \backslash 17 \mathrm{feb} 07-13$.raw
y:\responsefilesldf18471-17jan31dfical.resp

Compatibility off No Summation
Dependend on Area
1.0
1.0
1.0
1.0
1.0

Average RF
Linear Fit
Non weighted Regression
1.0

Chromatogram

Entry: 2378-TCDD IS: 13C12-2378-TCDD

Entry Parameters

Smoothing Points	3
Compound Name	2378 -TCDD
Quan. Mass	$321.8936+/-50 \mathrm{ppm}$
QM Integration Mode	M
Ratio Mass 1	$319.8965+/-50 \mathrm{ppm}$
RM1 Integration Mode	M
ManInt	1
RM1 Retention Time	32.06
RM1 Left Baseline Height	546.40
RM1 Left Height	9572
RM1 Height	89418
GC Res (\%) left	11.049462

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
2017/02/07 20:39

Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	No Summation
Quantitation Status	Dependend on Area
Injection Volume $[\mathrm{h} / \mathrm{JV}]$	1.0
Sample Volume $[\mathrm{hSV}]$	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	$\mathbf{1 . 0}$
Response Factor Mode	Average RF
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

$y: 117 f e b 07 \backslash 17$ feb07-13.quan
y :117feb07117feb07-13.raw
y :Iresponsefiles\df18471-17jan31dficai.resp

Chromatogram

Entry: 2378-TCDD IS: 13C12-2378-TCDD

Entry Parameters

Smoothing Points	3
Compound Name	$2378-\mathrm{TCDD}$
Quan. Mass	$321.8936+/-50 \mathrm{ppm}$
QM Integration Mode	A
Ratio Mass 1	$319.8965+/-50 \mathrm{ppm}$
RM1 Integration Mode	A
ManInt	1
RM1 Retention Time	32.06
RM1 Left Baseline Height	546.40
RM1 Left Height	9572
RM1 Height	89312
GC Res (\%) left	11.057159

*** file opened Tue Feb 07 20:42:43 2017 $\underset{* * *}{ }$

```
Started by - Xcalibur
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SN0000XXXX
workstation internet name - LX18470
```

 Analysis started at: 07-Feb-17 20:42:42
 Analysis will stop at user request
 Firmware version: 2.02
 MCAL file name:

Sequence : ef723472-e848-43e5-a9f2-e1bcce0ed473

MID procedure: PFK16MAR24+MDT

Mid Time Windows:
Start End Measure Cycletime

\# 1	11:30 min	9:30 min	21:00 min	1.00 sec
\# 2	21:00 min	13:36 min	34:36 min	1.00 sec
\# 3	34:36 min	4:53 min	39:30 min	0.90 sec
\# 4	39:30 min	4:45 min	44:15 min	0.80 sec
\# 5	44:15 min	3:45 min	48:00 min	0.80 sec
\# 6	48:00 min	3:00 min	51:00 min	0.80 sec

Mid Masses: Window \# 1

mass F	int	gr	time (ms)
218.0129	1	1	95
218.9851	1	20	1
220.0100	1	1	94
230.0532	2	1	47
232.0502	2	1	47
251.9739	1	1	95
253.9710	1	1	95
264.0142	2	1	47
266.0112	2	1	47
285.9350	1	1	95
287.9320	1	1	95
292.9819 c	20	1	4
297.9752	2	1	47
299.9723	2	1	47
Window \# 2			
mass	int	gr	time (ms)
292.9819	20	1	5
303.9011	1	1	118
305.8981	1	1	118
315.9413	5	1	23
317.9384	5	1	23
319.8960	1	1	118
321.8930	1	1	118

Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
Window \# 3 mass	int	gr	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
window \# 4			
mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
Window \# 5 mass	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
window \# 6 mass F	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID Window terminated after 34.600000 minutes
MID Window end time was 34.600000 minutes
Page 2

17FEB07-13
MID Window terminated after 39.500000 minutes MID Window end time was 39.500000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\Xcalibur \backslash System $\backslash D F S \backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	99.0000
BQUAD	0.0500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	61.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	173.0000
ENSBR	0.0500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	172.0000	EXSBR	-0.4700
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	12.3500
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0172	FVINLET	0.0301	FVSRC	0.0289
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	714.0000
LENS_SYM	14.3000	LM	1050.0000	LMII	500.0000
LMASS	99.0000	LKM	442.9723	MASS	99.0000
MDAC	1472957.1872	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2525.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-9.0000	RECURR	0.8967	RELEN	0.0000
RES	13192.5417	RPUSHER	-8.6813	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	638.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0206	TANAL	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	99.0000	XLENS_POT	896.0000
XLENS_SYM	-8.5000	YLENS_POT	568.0000	YLENS_SYM	0.0000

$$
\begin{array}{ll}
\text { Source Gauge: } & 2.0 \mathrm{e}-005 \mathrm{mbar} \\
\text { Analyzer Penning: } & 5.1 \mathrm{e}-008 \mathrm{mbar} \\
\text { Pirani Analyse: } & 1.7 \mathrm{e}-002 \mathrm{mbar} \\
\text { Pirani Source: } & 2.9 \mathrm{e}-002 \mathrm{mbar} \\
\text { Pirani Inlet System: } & 3.0 \mathrm{e}-002 \mathrm{mbar}
\end{array}
$$

Scantype is magnetic

Sourcemode is EI POS
MID Time Window 1: Resolution is 11430.
MID Time Window 2: Resolution is 11687.
MID Time Window 3: Resolution is 12014.
MID Time Window 4: Resolution is 12047.
Page 3

MID Time window 5: Resolution is 13454. MID Time Window 6: Resolution is 13192.

Amplifier offset: 88.
$\underset{\sim y y y y}{*}$ File closed Tue Feb 07 21:33:45 2017

Page 4

Quantitation Settings
Data File Parameter

Acq. Data
Number of Entries
2017/02/07 21:33

Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor
150

6
VER-CALDF41737A
CS3CC03
DF18471-17FEB07
jda02741
y:117feb07117feb07-14.raw

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
y:117feb07\17feb07-14.quan
y :\responsefiles\df18471-17jan31dfical.resp
C:UCAIIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

No.	Compound Name	QM Retention Time	Status Overview	$\begin{array}{\|l\|} \hline \text { Amount } \\ \text { Status } \end{array}$	RM1 Time Status	$\begin{array}{\|l\|l\|} \hline \text { Ratio1 } \\ \text { Status } \end{array}$	Recovery Status	Native vs Labeled Time Status	Status Info
1	2378-TCDF	30.98	passed	passed	passed	passed	passed	passed	
2	2378-TCDD	32.01	passed	passed	passed	passed	passed	passed	
3	12378-PeCDF	36.54	passed	passed	passed	passed	passed	passed	
4	23478-PeCDF	37.76	passed	passed	passed	passed	passed	passed	
5	12378-PeCDD	38.15	passed	passed	passed	passed	passed	passed	
6	123478-HxCDF	41.34	passed	passed	passed	passed	passed	passed	
7	123678-HxCDF	41.49	passed	passed	passed	passed	passed	passed	
8	234678-HxCDF	42.16	passed	passed	passed	passed	passed	passed	
9	123478-HxCDD	42.35	passed	passed	passed	passed	passed	passed	
10	123678-HxCDD	42.47	passed	passed	passed	passed	passed	passed	
11	123789-HxCDD	42.78	passed	passed	passed	passed	passed	passed	
12	123789-HxCDF	43.17	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.86	passed	passed	passed	passed	passed	passed	
14	1234678-HpCDD	46.05	passed	passed	passed	passed	passed	passed	
15	1234789-HpCDF	46.61	passed	passed	passed	passed	passed	passed	
16	OCDD	49.05	passed	passed	passed	passed	passed	passed	
17	OCDF	49.24	passed	passed	passed	passed	passed	passed	
18	13C12-1278-TCDD (CRS)	32.37	passed	passed	passed	passed	passed	passed	
19	13C12-1234-TCDD	31.24	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.23	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	30.95	passed	passed	passed	passed	passed	passed	
22	13C12-2378-TCDD	31.99	passed	passed	passed	passed	passed	passed	
23	13C12-12378-PeCDF	36.51	passed	passed	passed	passed	passed	passed	
24	13C12-23478-PeCDF	37.75	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.12	passed	passed	passed	passed	passed	passed	
26	13C12-123478-HxCDF	41.32	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.47	passed	passed	passed	passed	passed	passed	
28	13C12-234678-HxCDF	42.15	passed	passed	passed	passed	passed	passed	
29	13C12-123478-HxCDD	42.33	passed	passed	passed	passed	passed	passed	
30	13C12-123678-HxCDD	42.46	passed	passed	passed	passed	passed	passed	
31	13C12-123789-HxCDD	42.77	passed	passed	passed	passed	passed	passed	
32	13C12-123789-HxCDF	43.16	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HpCDF	44.84	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-HpCDD	46.03	passed	passed	passed	passed	passed	passed	
35	13C12-1234789-HpCDF	46.60	passed	passed	passed	passed	passed	passed	
36	13C12-OCDD	49.04	passed	passed	passed	passed	passed	passed	
37	13C12-OCDF	49.22	passed	passed	passed	passed	passed	passed	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
2017/02/07 21:33

Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Average RF
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

$y: 117 f e b 07 \backslash 17 f e b 07-14 . q u a n$
y:117feb07117feb07-14.raw
y:Iresponsefiles\df18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0

Average RF
Linear Fit
Non weighted Regression
1.0

Chromatogram

Entry Parameters

Compound Name	$2378-$ TCDF
QM Retention Time	30.98
QM Area	186441
QM Integration Mode	A
RM1 Area	152781
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0059
Unqualified Amount (A)	10.297268
Adjusted Amount (A)	10.2973
Signal-to-Noise	4249
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.01-33.01 SM: 3G

Entry Parameters

Compound Name	2378 -TCDD
QM Retention Time	32.01
QM Area	121720
QM Integration Mode	A
RM1 Area	91745
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0059
Unqualified Amount (A)	10.296230
Adjusted Amount (A)	10.2962
Signal-to-Noise	4242
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	12378-PeCDF
QM Retention Time	36.54
QM Area	579990
QM Integration Mode	A
RM1 Area	917042
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0065
Unqualified Amount (A)	50.487143
Adjusted Amount (A)	50.4871
Signal-to-Noise	20035
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 36.76-38.76 SM: 3G

Entry Parameters

Compound Name	23478 -PeCDF
QM Retention Time	37.76
QM Area	670846
QM Integration Mode	A
RM1 Area	1056923
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0052
Unqualified Amount (A)	50.595828
Adjusted Amount (A)	50.5958
Signal-to-Noise	24628
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$12378-\mathrm{PeCDD}$
QM Retention Time	38.15
QM Area	350556
QM Integration Mode	A
RM1 Area	553251
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0129
Unqualified Amount (A)	49.687557
Adjusted Amount (A)	49.6876
Signal-to-Noise	9584
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.34
QM Area	724359
QM Integration Mode	A
RM1 Area	902340
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0121
Unqualified Amount (A)	49.858873
Adjusted Amount (A)	49.8589
Signal-to-Noise	10456
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	123678-HxCDF
QM Retention Time	41.49
QM Area	734677
QM Integration Mode	A
RM1 Area	918565
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0119
Unqualified Amount (A)	49.493914
Adjusted Amount (A)	49.4939
Signal-to-Noise	10460
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.16-43.16 SM: 3G

Entry Parameters

Compound Name	234678 -HxCDF
QM Retention Time	42.16
QM Area	736536
QM Integration Mode	A
RM1 Area	927430
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0117
Unqualified Amount (A)	51.276015
Adjusted Amount (A)	51.2760
Signal-to-Noise	10595
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.35-43.35 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDD}$
QM Retention Time	42.35
QM Area	483174
QM Integration Mode	A
RM1 Area	608428
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0097
Unqualified Amount (A)	50.751955
Adjusted Amount (A)	50.7520
Signal-to-Noise	13032
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.47-43.47 SM: 3G

Entry Parameters

Compound Name	$123678-\mathrm{HxCDD}$
QM Retention Time	42.47
QM Area	493890
QM Integration Mode	A
RM1 Area	618416
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0094
Unqualified Amount (A)	51.193296
Adjusted Amount (A)	51.1933
Signal-to-Noise	13576
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.78-43.78 SM: 3G

Entry Parameters

Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.78
QM Area	488521
QM Integration Mode	A
RM1 Area	631377
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0094
Unqualified Amount (A)	50.857803
Adjusted Amount (A)	50.8578
Signal-to-Noise	13523
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 42.17-44.17 SM: 3G

Entry Parameters

Compound Name	$123789-H \times C D F$
QM Retention Time	43.17
QM Area	634049
QM Integration Mode	A
RM1 Area	792409
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0127
Unqualified Amount (A)	47.156668
Adjusted Amount (A)	47.1567
Signal-to-Noise	9259
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 43.86-45.86 SM: 3G

Entry Parameters

Compound Name	$1234678-$ HpCDF
QM Retention Time	44.86
QM Area	825215
QM Integration Mode	A
RM1 Area	852071
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0156
Unqualified Amount (A)	50.530698
Adjusted Amount (A)	50.5307
Signal-to-Noise	7993
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.05-47.05 SM: 3G

Entry Parameters

Compound Name	$1234678-$ HpCDD
QM Retention Time	46.05
QM Area	529221
QM Integration Mode	A
RM1 Area	554363
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0153
Unqualified Amount (A)	49.898481
Adjusted Amount (A)	49.8985
Signal-to-Noise	8036
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.61-47.61 SM: 3G

Entry Parameters

Compound Name	$1234789-\mathrm{HpCDF}$
QM Retention Time	46.61
QM Area	684747
QM Integration Mode	A
RM1 Area	710190
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0182
Unqualified Amount (A)	49.135580
Adjusted Amount (A)	49.1356
Signal-to-Noise	6684
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 48.05-50.05 SM: 3G

Entry Parameters

Compound Name	OCDD
QM Retention Time	49.05
QM Area	1041242
QM Integration Mode	A
RM1 Area	928115
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0153
Unqualified Amount (A)	101.351009
Adjusted Amount (A)	101.3510
Signal-to-Noise	16040
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.24
QM Area	1264724
QM Integration Mode	A
RM1 Area	1133209
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0106
Unqualified Amount (A)	98.265618
Adjusted Amount (A)	98.2656
Signal-to-Noise	23576
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	13C12-1278-TCDD (RS)
QM Retention Time	32.37
QM Area	119075
QM Integration Mode	A
RM1 Area	86071
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0137
Unqualified Amount (A)	9.476062
Adjusted Amount (A)	9.4761
Signal-to-Noise	1680
Client Flags	
Status Overview	passed
Status Info	

No.	Compound Name	Quan. Mass	Ratio Mass 1	Specified RT [min]	QM Retention Time	RM1 Retention Time	Labeled RT	RM1 Time Status	Native vs Labeled Time Status
1	2378-TCDF	305.8987 +/-5 5 pm	303.9016 +/. 5 ppm	30.98	30.98	30.98	30.95	passed	passed
2	2378-TCDD	321.8936 +/-5 5 pm	$319.8965+1.5 \mathrm{ppm}$	32.01	32.01	32.02	31.99	passed	passed
3	12378-PeCDF	$341.8567+/ .5 \mathrm{ppm}$	$339.8597+/ .5 \mathrm{ppm}$	36.54	36.54	36.54	36.51	passed	passed
4	23478-PeCDF	341.8567 +/- 5 ppm	$339.8597+/-5 \mathrm{ppm}$	37.76	37.76	37.76	37.75	passed	passed
5	12378-PeCDD	357.8516 +/- 5 ppm	$355.8546+/ .5$ ppm	38.15	38.15	38.15	38.12	passed	passed
6	123478-HxCDF	375.8178 +/- 5 ppm	373.8208 +/- 5 ppm	41.34	41.34	41.34	41.32	passed	passed
7	123678-HxCDF	$375.8178+/ .5 \mathrm{ppm}$	$373.8208+/-5$ ppm	41.49	41.49	41.49	41.47	passed	passed
8	234678-HxCDF	375.8178 +/-5 ppm	373.8208 +/. 5 ppm	42.16	42.16	42.16	42.15	passed	passed
9	123478-HxCDD	$391.8127+/ .5$ ppm	389.8157 +/-5 ppm	42.35	42.35	42.35	42.33	passed	passed
10	123678-HxCDD	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	42.47	42.47	42.47	42.46	passed	passed
11	123789-HxCDD	391.8127 +/-5 ppm	389.8157 +/-5 ppm	42.78	42.78	42.78	42.77	passed	passed
12	123789-HxCDF	375.8178 +/-5 ppm	$373.8208+/-5 \mathrm{ppm}$	43.17	43.17	43.17	43.16	passed	passed
13	1234678-HpCDF	409.7789 +/. 5 ppm	407.7818 +/-5 ppm	44.86	44.86	44.86	44.84	passed	passed
14	1234678-HpCDD	$425.7737+/-5 \mathrm{ppm}$	$423.7766+/-5 \mathrm{ppm}$	46.05	46.05	46.05	46.03	passed	passed
15	1234789-HpCDF	409.7789 +/-5 5 pm	407.7818 +/. 5 ppm	46.61	46.61	46.61	46.60	passed	passed
16	OCDD	459.7348 +/-5 5 pm	457.7377 +/-5 ppm	49.05	49.05	49.05	49.04	passed	passed
17	OCDF	$443.7399+/-5 \mathrm{ppm}$	$441.7428+/ .5 \mathrm{ppm}$	49.24	49.24	49.24	49.22	passed	passed
18	13C12-1278-TCDD (CRS)	$333.9339+/-5 \mathrm{ppm}$	331.9368 +/- 5 ppm	32.37	32.37	32.38	32.37	passed	passed
19	13C12-1234-TCDD	$333.9339+1.5 \mathrm{ppm}$	331.9368 +/-5 ppm	31.24	31.24	31.24	31.24	passed	passed
20	13C12-123468-HxCDD	$403.8529+/-5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	41.23	41.23	41.23	41.23	passed	passed
21	13C12-2378-TCDF	$317.9389+/-5 \mathrm{ppm}$	$315.9419+/ .5 \mathrm{ppm}$	30.95	30.95	30.95	30.91	passed	passed
22	13C12-2378-TCDD	$333.9339+/-5 \mathrm{ppm}$	$331.9368+/-5 \mathrm{ppm}$	31.99	31.99	31.99	31.99	passed	passed
23	13C12-12378-PeCDF	353.8970 +/- 5 ppm	$351.9000+/-5 \mathrm{ppm}$	36.51	36.51	36.53	36.68	passed	passed
24	13C12-23478-PeCDF	353.8970 +/- 5 ppm	$351.9000+/ .5 \mathrm{ppm}$	37.75	37.75	37.75	37.62	passed	passed
25	13C12-12378-PeCDD	$369.8919+/-5 \mathrm{ppm}$	$367.8949+1.5$ ppm	38.12	38.12	38.12	38.12	passed	passed
26	13C12-123478-HxCDF	385.8610 +/- 5 ppm	$383.8639+/ .5 \mathrm{ppm}$	41.32	41.32	41.32	41.35	passed	passed
27	13C12-123678-HxCDF	385.8610 +/- 5 ppm	$383.8639+/ .5 \mathrm{ppm}$	41.47	41.47	41.47	41.46	passed	passed
28	13C12-234678-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+/ .5 \mathrm{ppm}$	42.15	42.15	42.15	42.33	passed	passed
29	13C12-123478-HxCDD	$403.8529+/ .5 \mathrm{ppm}$	$401.8559+/ .5$ ppm	42.33	42.33	42.33	42.33	passed	passed
30	13C12-123678-HxCDD	$403.8529+/ .5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	42.46	42.46	42.46	42.46	passed	passed
31	13C12-123789-HxCDD	$403.8529+/ .5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	42.77	42.77	42.77	42.77	passed	passed
32	13C12-123789-HxCDF	385.8610 +/-5 ppm	$383.8639+/-5 \mathrm{ppm}$	43.16	43.16	43.16	43.16	passed	passed
33	13C12-1234678-HpCDF	419.8220 +/-5 5 pm	$417.8253+/-5 \mathrm{ppm}$	44.84	44.84	44.84	44.82	passed	passed
34	13C12-1234678-HpCDD	437.8140 +/-5 ppm	$435.8169+/ .5$ ppm	46.03	46.03	46.03	46.03	passed	passed
35	13C12-1234789-HpCDF	419.8220 +/-5 5 pm	417.8253 +/-5 ppm	46.60	46.60	46.60	46.53	passed	passed
36	13C12-OCDD	471.7750 +/-5 5 pm	$469.7779+/ .5 \mathrm{ppm}$	49.04	49.04	49.04	49.04	passed	passed
37	13C12-OCDF	455.7802 +/. 5 ppm	453.7831 +/-5 ppm	49.22	49.22	49.22	49.13	passed	passed

No.	Compound Name	QM Retention Time	RM1 Ratio (A)	Ratio1 Limit		Ratio1 Status	$\begin{aligned} & \text { Calculated } \\ & \text { RF (A) } \end{aligned}$	Response File RF (A)	RF Limit		RF Status
1	2378-TCDF	30.98	0.8195	0.6450 -	0.8950	passed	1.0657	1.0349	0.8227 -	1.2471	passed
2	2378-TCDD	32.01	0.7537	0.6450 -	0.8950	passed	1.2704	1.2338	0.9809 -	1.4867	passed
3	12378-PeCDF	36.54	1.5811	1.3150 -	1.7850	passed	0.9793	0.9698	0.7710 -	1.1686	passed
4	23478-PeCDF	37.76	1.5755	1.3150 -	1.7850	passed	1.0914	1.0786	0.8575 -	1.2997	passed
5	12378-PeCDD	38.15	1.5782	1.3150 -	1.7850	passed	1.0525	1.0591	0.8420 -	1.2762	passed
6	123478-HxCDF	41.34	1.2457	1.0450 -	1.4350	passed	1.1716	1.1750	0.9341 -	1.4159	passed
7	$123678-\mathrm{HXCDF}$	41.49	1.2503	1.0450 -	1.4350	passed	1.1390	1.1506	0.9147 -	1.3865	passed
8	234678-HxCDF	42.16	1.2592	1.0450 -	1.4350	passed	1.2415	1.2106	0.9624 -	1.4588	passed
9	123478 - \times XCDD	42.35	1.2592	1.0450 -	1.4350	passed	1.0395	1.0241	0.8142 -	1.2340	passed
10	123678-HxCDD	42.47	1.2521	1.0450 -	1.4350	passed	1.0455	1.0211	0.8118 -	1.2304	passed
11	$123789-\mathrm{HxCDD}$	42.78	1.2924	1.0450 -	1.4350	passed	1.1024	1.0838	0.8616 -	1.3060	passed
12	$123789-\mathrm{HXCDF}$	43.17	1.2498	$1.0450-$	1.4350	passed	1.0877	1.1533	0.9169 -	1.3897	passed
13	1234678-HpCDF	44.86	1.0325	0.8750 -	1.2050	passed	1.2957	1.2820	1.0192 -	1.5448	passed
14	1234678-HPCDD	46.05	1.0475	0.8750 -	1.2050	passed	1.0568	1.0590	0.8419 -	1.2761	passed
15	1234789-HPCDF	46.61	1.0372	0.8750 -	1.2050	passed	1.3003	1.3231	1.0519 -	1.5943	passed
16	OCDD	49.05	0.8914	0.7550 -	1.0250	passed	1.0352	1.0214	0.8120 -	1.2308	passed
17	OCDF	49.24	0.8960	0.7550 -	1.0250	passed	0.9167	0.9329	0.7417 -	1.1241	passed
18	13C12-1278-TCDD (CRS)	32.37	0.7228	$0.6450-$	0.8950	passed	1.2169	1.2842	0.8925 -	1.6759	passed
19	13C12-1234-TCDD	31.24	0.7780	0.8450 -	0.8950	passed	1.0000	1.0000	$1.0000-$	1.0000	passed
20	13C12-123468-HxCDD	41.23	1.2569	1.0450 -	1.4350	passed	1.0000	1.0000	1.0000 -	1.0000	passed
21	13C12-2378-TCDF	30.95	0.8148	0.6450 -	0.8950	passed	1.8882	1.8681	1.2983 -	2.4379	passed
22	13C12-2378-TCDD	31.99	0.8083	0.6450 -	0.8950	passed	0.9967	0.9850	0.6846 -	1.2854	passed
23	13C12-12378-PeCDF	36.51	1.5820	1.3150 -	1.7850	passed	1.8136	1.7271	1.2003 -	2.2539	passed
24	13C12-23478-PeCDF	37.75	1.5704	1.3150 -	1.7850	passed	1.8781	1.7249	1.1988 -	2.2510	passed
25	13C12-12378-PeCDD	38.12	1.5817	1.3150 -	17850	passed	1.0187	0.9749	0.6776 -	1.2722	passed
26	13C12-123478-HxCDF	41.32	0.5246	0.4250 -	0.5950	passed	1.2577	1.2851	0.8931 -	1.6771	passed
27	13C12-123678-HxCDF	41.47	0.5359	0.4250 -	0.5950	passed	1.3149	1.3520	0.9396 -	1.7644	passed
28	13C12-234678-HxCDF	42.15	0.5198	0.4250 -	0.5950	passed	1.2141	1.2544	0.8718 -	1.6370	passed
29	13C12-123478-HxCDD	42.33	1.2747	1.0450 -	1.4350	passed	0.9513	0.9461	0.6575 -	1.2347	passed
30	13C12-123678-HxCDD	42.46	1.2535	1.0450 -	1.4350	passed	0.9638	0.9761	0.6784 -	1.2738	passed
31	13C12-123789-HxCDD	42.77	1.2404	1.0450	1.4350	passed	0.9202	0.9341	0.6492 -	1.2190	passed
32	13C12-123789-HxCDF	43.16	0.5318	0.4250	0.5950	passed	1.1880	1.1840	0.8229 -	1.5451	passed
33	13C12-1234678-HpCDF	44.84	0.4685	0.3650	0.5150	passed	1.1727	1.1050	0.7680 -	1.4420	passed
34	13C12-1234678-HpCDD	46.03	1.0771	0.8750 -	1.2050	passed	0.9288	0.8851	0.6012 -	1.1290	passed
35	13C12-1234789-HpCDF	46.60	0.4572	0.3650 -	0.5150	passed	0.9718	0.9436	0.6558 -	1.2314	passed
36	13C12-OCDD	49.04	0.9043	0.7550	1.0250	passed	0.8617	0.7794	0.5417 -	1.0171	passed
37	13C12-OCDF	49.22	0.9025	$0.7550-$	1.0250	passed	1.1848	1.1485	0.7982 -	1.4988	passed

No	Compound Name	Status Overview	$\begin{aligned} & \text { QMA Relention } \\ & \text { Time } \end{aligned}$	QM Area	$\begin{array}{\|l\|} \hline \text { QM } \\ \text { Mode } \\ \hline \end{array}$		RM1 Area	RM1 Mode		Detection Limit (A)	Unqualified Amount (A		Adjusted Amount (A)	AdjSpecAMT	Signal-to-Noise	$\begin{array}{\|l\|} \hline \text { Client } \\ \text { Flags } \end{array}$
1	2378-TCDF	passed	30.98	186441		A	152781		A	00059		10.297268	10.2973	10.000000	4249	
2	2378-TCDD	passed	32.01	121720		A	91745		A	00059		10.296230	10.2962	10.000000	4242	
3	12378-PeCDF	passed	36.54	579990		A	917042		A	0,0065		50.487143	50.4871	50.000000	20035	
4	23478-PeCDF	passed	37.76	670846		A	1056923		A	0.0052		50.595828	50.5958	50.000000	24628	
5	12378-PeCDD	passed	38.15	350556		A	553251		A	0.0129		49.687557	49.6876	50.000000	9584	
6	123478 -HxCDF	passed	4134	724359		A	902340		A	0.0121		49.858873	49.8589	50.000000	10456	
7	123678 - HxCDF	passed	41.49	734677		A	918565		A	0.0119		49.493914	49.4939	50.000000	10460	
8	$234678-\mathrm{HxCDF}$	passed	42.16	736536		A	927430		A	0.0147		51.276015	51.2760	50.000000	10595	
9	123478-HxCDD	passed	42.35	483174		A	608428		A	0.0097		50.751955	50.7520	50.000000	13032	
10	$123678-\mathrm{HxCDD}$	passed	42.47	493890		A	618416		A	0.0094		51.193296	51.1933	50.000000	13576	
11	123789-HxCDD	passed	42.78	488521		A	631377		A	0.0094		50.857803	50.8578	50.000000	13523	
12	$123789-\mathrm{HxCDF}$	passed	43.17	634049		A	792409		A	0.0127		47.156668	47.1567	50.000000	9259	
13	1234678-HpCDF	passed	44.86	825215		A	852071		A	0.0156		50.530698	50.5307	50.000000	7983	
14	$1234678-\mathrm{HpCDD}$	passed	46.05	529221		A	554363		A	0.0153		49.898481	49.8985	50.000000	8036	
15	1234789-HpCDF	passed	46.61	684747		A	710190		A	0.0182		49.135580	49.1356	50.000000	6884	
16	OCDD	passed	49.05	1041242		A	928115		A	0.0153		101.351009	101.3510	100.000000	16040	
17	OCDF	passed	49.24	1264724		A	1133209		A	0.0106		98.265618	98.2656	100.000000	23576	
18	13C12-1278-TCDD (CRS)	passed	32.37	119075		A	86071		A	0.0137		9.476062	9.4761	10.000000	1680	
19	13C 12-1234-TCOD	passed	31.24	948145		A	737673		A	0.0190		100.000000	100.0000	100.000000	13177	
20	13C12-123468-HxCDD	passed	41.23	978273		A	1229553		A	0.0191		100.000000	100.0000	100.000000	13075	
21	13C12-2378-TCDF	passed	30.95	1753944		A	1429193		A	0.0057		101.077563	101.0776	100.000000	42819	
22	13C12-2378-TCDD	passed	31.99	929204		A	751127		A	0.0193		101.193999	101.1940	100.000000	13896	
23	t3C12-12378-PeCDF	passed	36.54	1184091		A	1873273		A	0.0247		105.009709	105.0097	100.000000	13434	
24	13C12-23478-PeCDF	passed	37.75	1231765		A	1934305		A	0.0247		108.887188	108.8812	100.000000	15160	
25	13C12-12378-PeCDD	passed	38.12	665213		A	7052198		A	0.0160		104.499357	104.4994	100.000000	22234	
26	13C12-12347 8 - $\mathrm{Hx} \times \mathrm{CDF}$	passed	41.32	1821377		A	955409		A	0.0256		97.864460	97.8645	100.000000	9491	
27	13C12-123678-HxCDF	passed	41.47	1890130		A	1012807		A	0.0244		97.252534	97.2525	100.000000	9805	
28	13C12-234678-HxCDF	passed	42.15	1763702		A	916815		A	0.0263		96.786933	96.7869	100.000000	9482	
29	13C12-123478-HxCDD	passed	42.33	923302		A	1176979		A	0.0202		100.550420	100.5504	100.000000	12921	
30	13C12-123678-HxCDD	passed	42.46	944242		A	1183584		A	0.0196		98.739997	98.7400	100.000000	13253	
31	13C12-123789-HxCDD	passed	42.77	906864		A	1124870		A	0.0205		98.512181	99.5122	100.000000	12529	
32	13C12-123789-HxCDF	passed	43.16	1712246		A	910649		A	0.0278		100.334695	100.3347	100.000000	9226	
33	13C 12-1234678-HpCDF	passed	44.84	1763152		A	825950		A	0.0288		106.128840	106.1288	100.000000	9866	
34	$13 \mathrm{C} 12-1234678-\mathrm{HPCDD}$	passed	46.03	987277		A	1063403		A	0.0278		107.367013	107.3670	100.000000	10364	
35	13C 12-1234799-HpCDF	passed	46.60	1472380		A	673236		A	0.0337		102.985920	102.9859	100.000000	8208	
36	13C12-OCDD	passed	49.04	1998066		A	1806819		A	0.0169		221.109950	221.1099	200.000000	36924	
37	13C12-OCDF	passed	49.22	2749823		A	2481667		A	c.0173		206.322230	206.3222	200.000000	33313	

File Name: Y:117FEB07\17FEB07-14 Sample ID: CS3CC03

Acq. Data: 2/7/2017 9:33:53 PM Sample Name: VER-CALDF41737A PFK Reference Lock Mass Traces


```
*** file opened Tue Feb 07 21:39:19 2017 ***
\begin{tabular}{ll} 
Started by & - Xcalibur \\
Instrument Internet name & - DFS MS \\
Instrument mode7 & - DFS MS \\
Instrument service number & - SN0000XXXX \\
Workstation internet name - LX18470
\end{tabular}
```

 Analysis started at: 07-Feb-17 21:39:18
 Analysis will stop at user request
 Firmware Version: 2.02
 MCAL file name:
 Sequence : ef723472-e848-43e5-a9f2-e1bcce0ed473
 MID procedure: PFK16MAR24+MDT

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
Window \# 3			
mass F	int	gr	time (ms)
330.9787	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
window \# 4			
mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
window \# 5			
mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
window \# 6			
mass F	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes MID Window end time was 21.000000 minutes MID Window terminated after 34.600000 minutes MID Window end time was 34.600000 minutes

Page 2

17FEB07-14
MID Window terminated after 39.500000 minutes MID Window end time was 39.500000 minutes MID window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\xcalibur \System\DFS $\backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	98.5000
BQUAD	0.0500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
dynvoltage	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	61.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	173.0000
ENSBR	0.0500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	172.0000	EXSBR	-0.4700
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	12.3500
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0172	FVINLET	0.0297	FVSRC	0.0286
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	714.0000
LENS_SYM	14.3000	LM	1050.0000	LMII	500.0000
LMASS	98.5000	LKM	442.9723	MASS	98.5000
MDAC	1466744.8101	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2525.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-9.0000	RECURR	0.8982	RELEN	0.0000
RES	12487.8137	RPUSHER	-8.6374	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	638.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0206	tanal	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	98.5000	XLENS_POT	896.0000
XLENS_SYM	-8.5000	YLENS_POT	568.0000	YLENS_SYM	0.0000

$$
\begin{array}{ll}
\text { Source Gauge: } & 1.9 \mathrm{e}-005 \text { mbar } \\
\text { Analyzer Penning: } & 5.1 \mathrm{e}-008 \text { mbar } \\
\text { Pirani Analyse: } & 1.7 \mathrm{e}-002 \text { mbar } \\
\text { Pirani Source: } & 2.9 \mathrm{e}-002 \text { mbar } \\
\text { Pirani Inlet System: } & 3.0 \mathrm{e}-002 \text { mbar }
\end{array}
$$

Scantype is magnetic

Sourcemode is EI POS
MID Time window 1: Resolution is 11542.
MID Time Window $2:$ Resolution is 12270.
MID Time window $3:$ Resolution is 11749.
MID Time window 4 : Resolution is 12327.
Page 3

MID Time Window 5: Resolution is 11640.
MID Time Window 6: Resolution is 12487.
Amplifier offset: 88.
$\underset{* * *}{* * *}$ File closed Tue Feb 07 22:30:21 2017

Page 4

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
2017/02/08 10:03

Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode
Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	1.0
Sample Weight [hSWT]	1.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Average RF
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

$y: \ 17$ feb07\17feb07-28-8290.quan
$y: 117 f e b 07 \backslash 17$ feb07-28.raw
y :Iresponsefiles\df18471-17jan31dfical.resp
C:UCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0

5
Average RF
Linear Fit
1.0

No.	Compound Name	QM Retention Time	Status Overview	Amount Status	RM1 Time	Ratio1 Status	Recovery Status	Native vs Labeled Time Status	Status Info
!	2378-TCDF	31.00	passed	passed	passed	passed	passed	passed	
2	2378-TCDD	32.05	passed	passed	passed	passed	passed	passed	
3	12378-PeCDF	36.56	passed	passed	passed	passed	passed	passed	
4	23478-PeCDF	37.78	passed	passed	passed	passed	passed	passed	
5	12378-PeCDD	38.16	passed	passed	passed	passed	passed	passed	
6	123478-HxCDF	41.35	passed	passed	passed	passed	passed	passed	
7	123678 -HxCDF	41.50	passed	passed	passed	passed	passed	passed	
8	234678-HxCDF	42.18	passed	passed	passed	passed	passed	passed	
9	123478-HxCDD	42.37	passed	passed	passed	passed	passed	passed	
10	$123678-\mathrm{HxCDD}$	42.49	passed	passed	passed	passed	passed	passed	
11	123789-HxCDD	42.80	passed	passed	passed	passed	passed	passed	
12	$123789-\mathrm{HxCDF}$	43.19	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.87	passed	passed	passed	passed	passed	passed	
14	1234678-HPCDD	46.06	passed	passed	passed	passed	passed	passed	
15	1234789-HpCDF	46.63	passed	passed	passed	passed	passed	passed	
16	OCDD	49.06	passed	passed	passed	passed	passed	passed	
17	OCDF	49.26	passed	passed	passed	passed	passed	passed	
18	13C12-1278-TCDD (CRS)	32.41	passed	passed	passed	passed	passed	passed	
19	13C12-1234-TCDD	31.26	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.25	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	30.97	passed	passed	passed	passed	passed	passed	
22	13C12-2378-TCDD	32.01	passed	passed	passed	passed	passed	passed	
23	13C12-12378-PeCDF	36.55	passed	passed	passed	passed	passed	passed	
24	13C12-23478-PeCDF	37.76	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.13	passed	passed	passed	passed	passed	passed	
26	13C12-123478-HxCDF	41.34	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.49	passed	passed	passed	passed	passed	passed	
28	13C12-234678-HxCDF	42.16	passed	passed	passed	passed	passed	passed	
29	13C12-123478-HxCDD	42.35	passed	passed	passed	passed	passed	passed	
30	13C12-123878-HxCDD	42.47	passed	passed	passed	passed	passed	passed	
31	13C12-123789-HxCDD	42.78	passed	passed	passed	passed	passed	passed	
32	13C12-123789-HxCDF	43.17	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HpCDF	44.86	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-HpCDD	46.05	passed	passed	passed	passed	passed	passed	
35	13C12-1234789-HpCDF	46.62	passed	passed	passed	passed	passed	passed	
36	13C12-OCDD	49.06	passed	passed	passed	passed	passed	passed	
37	13C12-OCDF	49.24	passed	passed	passed	passed	passed	passed	

Quantitation Settings

Data File Parameter
Acq. Data
Number of Entries
2017/02/08 10:03
153
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor
$y: 117 f e b 07 \backslash 17$ feb07-28-8290.quan
$y: 117$ feb07117feb07-28.raw
y:\responsefilesldf18471-17jan31dfical.resp
C:UCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
1.0
1.0
1.0
2.5

Average RF
Linear Fit
Non weighted Regression 1.0

Chromatogram

Entry Parameters

Compound Name	2378-TCDF
QM Retention Time	31.00
QM Area	211967
QM Integration Mode	A
RM1 Area	163645
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0065
Unqualified Amount (A)	10.026235
Adjusted Amount (A)	10.0262
Signal-to-Noise	3922
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.03-33.03 SM: 3G

Entry Parameters

Compound Name	2378-TCDD
QM Retention Time	32.05
QM Area	134077
QM Integration Mode	A
RM1 Area	102753
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0067
Unqualified Amount (A)	10.274205
Adjusted Amount (A)	10.2742
Signal-to-Noise	3801
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 35.58-37.58 SM: 3G

Entry Parameters

Compound Name	12378-PeCDF
QM Retention Time	36.56
QM Area	672905
QM Integration Mode	A
RM1 Area	1070113
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0049
Unqualified Amount (A)	51.164132
Adjusted Amount (A)	51.1641
Signal-to-Noise	27184
Client Flags	
Status Overview	passed
Status Info	

Inst ID: DF19471-17FEB07/Client:

Chromatogram

RT: 36.78-38.78 SM: 3G

Entry Parameters

Compound Name	23478 -PeCDF
QM Retention Time	37.78
QM Area	761885
QM Integration Mode	A
RM1 Area	1189277
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0040
Unqualified Amount (A)	50.432100
Adjusted Amount (A)	50.4321
Signal-to-Noise	31749
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 37.15-39.15 SM: 3G

Entry Parameters

Compound Name	$12378-\mathrm{PeCDD}$
QM Retention Time	38.16
QM Area	416042
QM Integration Mode	A
RM1 Area	654150
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0141
Unqualified Amount (A)	50.497473
Adjusted Amount (A)	50.4975
Signal-to-Noise	8993
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.35-42.35 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.35
QM Area	912020
QM Integration Mode	A
RM1 Area	1135170
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0116
Unqualified Amount (A)	50.564220
Adjusted Amount (A)	50.5642
Signal-to-Noise	10914
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	123678-HxCDF
QM Retention Time	41.50
QM Area	908588
QM Integration Mode	A
RM1 Area	1130843
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0113
Unqualified Amount (A)	49.292628
Adjusted Amount (A)	49.2926
Signal-to-Noise	10919
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$234678-H \times C D F$
QM Retention Time	42.18
QM Area	880891
QM Integration Mode	A
RM1 Area	1108930
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0118
Unqualified Amount (A)	50.462030
Adjusted Amount (A)	50.4620
Signal-to-Noise	10571
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.37-43.37 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDD}$
QM Retention Time	42.37
QM Area	575336
QM Integration Mode	A
RM1 Area	726854
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0116
Unqualified Amount (A)	50.728331
Adjusted Amount (A)	50.7283
Signal-to-Noise	10924
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.49-43.49 SM: 3G

Entry Parameters

Compound Name	$123678-H x C D D$
QM Retention Time	42.49
QM Area	576266
QM Integration Mode	A
RM1 Area	725509
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0120
Unqualified Amount (A)	51.090887
Adjusted Amount (A)	51.0909
Signal-to-Noise	10869
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.80-43.80 SM: 3G

Entry Parameters

Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.80
QM Area	589489
QM Integration Mode	A
RM1 Area	749660
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0113
Unqualified Amount (A)	51.077936
Adjusted Amount (A)	51.0779
Signal-to-Noise	11252
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 42.19-44.19 SM: 3G

Entry Parameters

Compound Name	123789-HxCDF
QM Retention Time	43.19
QM Area	756611
QM Integration Mode	A
RM1 Area	969890
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0132
Unqualified Amount (A)	49.243239
Adjusted Amount (A)	49.2432
Signal-to-Noise	9335
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234678-$ HpCDF
QM Retention Time	44.87
QM Area	888766
QM Integration Mode	A
RM1 Area	919392
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0138
Unqualified Amount (A)	49.344911
Adjusted Amount (A)	49.3449
Signal-to-Noise	8846
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.06-47.06 SM: 3G

Entry Parameters

Compound Name	$1234678-$ HpCDD
QM Retention Time	46.06
QM Area	574773
QM Integration Mode	A
RM1 Area	600907
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0191
Unqualified Amount (A)	50.679330
Adjusted Amount (A)	50.6793
Signal-to-Noise	6633
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234789-$-HpCDF
QM Retention Time	46.63
QM Area	734739
QM Integration Mode	A
RM1 Area	764859
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0165
Unqualified Amount (A)	49.937723
Adjusted Amount (A)	49.9377
Signal-to-Noise	7441
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 48.07-50.07 SM: 3G

Entry Parameters

Compound Name	OCDD
QM Retention Time	49.06
QM Area	1044572
QM Integration Mode	A
RM1 Area	930738
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0185
Unqualified Amount (A)	102.154103
Adjusted Amount (A)	102.1541
Signal-to-Noise	13689
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 48.26-50.26 SM: 3G

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.26
QM Area	1280674
QM integration Mode	A
RM1 Area	1145102
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0128
Unqualified Amount (A)	98.363268
Adjusted Amount (A)	98.3633
Signal-to-Noise	19330
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 31.38-33.38 SM: 5G

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.41
QM Area	132045
QM Integration Mode	A
RM1 Area	108149
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0077
Unqualified Amount (A)	9.535057
Adjusted Amount (A)	9.5351
Signal-to-Noise	2997
Client Flags	
Status Overview	passed
Status Info	

No.	Compound Name	Quan. Mass	Ratio Mass 1	$\begin{aligned} & \hline \text { Specified } \\ & \text { RT [min] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { QM Retention } \\ & \text { Time } \end{aligned}$	RM1 Retention Time	Labeled RT	$\begin{aligned} & \text { RM1 Time } \\ & \text { Status } \end{aligned}$	Native vs Labeled Time Status
1	2378-TCDF	305.8987 +/-5 ppm	303.9016 +/- 5 ppm	31.00	31.00	31.00	30.97	passed	passed
2	2378-TCDD	$321.8936+/-5 \mathrm{ppm}$	$319.8965+/-5 \mathrm{ppm}$	32.05	32.05	32.05	32.01	passed	passed
3	12378 -PeCDF	$341.8567+$ +/ 5 ppm	$339.8597+/-5 \mathrm{ppm}$	36.56	36.56	36.56	36.55	passed	passed
4	23478-PeCDF	$341.8567+/-5 \mathrm{ppm}$	$339.8597+/ .5 \mathrm{ppm}$	37.78	37.78	37.78	37.78	passed	passed
5	12378-PeCDD	$357.8516+/ .5 \mathrm{ppm}$	$355.8546+/ .5 \mathrm{ppm}$	38.16	38.16	38.16	38.13	passed	passed
6	123478-HxCDF	$375.8178+/-5 \mathrm{ppm}$	$373.8208+$ + 5 ppm	41.35	41.35	41.35	41.34	passed	passed
7	123678-HxCDF	$375.8178+/-5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	41.50	41.50	41.50	41.49	passed	passed
8	234678-HxCDF	$375.8178+/ .5 \mathrm{ppm}$	$373.8208+/-5 \mathrm{ppm}$	42.18	42.18	42.18	42.16	passed	passed
9	$123478-\mathrm{H} \times \mathrm{CDD}$	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+$ +- 5 ppm	42.37	42.37	42.37	42.35	passed	passed
10	$123678-\mathrm{HxCDD}$	391.8127 +/-5 ppm	$389.8157+/ .5 \mathrm{ppm}$	42.49	42.49	42.49	42.47	passed	passed
11	$123789-\mathrm{HXCDD}$	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+/ .5 \mathrm{ppm}$	42.80	42.80	42.80	42.78	passed	passed
12	$123789-\mathrm{HXCDF}$	375.8178 +/. 5 ppm	$373.8208+/ .5 \mathrm{ppm}$	43.19	43.19	43.19	43.17	passed	passed
13	1234678-HpCDF	$409.7789+/-5 \mathrm{ppm}$	$407.7818+/ .5 \mathrm{ppm}$	44.87	44.87	44.87	44.86	passed	passed
14	1234678-HpCDD	$425.7737+/ .5 \mathrm{ppm}$	$423.7766+5 \mathrm{ppm}$	46.06	46.06	46.06	46.05	passed	passed
15	1234789-HpCDF	409.7789 +/- 5 ppm	407.7818 +/-5 ppm	46.63	46.63	46.63	46.62	passed	passed
16	OCDD	459.7348 +/. 5 ppm	$457.7377+/ .5 \mathrm{ppm}$	49.06	49.06	49.06	49.06	passed	passed
17	OCDF	$443.7399+/-5 \mathrm{ppm}$	$441.7428+/-5 \mathrm{ppm}$	49.26	49.26	49.26	49.24	passed	passed
18	13C12-1278-TCDD (CRS)	333.9339 +/-5 ppm	331.9368 +/-5 5 pm	32.41	32.41	32.41	32.41	passed	passed
19	13C12-1234-TCDD	333.9339 +/- 5 ppm	331.9368 +/-5 ppm	31.26	31.26	31.26	31.26	passed	passed
20	13C12-123468-HxCDD	403.8529 +/. 5 ppm	$401.8559+$ + 5 ppm	41.25	41.25	41.25	41.25	passed	passed
21	13C12-2378-TCDF	317.9389 +/-5 ppm	$315.9419+/ .5$ ppm	30.97	30.97	30.97	31.00	passed	passed
22	13C12-2378-TCDD	$333.9339+$ + 5 ppm	$331.9368+5 \mathrm{spm}$	32.01	32.01	32.01	32.01	passed	passed
23	13C12-12378-PeCDF	353.8970 +/-5 ppm	$351.9000+1.5 \mathrm{ppm}$	36.55	36.55	36.55	36.70	passed	passed
24	13C12-23478-PeCDF	$353.8970+/-5 \mathrm{ppm}$	$351.9000+5 \mathrm{ppm}$	37.76	37.76	37.76	37.70	passed	passed
25	13C12-12378-PeCDD	369.8919 +/-5 5 pm	$367.8949+$ - 5 ppm	38.13	38.13	38.13	38.13	passed	passed
26	13C12-123478-HxCDF	385.8610 +/-5 ppm	$383.8639+/ .5 \mathrm{ppm}$	41.34	41.34	41.34	41.38	passed	passed
27	13C12-123678-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+$ +/ 5 ppm	41.49	41.49	41.49	41.48	passed	passed
28	13C12-234678-HxCDF	385.8610 +/- 5 ppm	$383.8639+/ .5 \mathrm{ppm}$	42.16	42.16	42.16	42.15	passed	passed
29	13C12-123478-HxCDD	$403.8529+/-5 \mathrm{ppm}$	$401.8559+$ + 5 ppm	42.35	42.35	42.35	42.35	passed	passed
30	13C12-123678-HxCDD	403.8529 +/-5 ppm	$401.8559+$ +/ 5 ppm	42.47	42.47	42.47	42.47	passed	passed
31	13C12-123789-HxCDD	$403.8529+/-5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	42.78	42.78	42.78	42.78	passed	passed
32	13C12-123789-HxCDF	$385.8610+/ .5 \mathrm{ppm}$	$383.8639+$ + 5 ppm	43.17	43.17	43.17	43.24	passed	passed
33	13C12-1234678-HpCDF	419.8220 +/- 5 ppm	417.8253 +/. 5 ppm	44.86	44.86	44.86	44.89	passed	passed
34	13C12-1234678-HpCDD	$437.8140+$ + 5 ppm	435.8169 +/. 5 ppm	46.05	46.05	46.05	46.05	passed	passed
35	13C12-1234789-HpCDF	419.8220 +/- 5 ppm	$417.8253+$ +/ 5 ppm	46.62	46.62	46.62	46.57	passed	passed
36	13C12-OCDD	$471.7750+$ +- 5 ppm	$469.7779+/ .5 \mathrm{ppm}$	49.06	49.06	49.06	49.06	passed	passed
37	13C12-OCDF	$455.7802+/-5 \mathrm{ppm}$	$453.7831+1.5 \mathrm{ppm}$	49.24	49.24	49.24	49.23	passed	passed

No.	Compound Name	QM Retention Time	$\begin{array}{\|l} \hline \begin{array}{l} \text { RM1 Ratio } \\ \text { (A) } \end{array} \\ \hline \end{array}$	Ratio 1 Limit		$\begin{aligned} & \hline \begin{array}{l} \text { Ratio1 } \\ \text { Status } \end{array} \end{aligned}$	$\begin{aligned} & \text { Calculated } \\ & \text { RF (A) } \\ & \hline \end{aligned}$	Response File RF (A)	RF Limit		RF Status
1	2378-TCDF	31.00	0.7720	0.6450 -	0.8950	passed	1.0376	1.0349	0.8227 -	1.2471	passed
2	2378-TCDD	32.05	0.7664	0.6450 -	0.8950	passed	1.2677	1.2338	0.9809 -	1.4867	passed
3	12378-PeCDF	36.56	1.5903	$1.3150-$	1.7850	passed	0.9924	0.9698	0.7710 -	1.1686	passed
4	23478-PeCDF	37.78	1.5610	1.3150 -	1.7850	passed	1.0879	1.0786	0.8575 -	1.2997	passed
5	12378-PeCDD	38.16	1.5723	1.3150 -	1.7850	passed	1.0697	1.0591	0.8420 -	1.2762	passed
6	123478 - $\mathrm{H} \times$ CDF	41.35	1.2447	1.0450 -	1.4350	passed	1.1882	1.1750	0.9341 -	1.4159	passed
7	$123678-\mathrm{HxCDF}$	41.50	1.2446	1.0450 -	1.4350	passed	1.1343	1.1506	0.9147 -	1.3865	passed
8	234678-HxCDF	42.18	1.2589	1.0450 -	1.4350	passed	1.2218	1.2106	0.9624 -	1.4588	passed
9	$123478-\mathrm{H} \times$ CDD	42.37	1.2634	1.0450 -	1.4350	passed	1.0390	1.0241	0.8142 -	1.2340	passed
10	$123678-\mathrm{HxCDD}$	42.49	1.2590	1.0450 -	1.4350	passed	1.0434	1.0211	0.8118 -	1.2304	passed
11	$123789-\mathrm{HxCDD}$	42.80	1.2717	$1.0450-$	1.4350	passed	1.1072	1.0838	0.8616 -	1.3060	passed
12	$123789-\mathrm{HxCDF}$	43.19	1.2819	1.0450 -	1.4350	passed	1. 1358	1.1533	0.9169 -	1.3897	passed
13	$1234678-\mathrm{HpCDF}$	44.87	1.0345	0.8750 -	1.2050	passed	1.2652	1.2820	1.0192 -	1.5448	passed
14	$1234678-\mathrm{HpCDD}$	46.06	1.0455	$0.8750-$	1.2050	passed	1.0733	1.0590	0.8419 -	1.2761	passed
15	1234789-HPCDF	46.63	1.0410	0.8750 -	1.2050	passed	1.3215	1.3231	1.0519 -	1.5943	passed
16	OCDD	49.06	0.8910	0.7550 -	1.0250	passed	1.0434	1.0214	0.8120 -	1.2308	passed
17	OCDF	49.26	0.8941	0.7550 -	1.0250	passed	0.9176	0.9329	0.7417 -	1.1241	passed
18	13C12-1278-TCDD (CRS)	32.41	0.8190	0.6450 -	0.8950	passed	1.2245	1.2842	0.8925 -	1.6759	passed
19	13C12-1234-TCDD	31.26	0.8107	0.6450 -	0.8950	passed	1.0000	1.0000	$1.0000-$	1.0000	passed
20	13C12-123468-HxCDD	41.25	1.2592	1.0450 -	1.4350	passed	1.0000	1.0000	1.0000 -	1.0000	passed
21	13C12-2378-TCDF	30.97	0.7872	0.6450 -	0.8950	passed	1.8454	1.8681	1.2983 -	2.4379	passed
22	13C12-2378-TCDD	32.01	0.7948	0.6450 -	0.8950	passed	0.9524	0.9850	0.6848 -	1.2854	passed
23	13C12-12378-PeCDF	36.55	1.6059	1.3150 -	1.7850	passed	1.7907	1.7271	1.2003 -	2.2539	passed
24	13C12-23478-PeCDF	37.76	1.5908	1.3150 -	1.7850	passed	1.8286	1.7249	1.1988 -	2.2510	passed
25	13C12-12378-PeCDD	38.13	1.6123	1.3150 -	1.7850	passed	1.0201	0.9749	0.6776 -	1.2722	passed
26	13C12-123478-HxCDF	41.34	0.5317	0.4250 -	0.5950	passed	1.2001	1.2851	0.8931 -	1.6771	passed
27	13C12-123678-HxCDF	41.49	0.5241	0.4250 -	0.5950	passed	1.2523	1.3520	0.9396 -	1.7644	passed
28	13C12-234678-HxCDF	42.16	0.5353	0.4250 -	0.5950	passed	1.1344	1.2544	0.8718 -	1.6370	passed
29	13C12-123478-HxCDD	42.35	1.2857	1.0450 -	1.4350	passed	0.8730	0.9461	0.6575 -	1.2347	passed
30	13C12-123678-HxCDD	42.47	1.2856	1.0450 -	1.4350	passed	0.8690	0.9761	0.6784 -	1.2738	passed
31	13C12-123789-HxCDD	42.78	1.2380	1.0450 -	1.4350	passed	0.8425	0.9341	0.6492 -	1.2190	passed
32	13C12-123789-HxCDF	43.17	0.5298	0.4250 -	0.5950	passed	1.0588	1.1840	0.8229 -	1.5451	passed
33	13C12-1234678-HpCDF	44.86	0.4543	0.3650 -	0.5150	passed	0.9954	1.1050	0.7680 -	1.4420	passed
34	13C12-1234678-HpCDD	46.05	1.0487	0.8750 -	1.2050	passed	0.7630	0.8651	0.6012 -	1.1290	passed
35	13C12-1234789-HpCDF	46.62	0.4437	0.3650 -	0.5150	passed	0.7904	0.9436	0.6558 -	1.2314	passed
36	13C12-OCDD	49.06	0.9095	0.7550 -	1.0250	passed	0.6594	0.7794	0.5417 -	1.0171	passed
37	13C12-OCDF	49.24	0.8932	0.7550 -	1.0250	passed	0.9207	1.1485	0.7982 -	1.4988	passed

Entry Parameters

No.	Compound Name	Status Overview	QM Retention Time	QM Aree	$\begin{aligned} & \text { QM } \\ & \text { Mode } \end{aligned}$		RM1 Area	RM1 Mode		Detection Limit (A)	Un qualified Amount (A)		Adjusted Amount (A)	AdjSpecAMT	Signal-to-Noise	$\begin{aligned} & \text { Client } \\ & \text { Flags } \end{aligned}$
1	2378-TCDF	passed	31.00	211967		A	163645		A	0.0065		10.026235	10.0262	10.000000	3922	
2	2378-TCDD	passed	32.05	134077		A	102753		A	0.0067		10.274205	10.2742	10.000000	3801	
3	12378-PeCDF	passed	36.56	672905		A	1070113		A	0.0049		51.164132	51.164 ¢	50.000000	27184	
4	23478-PeCDF	passed	37.38	761885		A	1189277		A	0.0040		50.432100	50.4321	50.000000	31749	
5	12378-PeCDD	passed	38.16	416042		A	654150		A	0.0141		50.497473	50.4975	50.000000	8993	
6	123478-HxCDF	passed	4135	912020		A	1135170		A	0.0116		50.564220	50.5642	50.000000	10914	
7	$123678-\mathrm{HxCDF}$	passed	41.50	908588		A	1130843		A	0.0113		49.29262θ	49.2926	50.000000	10919	
8	234678-HxCDF	passed	42.18	880891		A	1108930		A	0.0118		50.462030	50.4620	50.000000	10571	
9	12347e-HxCDD	passed	42.37	575336		A	726854		A	0.0116		50.728331	50.7283	50.000000	10924	
10	$123678-\mathrm{HxCDD}$	passed	42.49	576266		A	725509		A	0.0120		51.090887	51.0909	50.000000	10869	
11	$123789-\mathrm{HxCDD}$	passed	42.80	589489		A	749660		A	0.0113		51.077936	51.0779	50.000000	11252	
12	$123789-\mathrm{HxCDF}$	passed	43.19	756611		A	969890		A	0.0132		49.243239	49.2432	50.000000	9335	
13	1234678-HpCDF	passed	44.67	888766		A	919392		A	0.0138		49.344911	49.3449	50.000000	8846	
14	1234678-HpCDD	passed	46.06	574773		A	600907		A	0.0191		50.679330	50.6793	50.000000	6633	
15	1234789-HpCDF	passed	46.63	734739		A	764859		A	0.0165		49.937723	48.9377	50.000000	7441	
16	OCDD	passed	49.06	1044572		A	930738		A	0.0185		102.154103	102.1541	100.000000	13689	
17	OCDF	passed	49.26	1280674		A	1145102		A	0.0128		98.363288	98.3633	100.000000	19330	
18	13C12-1278-TCDD (CFS)	passed	32.41	132045		A	108149		A	0.0077		9.535057	9.5351	10.000000	2997	
19	13C12-1234-TCDD	passed	31.26	1083350		A	878260		A	0.0148		100.000000	100.0000	100.000000	16866	
20	13C12-123468-HxCDD	passed	41.25	1270915		A	1600384		A	0.0159		100.000000	100.0000	100.000000	15685	
21	13C12-2378-TCDF	passed	30.97	2025483		A	1594399		A	0.0042		96.785170	98.7852	100.000000	55664	
22	13C12-2378-TCDD	passed	32.01	1040950		A	827295		A	0.0150		96.692804	96.6926	100.000000	16466	
23	13C12-12378-PeCDF	passed	36.55	1347934		A	2164702		A	0.0255		103.684373	103.6844	100.000000	12736	
24	13C12-23478-PeCDF	passed	37.76	1384548		A	2202489		A	0.0256		106.014712	106.0147	100.000000	13892	
25	13C12-12378-PeCDD	passed	38.13	765969		A	1234989		A	0.0158		104.634586	104.6346	100.000000	21992	
26	13C12-123478-HxCDF	passed	41.34	2249734		A	1196085		A	0.0175		93.381801	93.3816	100.000000	13292	
27	13C12-123678-HxCDF	passed	41.49	2359303		A	1236494		A	0.0166		92.625293	92.6253	100.000000	13947	
28	13C12-234678-HxCDF	passed	42.16	2121525		A	1135623		A	0.0178		90.431950	90.4320	100.000000	12766	
29	13C 12-123478-H×CDD	passed	42.35	1096668		A	1409958		A	0.0188		92.274604	92.2746	100.000000	14112	
30	13C12-12367e-HxCDD	passed	42.47	1091752		A	1403518		A	0.0163		89.034977	89.0350	100.000000	13758	
31	13C12-123799-H×CDD	passed	42.76	1080871		A	1338159		A	0.0171		90.188372	90.1884	100.000000	13711	
32	13C12-123789-HxCDF	passed	43.17	1987196		A	1052884		A	0.0189		89.421396	89.4214	100.000000	11936	
33	13C12-1234678-HpCDF	passed	44.86	1965305		A	892887		A	0.0252		90.086932	90.0869	100.000000	9512	
34	13C12-1234678-HpCDD	passed	46.05	1069299		A	1121392		A	0.0208		88.194238	88.1942	100.000000	11468	
35	13C12-1234789-HpCDF	passed	46.62	1572022		A	697527		A	0.0295		83.762907	83.7629	100.000000	7708	
36	13C12-OCDD	passed	49.06	1982892		A	1803493		A	0.0145		169.191184	169.1912	200.000000	31926	
37	13C12-OCDF	passed	49.24	2792867		A	2494314		A	0.0112		160.329918	160.3299	200.000000	39157	


```
*** file opened wed Feb 08 10:08:38 2017 幺幺*
```

Started by	- XCalibur
Instrument Internet name	- DFS MS
Instrument mode7	DFS MS
Instrument service number	SN0000XXXX
Workstation internet name - LX18470	

Analysis started at: 08-Feb-17 10:08:37

Analysis will stop at user request

Firmware Version: 2.02

MCAL file name:

Sequence : 44428e9b-1f82-4600-a587-45b396ba3037

MID procedure: PFK16MAR24+MDT

Mid Time Windows:
Start Measure End Cycletime

\#	1	$11: 30 \mathrm{~min}$	$9: 30 \mathrm{~min}$	$21: 00 \mathrm{~min}$	1.00 sec	
\#	2	$21: 00 \mathrm{~min}$	$13: 36 \mathrm{~min}$	$34: 36 \mathrm{~min}$	1.00	sec
\#	3	$34: 36 \mathrm{~min}$	$4: 53 \mathrm{~min}$	$39: 30 \mathrm{~min}$	0.90	sec
\#	4	$39: 30 \mathrm{~min}$	$4: 45 \mathrm{~min}$	$44: 15 \mathrm{~min}$	0.80	sec
\#	5	$44: 15 \mathrm{~min}$	$3: 45 \mathrm{~min}$	$48: 00 \mathrm{~min}$	0.80	sec
\# 6	$48: 00 \mathrm{~min}$	$3: 00 \mathrm{~min}$	$51: 00 \mathrm{~min}$	0.80 sec		

Mid Masses:

Window \# 1 mass			
int	gr	time (ms)	
218.0129	1	1	95
218.9851	20	1	4
220.0100	1	1	95
230.0532	2	1	47
232.0502	2	1	47
251.9739	1	1	95
253.9710	1	1	95
264.0142	2	1	47
266.0112	2	1	47
285.9350	1	1	95
287.9320	1	1	95
292.9819 c	20	1	4
297.9752	2	1	47
299.9723	2	1	47
Window \# 2			
mass F	int	gr	time (ms)
292.9819	20	1	5
303.9011	1	1	118
305.8981	1	1	118
315.9413	5	1	23
317.9384	5	1	23
319.8960	1	1	118
321.8930	1	1	118

Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
Window \# 3			
mass F	int	gr	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
window \# 4			
mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97557	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
Window \# 5			
mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
Window \# 6			
mass F	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID Window terminated after 34.600000 minutes MID Window end time was 34.600000 minutes

Page 2

17FEB07-28
MID Window terminated after 39.500000 minutes MID Window end time was 39.500000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\Xcalibur \backslash System\DFS $\backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	bMASS	98.5000
bquad	0.0500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	-49.6667
ELEN	-45.0000	EMULT	1300.0000	ENS	173.0000
ENSBR	0.0500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	172.0000	EXSBR	-0.4700
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	12.3500
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0175	FVINLET	0.0306	FVSRC	0.0291
FWIN	0.7000	HCURR	0.0000	hVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	714.0000
LENS_SYM	14.3000	LM	1050.0000	LMII	500.0000
LMASS	98.5000	LKM	442.9723	MASS	98.5000
MDAC	1466744.8101	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2524.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-9.0000	RECURR	0.9001	RELEN	0.0000
RES	12451.3110	RPUSHER	-8.6374	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	638.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0206	TANAL	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	98.5000	XLENS_POT	896.0000
XLENS_SYM	-8.5000	YLENS_POT	568.0000	YLENS_SYM	0.0000

```
Source Gauge:
    2.0e-005 mbar
Analyzer Penning: 5.2e-008 mbar
Pirani Analyse: 1.8e-002 mbar
Pirani Source: 2.9e-002 mbar
Pirani Inlet system: 3.1e-002 mbar
```

Scantype is magnetic

Sourcemode is EI POS

```
MID Time Window 1: Resolution is 11879.
MID Time Window 2: Resolution is 12729.
MID Time Window 3: Resolution is 12835.
MID Time Window 4: Resolution is 12755.
```

MID Time Window 5: Resolution is 13723. MID Time Window 6: Resolution is 12451.

Amplifier offset: 88.

Page 4

Raw QC Data

Dioxins/Furans by HRMS

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility	Compatibility off
Sum Area/Height	Sum QM RM1
Quantitation Status	Dependend on Area
Injection Volume [hIJV]	1.0
Sample Volume [hSV]	20.0
Sample Weight [hSWT]	10.0
Dilution Factor [hDF]	1.0
Det. Limit Factor [hDLF]	2.5
Response Factor Mode	Average RF
Fit Calc. Mode	Linear Fit
Regression Mode	Non weighted Regression
Weighted Regression Factor	1.0

y:117feb07\17feb07-17.quan
y:117feb07\17feb07-17.raw
y:Iresponsefilesidf18471-17jan31dfical.resp
C:XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Sum RM RM1
Sum QM RM1
Dependend on Area
.0.0
10.0
1.0
2.5

Linear Fit
Non weighted Regression
1.0

No.	Compound Name	QM Retention Time	Status Overview	Amount Status	RM1 Time Status	$\begin{array}{\|l\|} \hline \text { Ratio1 } \\ \text { Status } \end{array}$	Recovery Status	Native vs Labeled Time Status	$\begin{aligned} & \text { Status } \\ & \text { Info } \end{aligned}$
1	2378-TCDF	31.02	failed	passed	failed	failed	passed	failed	Failed on: Ratio1A RM1Time < min RM2Time
2	2378-TCDD	32.03	failed	failed	passed	failed	passed	passed	Failed on: CAA RatiotA
3	12378-PeCDF	36.55	failed	passed	passed	failed	passed	passed	Failed on: Ratio 1A
4	23478-PeCDF	37.76	failed	passed	passed	failed	passed	passed	Failed on: Ratio 1A
5	12378-PeCDD	38.16	passed	passed	passed	passed	passed	passed	
6	123478 -HxCDF	41.36	passed	passed	passed	passed	passed	passed	
7	123678-HxCDF	41.49	failed	passed	passed	failed	passed	passed	Failed on: Ratio1A
8	234678-HxCDF	42.18	failed	passed	passed	failed	passed	passed	Failed on: Ratio1A
9	123478-HxCDD	42.35	failed	passed	passed	failed	passed	passed	Failed on: Ratio1A
10	123678-HxCDD	42.47	failed	passed	passed	failed	passed	passed	Failed on: Ratio1A
11	123789-HxCDD	42.78	failed	passed	passed	failed	passed	passed	Failed on: Ratio1A
12	$123789-\mathrm{HxCDF}$	43.16	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.86	passed	passed	passed	passed	passed	passed	
14	1234678-HpCDD	46.04	failed	passed	passed	failed	passed	passed	Failed on: Ratio1A
15	1234789-HpCDF	46.60	passed	passed	passed	passed	passed	passed	
16	OCDD	49.04	passed	passed	passed	passed	passed	passed	
17	OCDF	49.26	failed	passed	passed	failed	passed	passed	Failed on: Ratio 1A
18	13C12-1278-TCDD (CRS)	32.39	passed	passed	passed	passed	passed	passed	
19	13C12-1234-TCDD	31.24	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.23	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	30.95	passed	passed	passed	passed	passed	passed	
22	13C12-2378-TCDD	32.00	passed	passed	passed	passed	passed	passed	
23	13C12-12378-PeCDF	36.53	passed	passed	passed	passed	passed	passed	
24	13C12-23478-PeCDF	37.75	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.13	passed	passed	passed	passed	passed	passed	
26	13C12-123478-HxCDF	41.33	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.48	passed	passed	passed	passed	passed	passed	
28	13C12-234878-HxCDF	42.15	passed	passed	passed	passed	passed	passed	
29	13C12-123478-HxCDD	42.34	passed	passed	passed	passed	passed	passed	
30	13C12-123678-HxCDD	42.46	passed	passed	passed	passed	passed	passed	
31	13C12-123789-HxCDD	42.77	passed	passed	passed	passed	passed	passed	
32	13C12-123789-HxCDF	43.16	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HpCDF	44.85	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-HpCDD	46.04	passed	passed	passed	passed	passed	passed	
35	13C12-1234789-HpCDF	46.60	passed	passed	passed	passed	passed	passed	
36	13C12-OCDD	49.04	passed	passed	passed	passed	passed	passed	
37	13C12-OCDF	49.23	passed	passed	passed	passed	passed	passed	
38	Total TCDF	29.74	passed (1)	--	--	--	---	--	
39	Total TCDD	30.53	passed (1)	-	---	--	---	-	
40	Total PeCDF	36.18	failed	--	---	--	--	-	Failed on:
41	Total PeCDD	37.02	passed (1)	--	--	-.-	-	--	
42	Total HxCDF	41.54	passed (2)	-	---	--	--	--	
43	Total HxCDD	41.73	failed	--	--	--	--	--	Failed on:
44	Total HpCDD	45.63	failed	-	\cdots	--	--	--	Failed on:
45	Total HPCDF	45.75	passed (3)	-	--	--	--	--	
46	AVG_Total PeCDF	0.00	passed (2)	-	--	--	--	--	
47	AVG_Total HxCDF	0.00	passed (4)	--	-	--	---	--	
48	AVG_Total HxCDD	0.00	passed (3)	--	\cdots	---	--	--	
49	AVG_Total HpCDF	0.00	passed (2)	-	--	--	--	---	
50	TEQ WHO 2005	0.00	passed (6)	--	--	---	--	--	
51	Single TCDF	29.83	failed	passed	passed	failed	passed	--	Failed on: Ratio1A
52	Single TCDF	26.08	failed	passed	passed	failed	passed	--	Failed on: Ratio1A
53	Single TCDF	27.83	failed	passed	passed	failed	passed	--	Failed on: Ratio 1A
54	Single TCDF	30.54	failed	passed	failed	failed	passed	--	Failed on: Ratio1A RM1Time < min
55	Single TCDF	31.02	failed	passed	failed	failed	passed	--	Failed on: Ratio 1A RM1Time < min
56	Single TCDF	31.14	failed	passed	passed	failed	passed	--	Failed on: Ratio1A
57	Single TCDF	31.30	failed	passed	passed	failed	passed	--	Failed on: Ratio1A
58	Single TCDF	31.45	failed	passed	failed	failed	passed	--	Failed on: Ratio1A RM1Time < min
59	Single TCDF	32.06	failed	passed	passed	failed	passed	--	Failed on: Ratio1A
60	Single TCDF	32.85	passed	passed	passed	passed	passed	--	
61	Single TCDF	33.42	failed	passed	passed	failed	passed	---	Failed on: Ratio1A
62	Single TCDD	30.94	failed	passed	passed	failed	passed	--	Failed on: Ratio 1A
63	Single TCDD	27.84	failed	passed	passed	failed	passed	--	Failed on: Ratio 1A

No.	Compound Name		QM Retention Time	Status Overview	Amount: Status	RM1 Time Status	Ratio1 Status	Recovery Status	Native vs Labeled Time Status	Status Info	
64		Single TCDD	28.08	failed	passed	passed	failed	passed		--	Failed on: Ratio1A
65		Single TCDD	29.12	passed	passed	passed	passed	passed		--	
66		Single TCDD	29.67	failed	passed	passed	failed	passed		---	Failed on: Ratio1A
67		Single TCDD	31.16	failed	passed	passed	failed	passed		-	Failed on: Ratio1A
68		Single TCDD	33.14	failed	passed	passed	failed	passed		---	Failed on: Ratio1A
69		Single PeCDD	38.16	passed	passed	passed	passed	passed		--	
70		Single PeCDD	35.36	failed	passed	passed	failed	passed		-	Failed on: Ratio1A
71		Single PeCDD	38.09	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
72		Single PeCDD	38.70	failed	passed	failed	failed	passed		--	Failed on: Ratio1A RM1Time2 > max
73		Single PeCDF	36.55	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
74		Single PeCDF	33.38	failed	passed	passed	failed	passed		-	Failed on: Ratio 1 A
75		Single PeCDF	36.42	failed	passed	failed	failed	passed		--	Failed on: Ratio1A RM1Time < min
76		Single PeCDF	36.64	failed	passed	passed	failed	passed		-	Failed on: Ratio1A
77		Single PeCDF	36.75	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
78		Single PeCDF	36.99	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
79		Single PeCDF	37.53	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
80		Single PeCDF	37.66	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
81		Single PeCDF	37.76	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
82		Single PeCDF	38.03	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
83		Single PeCDF	38.41	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
84		Single PeCDF	38.60	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
85		Single PeCDF	38.74	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
86		Single PeCDF	38.00	failed	passed	failed	failed	passed		--	Failed on: Ratio1A RM1Time < min
87		Single HpCDD	46.04	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
88		Single HpCDD	45.21	failed	passed	passed	failed	passed		-	Failed on: Ratio1A
89		Single HxCDF	43.16	passed	passed	passed	passed	passed		-	
90		Single HxCDF	40.10	failed	passed	passed	failed	passed		---	Failed on: Ratio 1A
91		Single HxCDF	41.36	passed	passed	passed	passed	passed		-	
92		Single HxCDF	41.49	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
93		Single HxCDF	42.18	failed	passed	passed	failed	passed		-	Failed on: Ratio1A
94		Single HxCDF	42.81	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
95		Single HxCDF	42.90	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
96		Single HxCDF	43.04	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
97		Single HxCDD	41.33	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
98		Single HxCDD	40.56	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
99		Single HxCDD	41.48	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
100		Single HxCDD	42.14	failed	passed	passed	failed	passed		-	Failed on: Ratio 1A
101		Single HxCDD	42.20	failed	passed	passed	failed	passed		--	Failed on: Ratio1A
102		Single $H \times C D D$	42.35	failed	passed	passed	failed	passed		--	Failed on: Ratio1A
103		Single HxCDD	42.47	failed	passed	passed	failed	passed		--	Failed on: Ratio1A
104		Single $H \times C D D$	42.55	failed	passed	passed	failed	passed		--	Failed on: Ratio1A
105		Single HxCDD	42.78	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
106		Single HpCDF	44.86	passed	passed	passed	passed	passed		---	
107		Single HpCDF	44.97	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
108		Single HpCDF	45.07	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
109		Single HpCDF	45.22	failed	passed	failed	passed	passed		--	Failed on: RM1Time2 > max
110		Single HpCDF	45.39	passed	passed	passed	passed	passed		--	
111		Single HpCDF	45.44	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
112		Single HpCDF	46.05	failed	passed	passed	failed	passed		--	Failed on: Ratio 1A
113		Single HpCDF	46.60	passed	passed	passed	passed	passed		--	

Sample 17031003/BLK03100
Inst ID: DF18471-17FEBOT/Clien

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/08 00:23
247
BLK:11030:12937
102
17031003
BLK031003
DF18471-17FEB07
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
17031003
$y: 117 \mathrm{feb} 07 \backslash 17 \mathrm{feb} 07-17 . q u a n$
y:117feb07\17feb07-17.raw
y:Iresponsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.0
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

Entry: 2378-tcdf IS: 13C12-2378-TCDF

Entry Parameters

Compound Name	$2378-$ TCDF
QM Retention Time	31.02
QM Area	247
QM Integration Mode	A
RM1 Area	12
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0108
Adjusted Amount (A)	n.d.
Signal-to-Noise	10
Client Flags	
Status Info	Failed on: Ratio1A RM1Time < min RM2Time < min
Status Overview	failed

Chromatogram

Entry: 2378-tcdd IS: 13C 12-2378-TCDD

Entry Parameters

Compound Name	2378-TCDD
QM Retention Time	32.03
QM Area	1
QM Integration Mode	A
RM1 Area	53
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0117
Adjusted Amount (A)	n.d. <0.0117
Signal-to-Noise	3
Client Flags	
Status Info	Failed on: CAA Ratio1A
Status Overview	failed

Chromatogram

Entry: 12378-pecdf IS: 13C12-12378-PeCDF

Entry Parameters

Compound Name	12378 -PeCDF
QM Retention Time	36.55
QM Area	327
QM Integration Mode	A
RM1 Area	706
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0087
Adjusted Amount (A)	n.d.
Signal-to-Noise	30
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

Entry: 23478-pecdf IS: 13C12-23478-PeCDF

Entry Parameters

Compound Name	23478 -PeCDF
QM Retention Time	37.76
QM Area	228
QM Integration Mode	A
RM1 Area	450
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0081
Adjusted Amount (A)	n.d.
Signal-to-Noise	23
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

Entry: 12378-pecdd IS: 13C12-12378-PeCDD

Entry Parameters

Compound Name	$12378-\mathrm{PeCDD}$
QM Retention Time	38.16
QM Area	135
QM Integration Mode	A
RM1 Area	189
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0185
Adjusted Amount (A)	0.0463
Signal-to-Noise	9
Client Flags	
Status Info	
Status Overview	passed

Chromatogram

RT: 40.34-42.34 SM: 3G

Entry: 123478-hxcdf IS: 13C12-123478-HxCDF

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.36
QM Area	183
QM Integration Mode	A
RM1 Area	213
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0076
Adjusted Amount (A)	0.0341
Signal-to-Noise	10
Client Flags	
Status Info	
Status Overview	passed

Entry: 123678-hxcdf IS: 13C12-123678-HxCDF

Entry Parameters

Compound Name	$123678-\mathrm{HxCDF}$
QM Retention Time	41.49
QM Area	179
QM Integration Mode	A
RM1 Area	367
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0069
Adjusted Amount (A)	n.d.
Signal-to-Noise	16
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

RT: 41.16-43.16 SM: 3G

Entry: 234678-hxcdf IS: 13C12-234678-HxCDF

Entry Parameters

Compound Name	$234678-\mathrm{HxCDF}$
QM Retention Time	42.18
QM Area	84
QM Integration Mode	A
RM1 Area	496
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0075
Adjusted Amount (A)	n.d.
Signal-to-Noise	15
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

Entry: 123478-hxcdd IS: 13C12-123478-HxCDD

Entry Parameters

Compound Name	$123478-\mathrm{HxCDD}$
QM Retention Time	42.35
QM Area	51
QM Integration Mode	A
RM1 Area	183
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0116
Adjusted Amount (A)	n.d.
Signal-to-Noise	9
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

Entry: 123678-hxcdd IS: 13C12-123678-HxCDD

Entry Parameters

Compound Name	$123678-\mathrm{HxCDD}$
QM Retention Time	42.47
QM Area	85
QM Integration Mode	A
RM1 Area	348
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0115
Adjusted Amount (A)	n.d.
Signal-to-Noise	12
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

Entry: 123789-hxcdd IS: 13C12-123789-HxCDD

Entry Parameters

Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.78
QM Area	220
QM Integration Mode	A
RM1 Area	198
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0110
Adjusted Amount (A)	n.d.
Signal-to-Noise	11
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

RT: 42.17-44.17 SM: 3G

Entry: 123789-hxcdf IS: $13 \mathrm{C} 12-123789-\mathrm{HxCDF}$

Entry Parameters

Compound Name	123789-HxCDF
QM Retention Time	43.16
QM Area	604
QM Integration Mode	A
RM1 Area	646
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0080
Adjusted Amount (A)	0.1121
Signal-to-Noise	36
Client Flags	
Status Info	
Status Overview	passed

Chromatogram

RT: 43.86-45.86 SM: 3G

Entry: 1234678-hpcdf IS: 13C12-1234678-HpCDF

Entry Parameters

Compound Name	$1234678-H p C D F$
QM Retention Time	44.86
QM Area	450
QM Integration Mode	A
RM1 Area	404
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0065
Adjusted Amount (A)	0.0605
Signal-to-Noise	24
Client Flags	
Status Info	
Status Overview	passed

Chromatogram

Entry: 1234678-hpcdd IS: 13C12-1234678-HpCDD

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDD}$
QM Retention Time	46.04
QM Area	254
QM Integration Mode	A
RM1 Area	347
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0090
Adjusted Amount (A)	n.d.
Signal-to-Noise	24
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

Entry: 1234789-hpcdf IS: 13C12-1234789-HpCDF

Entry Parameters

Compound Name	$1234789-\mathrm{HpCDF}$
QM Retention Time	46.60
QM Area	275
QM Integration Mode	A
RM1 Area	270
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0098
Adjusted Amount (A)	0.0578
Signal-to-Noise	16
Client Fiags	
Status Info	
Status Overview	passed

Chromatogram

RT: 48.06-50.06 SM: 3G

Entry: ocdd IS: 13C12-OCDD

Entry Parameters	
Compound Name	OCDD
QM Retention Time	49.04
QM Area	474
QM Integration Mode	A
RM1 Area	469
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0197
Adjusted Amount (A)	0.1287
Signal-to-Noise	21
Client Flags	
Status Info	
Status Overview	passed

Chromatogram

Entry: ocdf IS: 13C12-OCDF

Entry Parameters	
Compound Name	OCDF
QM Retention Time	49.26
QM Area	166
QM Integration Mode	A
RM1 Area	504
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0135
Adjusted Amount (A)	n.d.
Signal-to-Noise	16
Client Flags	
Status Info	Failed on: Ratio1A
Status Overview	failed

Chromatogram

Entry: 1278-TCDD IS: 13C12-1234-TCDD

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.39
QM Area	182877
QM Integration Mode	A
RM1 Area	141979
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0261
Adjusted Amount (A)	35.5615
Signal-to-Noise	3342
Client Flags	
Status Info	
Status Overview	passed

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter

Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/08 00:23
247
BLK:11030:12937
102
17031003
BLK031003
DF18471-17FEB07
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
17031003
y:117feb07\17feb07-17.quan
y:117feb07117feb07-17.raw
y:Iresponsefilesidf18471-17jan31dfical.resp
C:XCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.0
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

Chromatogram

Entry: total-tcdf IS: 13C12-2378-TCDF

Entry Parameters

Compound Name	Total TCDF
QM Retention Time	29.74
QM Area	79
QM Integration Mode	A
RM1 Area	61
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0108
Adjusted Amount (A)	0.0149
Signal-to-Noise	8
Client Flags	
Status Info	
Status Overview	passed (1)

Chromatogram

Entry: total-tcdd IS: 13C12-2378-TCDD

Entry Parameters

Compound Name	Total TCDD
QM Retention Time	30.53
QM Area	66
QM Integration Mode	A
RM1 Area	48
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0117
Adjusted Amount (A)	0.0160
Signal-to-Noise	7
Client Flags	
Status Info	
Status Overview	passed (1)

Chromatogram

RT: 32.96-39.39 SM: 3G

Entry: totai-pecdf IS: 13C12-PeCDF_AVG

Entry Parameters

Compound Name	Total PeCDF
QM Retention Time	36.18
QM Area	0
QM Integration Mode	A
RM1 Area	0
RM1 Integration Mode	M
Manlnt	1
Detection Limit (A)	---
Adjusted Amount (A)	---
Signal-to-Noise	---
Client Flags	
Status Info	Failed on:
Status Overview	failed

Chromatogram

Entry: total-pecdd IS: 13C12-12378-PeCDD

Entry Parameters

Compound Name	Total PeCDD
QM Retention Time	37.02
QM Area	135
QM Integration Mode	M
RM1 Area	189
RM1 Integration Mode	M
Manint	1
Detection Limit (A)	0.0185
Adjusted Amount (A)	0.0463
Signal-to-Noise	9
Client Flags	
Status Info	
Status Overview	passed (1)

Chromatogram

Entry: total-hxedf IS: 13C12-HxCDF_AVG

Entry Parameters

Compound Name	Total HxCDF
QM Retention Time	41.54
QM Area	787
QM Integration Mode	M
RM1 Area	858
RM1 Integration Mode	M
ManInt	1
Detection Limit (A)	0.0075
Adjusted Amount (A)	0.1368
Signal-to-Noise	23
Client Flags	
Status Info	
Status Overview	passed (2)

Entry: total-hxcod IS: 13C12-HxCDD_AVG

Entry Parameters

Compound Name	Total HxCDD
QM Retention Time	41.73
QM Area	0
QM Integration Mode	M
RM1 Area	0
RM1 Integration Mode	A
Manint	1
Detection Limit (A)	---
Adjusted Amount (A)	--
Signal-to-Noise	\ldots
Client Flags	
Status Info	Failed on:
Status Overview	failed

Chromatogram

Entry: total-hpcdd IS: 13C12-1234678-HpCDD

Entry Parameters

Compound Name	Total HpCDD
QM Retention Time	45.63
QM Area	0
QM Integration Mode	A
RM1 Area	0
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	---
Adjusted Amount (A)	---
Signal-to-Noise	---
Client Flags	
Status Info	Failed on:
Status Overview	failed

Entry: total-hpcdf IS: $13 \mathrm{C} 12-\mathrm{HpCDF}$ AVG

Entry Parameters

Compound Name	Total HpCDF
QM Retention Time	45.75
QM Area	774
QM Integration Mode	A
RM1 Area	730
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0078
Adjusted Amount (A)	0.1275
Signal-to-Noise	15
Client Flags	
Status Info	
Status Overview	passed (3)

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter
QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/08 00:23
249
BLK:11030:12937
102
17031003
BLK031003
DF18471-17FEB07
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
17031003
$y: 117 f e b 07 \backslash 17 f e b 07-17 . q u a n$
y :117feb07\17feb07-17.raw
y :responsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.0
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

Chromatogram

Entry: total-pecdf IS: 13C12-PeCDF_AVG

Entry Parameters

Compound Name	Total PeCDF
QM Retention Time	36.18
QM Area	26
QM Integration Mode	A
RM1 Area	42
RM1 Integration Mode	A
ManInt	1
Detection Limit (A)	0.0084
Unqualified Amount (A)	0.002988
Adjusted Amount (A)	0.0060
Signal-to-Noise	2
Client Flags	
Status Overview	passed (2)
Status Info	

Chromatogram

Entry: total-pecdd IS: 13C12-12378-PeCDD

Entry Parameters

Compound Name	Total PeCDD
QM Retention Time	37.02
QM Area	135
QM Integration Mode	A
RM1 Area	189
RM1 Integration Mode	A
ManInt	1
Detection Limit (A)	0.0185
Unqualified Amount (A)	0.046330
Adjusted Amount (A)	0.0463
Signal-to-Noise	9
Client Flags	
Status Overview	passed (1)

Status Info

Chromatogram

Entry: total-hxcdf IS: 13C 12-HxCDF_AVG

Entry Parameters

Compound Name	Total HxCDF
QM Retention Time	41.54
QM Area	880
QM Integration Mode	A
RM1 Area	973
RM1 Integration Mode	A
ManInt	1
Detection Limit (A)	0.0075
Unqualified Amount (A)	0.038529
Adjusted Amount (A)	0.1541
Signal-to-Noise	13
Client Flags	
Status Overview	passed (4)
Status Info	

Chromatogram

Entry: total-hxedd IS: 13C12-HxCDD_AVG

Entry Parameters

Compound Name	Total HxCDD
QM Retention Time	41.73
QM Area	0
QM Integration Mode	A
RM1 Area	0
RM1 Integration Mode	A
ManInt	1
Detection Limit (A)	--
Unqualified Amount (A)	--
Adjusted Amount (A)	---
Signal-to-Noise	---
Client Flags	
Status Overview	failed
Status Info	Failed on:

No.	Compound Name	$\begin{aligned} & \text { Quan. } \\ & \text { Mass } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ratio } \\ \text { Mass } 1 \\ \hline \end{array}$	$\begin{aligned} & \text { Specified } \\ & \text { RT [min] } \end{aligned}$	$\begin{aligned} & \text { QM Retention } \\ & \text { Time } \end{aligned}$	$\begin{aligned} & \text { RM1 Retention } \\ & \text { Time } \end{aligned}$	Labeled RT	$\begin{aligned} & \text { RM1 Time } \\ & \text { Status } \end{aligned}$	Native vs Labeled Time Status
1	2378-TCDF	305.8987 +/-5 ppm	$303.9016+$ +- 5 ppm	30.98	31.02	30.92	30.95	failed	failed
2	2378-TCDD	321.8936 +/-5 ppm	319.8965 +/- 5 ppm	32.01	32.03	32.03	32.00	passed	passed
3	12378 -PeCDF	$341.8567+/ .5 \mathrm{ppm}$	$339.8597+/ .5 \mathrm{ppm}$	36.54	36.55	36.55	36.53	passed	passed
4	23478-PeCDF	$341.8567+$ + 5 ppm	$339.8597+$ + 5 ppm	37.76	37.76	37.78	37.75	passed	passed
5	12378 -PeCDD	357.8516 +/-5 5 pm	355.8546 +/- 5 ppm	38.15	38.16	38.15	38.13	passed	passed
6	123478-HxCDF	$375.8178+1.5 \mathrm{ppm}$	$373.8208+$ +/ 5 ppm	41.34	41.36	41.34	41.33	passed	passed
7	123678-HxCDF	375.8178 +/-5 ppm	$373.8208+1.5 \mathrm{ppm}$	41.49	41.49	41.49	41.48	passed	passed
8	234678-HxCDF	$375.8178+$ +-5 ppm	$373.8208+$ +. 5 ppm	42.16	42.18	42.18	42.15	passed	passed
9	123478 -HxCDD	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+/ .5 \mathrm{ppm}$	42.35	42.35	42.38	42.34	passed	passed
10	$123678-\mathrm{HxCDD}$	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+$ +- 5 ppm	42.47	42.47	42.49	42.46	passed	passed
11	$123789-\mathrm{HxCDD}$	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+$ +- 5 ppm	42.78	42.78	42.78	42.77	passed	passed
12	123789-HxCDF	375.8178 +/. 5 ppm	$373.8208+1.5 \mathrm{ppm}$	43.17	43.16	43.19	43.16	passed	passed
13	1234678-HpCDF	$409.7789+$ +-5 ppm	$407.7818++.5 \mathrm{ppm}$	44.86	44.86	44.86	44.85	passed	passed
14	1234678-HpCDD	$425.7737+/ .5 \mathrm{ppm}$	$423.7766+1.5 \mathrm{ppm}$	46.05	46.04	46.05	46.04	passed	passed
15	1234789-HpCDF	$409.7789+1.5 \mathrm{ppm}$	$407.7818+1.5 \mathrm{ppm}$	46.61	46.60	46.60	46.60	passed	passed
16	OCDD	459.7348 +/. 5 ppm	$457.7377+1.5 \mathrm{ppm}$	49.05	49.04	49.04	49.04	passed	passed
17	OCDF	$443.7399+$ + 5 ppm	$441.7428+5$ ppm	49.24	49.26	49.26	49.23	passed	passed
18	13C12-1278-TCDD (CRS)	$3339339+$ +-5 ppm	331.9368 ++- 5 ppm	32.37	32.39	32.39	32.39	passed	passed
19	13C12-1234-TCDD	$333.9339+/ .5 \mathrm{ppm}$	$331.9368+$ +/ 5 ppm	31.24	31.24	31.24	31.24	passed	passed
20	13C12-123468-HxCDD	$403.8529+1.5 \mathrm{ppm}$	$401.8559++5 \mathrm{ppm}$	41.23	41.23	41.23	41.23	passed	passed
21	13C12-2378-TCDF	$317.9389+1.5 \mathrm{ppm}$	$315.9419++-5 \mathrm{ppm}$	30.95	30.95	30.95	31.02	passed	passed
22	13C12-2378-TCDD	$333.9339+$ +/ 5 ppm	331.9368 +/. 5 ppm	31.99	32.00	32.00	32.00	passed	passed
23	13C12-12378-PeCDF	353.8970 +/-5 ppm	$351.9000+$ +- 5 ppm	36.51	36.53	36.53	36.52	passed	passed
24	13C12-23478-PeCDF	$353.8970+/-5 \mathrm{ppm}$	$351.9000+1 / 5 \mathrm{ppm}$	37.75	37.75	37.75	37.72	passed	passed
25	13C12-12378-PeCDD	$369.8919+/-5 \mathrm{ppm}$	$367.8949+$ +- 5 ppm	38.12	38.13	38.13	38.13	passed	passed
26	13C12-123478-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+/-5 \mathrm{ppm}$	41.32	41.33	41.33	41.29	passed	passed
27	13C12-123678-HxCDF	385.8610 +/- 5 ppm	$383.8639+5 \mathrm{ppm}$	41.47	41.48	41.48	41.60	passed	passed
28	13C12-234678-HxCDF	$385.8610+/ .5 \mathrm{ppm}$	$383.8639+1.5 \mathrm{ppm}$	42.15	42.15	42.15	42.18	passed	passed
29	13C12-123478-HxCDD	$403.8529+1.5 \mathrm{ppm}$	$401.8559+5 \mathrm{spm}$	42.33	42.34	42.34	42.34	passed	passed
30	13C12-123678-HxCDD	$403.8529+$ +-5 ppm	$401.8559+$ +/ 5 ppm	42.46	42.46	42.46	42.46	passed	passed
31	13C12-123789-HxCDD	$403.8529+1.5 \mathrm{ppm}$	$401.8559+/ .5 \mathrm{ppm}$	42.77	42.77	42.77	42.77	passed	passed
32	13C12-123789-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+$ +/ 5 ppm	43.16	43.16	43.16	43.12	passed	passed
33	13C12-1234678-HpCDF	419.8220 +/. 5 ppm	$417.8253+$ +- 5 ppm	44.84	44.85	44.85	45.10	passed	passed
34	13C12-1234678-HpCDD	$437.8140+/ .5 \mathrm{ppm}$	$435.8189++.5 \mathrm{ppm}$	46.03	46.04	46.04	46.04	passed	passed
35	13C12-1234789-HpCDF	$419.8220+/ .5 \mathrm{ppm}$	$417.8253+$ + 5 ppm	46.60	46.60	46.60	46.60	passed	passed
36	13C12-OCDD	$471.7750+/-5 \mathrm{ppm}$	$469.7779+$ + 5 ppm	49.04	49.04	49.04	49.04	passed	passed
37	13C12-OCDF	$455.7802+$ + 5 ppm	$453.7831++5 \mathrm{ppm}$	49.22	49.23	49.23	49.23	passed	passed
38	Total TCDF	$305.8987+$ +-5 ppm	$303.9016+$ + 5 ppm	29.73	29.74	29.74	29.74	--	--
39	Total TCDD	321.8936 +/-5 ppm	$319.8965+$ +- 5 ppm	30.52	30.53	30.53	30.53	--	--
40	Total PeCDF	341.8567 +/- 5 ppm	$339.8597+1.5 \mathrm{ppm}$	36.17	36.18	36.18	36.18	--	--
41	Total PeCDD	357.8516 +/-5ppm	$355.8546+/ .5 \mathrm{ppm}$	37.00	37.02	37.02	37.02	---	--
42	Total HxCDF	$375.8178+$ + 5 ppm	$373.8208+$ +/ 5 ppm	41.54	41.54	41.54	41.54	--	-
43	Total HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+$ +/ 5 ppm	41.73	41.73	41.73	41.73	--	--
44	Total HpCDD	$425.7737+/-5 \mathrm{ppm}$	$423.7766+1.5 \mathrm{ppm}$	45.63	45.63	45.63	45.63	--	-
45	Total HpCDF	$409.7789+$ + 5 ppm	$407.7818+$ + 5 ppm	45.75	45.75	45.75	45.75	---	--
46	AVG_Total PeCDF	341.8567 +/-5 5 pm	$339.8597+$ +- 5 ppm	0.00	0.00	0.00	0.00	--	-
47	AVG_Total HxCDF	$375.8178+/ .5 \mathrm{ppm}$	$373.8208+$ +- 5 ppm	0.00	0.00	0.00	0.00	--	-
48	AVG_Total HxCDD	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+$ - 5 ppm	0.00	0.00	0.00	0.00	--	-
49	AVG_Total HpCDF	$409.7789+/-5 \mathrm{ppm}$	$407.7818+1.5 \mathrm{ppm}$	0.00	0.00	0.00	0.00	--	-
50	TEQ WHO 2005	$0.0000+1.0 .0 \mathrm{mmu}$	$0.0000+1-0.0 \mathrm{mmu}$	0.00	0.00	0.00	0.00	--	-
51	Single TCDF	$305.8987+/ .5 \mathrm{Fpm}$	$303.9016+1.5 \mathrm{ppm}$	29.83	29.83	29.83	0.00	passed	--
52	Single TCDF	305.8987 +/-5 ppm	$303.9016+1.5 \mathrm{ppm}$	26.08	26.08	26.07	0.00	passed	-
53	Single TCDF	$305.8987+/-5 \mathrm{ppm}$	$303.9016+$ +- 5 ppm	27.83	27.83	27.86	0.00	passed	-
54	Single TCDF	$305.8987+/-5 \mathrm{ppm}$	$303.9016+/ .5 \mathrm{ppm}$	30.54	30.54	30.49	0.00	failed	-
55	Single TCDF	$305.8987+/ .5 \mathrm{ppm}$	$303.9016+$ +- 5 ppm	31.02	31.02	30.92	0.00	failed	--
56	Single TCDF	$305.8987+/-5 \mathrm{ppm}$	303.9016 +/. 5 ppm	31.14	31.14	31.14	0.00	passed	--
57	Single TCDF	$305.8987+/-5 \mathrm{ppm}$	$303.9016+1.5 \mathrm{ppm}$	31.30	31.30	31.28	0.00	passed	-
58	Single TCDF	$305.8987+/-5 \mathrm{ppm}$	303.9016 +/- 5 ppm	31.45	31.45	31.38	0.00	failed	--
59	Single TCDF	$305.8987+/-5 \mathrm{ppm}$	$303.9016+/-5 \mathrm{ppm}$	32.06	32.06	32.06	0.00	passed	--
60	Single TCDF	$305.8987+/ .5 \mathrm{ppm}$	$303.9016+1-5 \mathrm{ppm}$	32.85	32.85	32.85	0.00	passed	--
61	Single TCDF	$305.8987+/-5 \mathrm{ppm}$	303.9016 +/. 5 ppm	33.42	33.42	33.43	0.00	passed	--
62	Single TCDD	321.8936 +/-5 ppm	$319.8965+/-5 \mathrm{ppm}$	30.94	30.94	30.94	0.00	passed	-
63	Single TCOD	321.8936 +/-5 ppm	319.8965 +/- 5 ppm	27.84	27.84	27.84	0.00	passed	-

No.	Compound Name		Quan. Mass	Ratio Mass 1	Specified RT [min]	QM Retention Time	RM1 Retention Time	Labeled RT	RM1 Time Status	Native vs Labeled Time Status
64		Single TCDD	$321.8936+/ .5 \mathrm{ppm}$	319.8965 +/-5 ppm	28.08	28.08	28.08	0.00	passed	--
65		Single TCDD	321.8936 +/-5 ppm	319.8965 +/-5 ppm	29.12	29.12	29.09	0.00	passed	--
66		Single TCDD	321.8936 +/-5 ppm	$319.8965+/ .5 \mathrm{ppm}$	29.67	29.67	29.71	0.00	passed	--
67		Single TCDD	321.8936 +/-5 ppm	319.8965 +/. 5 ppm	31.16	31.16	31.18	0.00	passed	--
68		Single TCDD	321.8936 +/- 5 ppm	319.8965 +/-5 ppm	33.14	33.14	33.14	0.00	passed	--
69		Single PeCDD	357.8516 +/-5 ppm	355.8546 +/-5 ppm	38.16	38.16	38.15	0.00	passed	--
70		Single PeCDD	357.8516 +/- 5 ppm	$355.8546+/ .5 \mathrm{ppm}$	35.36	35.36	35.39	0.00	passed	--
71		Single PeCDD	$357.8516+/ .5 \mathrm{ppm}$	$355.8546+/-5 \mathrm{ppm}$	38.09	38.09	38.07	0.00	passed	--
72		Single PeCDD	$357.8516+/-5 \mathrm{ppm}$	$355.8546+/ .5 \mathrm{ppm}$	38.70	38.70	38.75	0.00	failed	--
73		Single PeCDF	341.8567 +/-5 ppm	$339.8597+/ .5 \mathrm{ppm}$	36.55	36.55	36.55	0.00	passed	--
74		Single PeCDF	341.8567 +/-5 ppm	$339.8597+/-5 \mathrm{ppm}$	33.38	33.38	33.36	0.00	passed	--
75		Single PeCDF	341.8567 +/-5 ppm	$339.8597+/ .5 \mathrm{ppm}$	36.42	36.42	36.38	0.00	failed	--
76		Single PeCDF	341.8567 +/. 5 ppm	$339.8597+/ .5 \mathrm{ppm}$	36.64	36.64	36.65	0.00	passed	--
77		Single PeCDF	341.8567 +/-5 ppm	$339.8597+/ .5 \mathrm{ppm}$	36.75	36.75	36.72	0.00	passed	-
78		Single PeCDF	341.8567 +/-5 ppm	$339.8597+/ .5 \mathrm{ppm}$	36.99	36.99	36.99	0.00	passed	--
79		Single PeCDF	341.8567 +/-5 ppm	$339.8597+/ .5 \mathrm{ppm}$	37.53	37.53	37.50	0.00	passed	--
80		Single PeCDF	341.8567 +/. 5 ppm	$339.8597+/ .5 \mathrm{ppm}$	37.66	37.66	37.63	0.00	passed	--
81		Single PeCDF	341.8567 +/-5 ppm	339.8597 +/. 5 ppm	37.76	37.76	37.78	0.00	passed	--
82		Single PeCDF	341.8567 +/. 5 ppm	339.8597 +/. 5 ppm	38.03	38.03	38.04	0.00	passed	--
83		Single PeCDF	341.8567 +/-5 ppm	$339.8597+/ .5 \mathrm{ppm}$	38.41	38.41	38.41	0.00	passed	--
84		Single PeCDF	341.8567 +/- 5 ppm	$339.8597+/-5 \mathrm{ppm}$	38.60	38.60	38.61	0.00	passed	--
85		Single PeCDF	341.8567 +/. 5 ppm	$339.8597+/ .5 \mathrm{ppm}$	38.74	38.74	38.72	0.00	passed	--
86		Single PeCDF	341.8567 +/. 5 ppm	$339.8597+/ .5 \mathrm{ppm}$	39.00	39.00	38.94	0.00	failed	--
87		Single HpCDD	425.7737 +/-5 ppm	$423.7766+/ .5 \mathrm{ppm}$	46.04	46.04	46.05	0.00	passed	--
88		Single HpCDD	$425.7737+/ .5 \mathrm{ppm}$	$423.7766+/-5$ ppm	45.21	45.21	45.18	0.00	passed	--
89		Single HxCDF	375.8178 +/-5 $\mathbf{~ p p m}$	$373.8208+/ .5 \mathrm{ppm}$	43.16	43.16	43.19	0.00	passed	--
90		Single HxCDF	375.8178 +/- 5 ppm	$373.8208+/ .5 \mathrm{ppm}$	40.10	40.10	40.08	0.00	passed	--
91		Single HxCDF	375.8178 +/-5 ppm	$373.8208+/ .5 \mathrm{ppm}$	41.36	41.36	41.34	0.00	passed	--
92		Single HxCDF	375.8178 +/-5 ppm	$373.8208+/-5 \mathrm{ppm}$	41.49	41.49	41.49	0.00	passed	--
93		Single HxCDF	375.8178 +/-5 ppm	373.8208 +/-5 ppm	42.18	42.18	42.18	0.00	passed	--
94		Single HxCDF	375.8178 +/- 5 ppm	373.8208 +/-5 ppm	42.81	42.81	42.80	0.00	passed	--
95		Single HxCDF	375.8178 +/-5 ppm	373.8208 +/-5 ppm	42.90	42.90	42.88	0.00	passed	--
96		Single HxCDF	375.8178 +/-5 ppm	$373.8208+/ .5 \mathrm{ppm}$	43.04	43.04	43.05	0.00	passed	--
97		Single $\mathrm{H} \times C D D$	391.8127 +/-5 ppm	$389.8157+/ .5 \mathrm{ppm}$	41.33	41.33	41.31	0.00	passed	--
98		Single HxCDD	391.8127 +/-5 ppm	389.8157 +/-5 ppm	40.56	40.56	40.56	0.00	passed	-
99		Single HxCDD	391.8127 +/-5 ppm	$389.8157+/-5 \mathrm{ppm}$	41.48	41.48	41.45	0.00	passed	---
100		Single HxCDD	391.8127 +/-5 ppm	389.8157 +/-5 ppm	42.14	42.14	42.16	0.00	passed	--
101		Single HxCDD	391.8127 +/-5 ppm	389.8157 +/-5 ppm	42.20	42.20	42.22	0.00	passed	--
102		Single HxCDD	391.8127 +/. 5 ppm	389.8157 +/-5 ppm	42.39	42.35	42.38	0.00	passed	--
103		Single HxCDD	391.8127 +/-5 ppm	$389.8157+/ .5 \mathrm{ppm}$	42.47	42.47	42.49	0.00	passed	--
104		Single HxCDD	391.8127 +/-5 ppm	389.8157 +/. 5 ppm	42.65	42.65	42.68	0.00	passed	-
105		Single HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	42.78	42.78	42.78	0.00	passed	--
106		Single HPCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	44.86	44.86	44.86	0.00	passed	--
107		Single HPCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	44.97	44.97	44.97	0.00	passed	--
108		Single HpCDF	409.7789 +/-5 5 pm	407.7818 +/-5 5 pm	45.07	45.07	45.08	0.00	passed	--
109		Single HpCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	45.22	45.22	45.28	0.00	failed	--
110		Single HpCDF	409.7789 +/-5 ppm	407.7818 +/-5 5 pm	45.39	45.39	45.37	0.00	passed	-
111		Single HpCDF	409.7789 +/-5 ppm	407.7818 +/. 5 ppm	45.44	45.44	45.43	0.00	passed	--
112		Single HPCDF	409.7789 +/-5 ppm	407.7818 +/-5 ppm	46.05	46.05	46.02	0.00	passed	--
113		Single HPCDF	409.7789 +/. 5 ppm	407.7818 +/-5 ppm	46.60	46.60	46.60	0.00	passed	--

No.	Compound Name	QM Retention Time	RM1 Ratio (A)	Ratio1 Limit		$\begin{array}{\|l\|} \hline \text { Ratio1 } \\ \text { Status } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Percent } \\ \text { Recovery (A) } \\ \hline \end{array}$	Recovery Limit		Recovery Status	
1	2378-TCDF	31.02	0.0482	0.6450 -	0.8950	failed	-	0 -	0		passed
2	2378-TCDD	32.03	48.5974	0.6450 -	0.8950	failed	--	0 -	0		passed
3	12378-PeCDF	36.55	2.1625	1.3150 -	1.7850	failed	--	0 -	0		passed
4	23478-PeCDF	37.76	1.9720	1.3150 -	1.7850	failed	-	0.	0		passed
5	12378-PeCDD	38.16	1.4036	1.3150 -	1.7850	passed	--	0 -	0		passed
6	123478-HxCDF	41.36	1.1634	1.0450 -	1.4350	passed	--	0 -	0		passed
7	$123678-\mathrm{HxCDF}$	41.49	2.0503	1.0450 -	1.4350	failed	--	0 -	0		passed
8	234678-HxCDF	42.18	5.9402	1.0450 -	1.4350	failed	--	0 -	0		passed
9	123478-H×CDD	42.35	3.6147	1.0450 -	1.4350	failed	--	0 -	0		passed
10	123678-HxCDD	42.47	4.0955	1.0450 -	1.4350	failed	\cdots	0 -	0		passed
11	123789-HxCDD	42.78	0.9013	1.0450 -	1.4350	failed	--	0.	0		passed
12	$123789-\mathrm{HxCDF}$	43.16	1.0693	1.0450 -	1.4350	passed	--	0 -	0		passed
13	1234678-HpCDF	44.86	0.8973	0.8750 -	1.2050	passed	- -	0 -	0		passed
14	1234678-HpCDD	46.04	1.3658	0.8750 -	1.2050	failed	--	0 -	0		passed
15	1234789-HpCDF	46.60	0.9829	0.8750 -	1.2050	passed	--	0 -	0		passed
16	OCDD	49.04	0.9892	0.7550 -	1.0250	passed	--	0 -	0		passed
17	OCDF	49.26	3.0340	0.7550 -	1.0250	failed	--	0 -	0		passed
18	13C12-1278-TCDD (CRS)	32.39	0.7764	0.6450 -	0.8950	passed	44.45	35.	197		passed
19	13C12-1234-TCDD	31.24	0.8336	0.6450 -	0.8950	passed	100.00	0 -	0		passed
20	13C12-123468-HxCDD	41.23	1.2646	1.0450 -	1.4350	passed	100.00	0 -	0		passed
21	13C12-2378-TCDF	30.95	0.7869	0.6450 -	0.8950	passed	68.61	40 -	135		passed
22	13C12-2378-TCDD	32.00	0.8178	0.6450 -	0.8950	passed	82.21	40.	135		passed
23	13C12-12378-PeCDF	36.53	1.5796	1.3150 -	1.7850	passed	96.16	40.	135		passed
24	13C12-23478-PeCDF	37.75	1.5824	1.3150 -	1.7850	passed	86.98	40.	135		passed
25	13C12-12378-PeCDD	38.13	1.5883	$1.3150-$	1.7850	passed	95.01	40.	135		passed
26	13C12-123478-HxCDF	41.33	0.5135	0.4250 -	0.5950	passed	77.98	40.	135		passed
27	13C12-123678-HxCDF	41.48	0.5249	0.4250 -	0.5950	passed	87.93	40 -	135		passed
28	13C12-234678-HxCDF	42.15	0.5323	0.4250 -	0.5950	passed	79.35	40 -	135		passed
29	13C12-123478-HxCDD	42.34	1.2541	1.0450 -	1.4350	passed	84.97	40.	135		passed
30	13C12-123678-HxCDD	42.46	1.2457	1.0450 -	1.4350	passed	85.44	40 -	135		passed
31	13C12-123789-HxCDD	42.77	1.2616	1.0450 -	1.4350	passed	86.33	40 -	135		passed
32	13C12-123789-HxCDF	43.16	0.5400	0.4250 -	0.5950	passed	82.92	40.	135		passed
33	13C12-1234678-HpCDF	44.85	0.4482	0.3650 -	0.5150	passed	101.21	40 -	135		passed
34	13C12-1234678-HpCDD	46.04	1.0513	0.8750 -	1.2050	passed	93.03	40.	135		passed
35	13C12-1234789-HpCDF	46.60	0.4521	0.3850 -	0.5150	passed	76.85	40 -	135		passed
36	13C12-OCDD	49.04	0.9168	0.7550 -	1.0250	passed	93.56	40.	135		passed
37	13C12-OCDF	49.23	0.9153	0.7550 -	1.0250	passed	74.42	40 -	135		passed
38	Total TCDF	29.74	0.7765	0.6450 -	0.8950	--	--	0.	0		--
39	Total TCDD	30.53	0.7309	0.6450 -	0.8950	---	- -	0 -	0		--
40	Total PeCDF	36.18	--	1.3150 -	1.7850	--	-	0 -	0		--
41	Total PeCDD	37.02	1.4036	1.3150 -	1.7850	--	--	0 -	0		--
42	Total HxCDF	41.54	1.0912	1.0450 -	1.4350	--	-	0 -	0		--
43	Total HxCDD	41.73	--	1.0450 -	1.4350	--	--	0.	0		--
44	Total HpCDD	45.63	--	0.8750 -	1.2050	--	--	0 -	0		--
45	Total HpCDF	45.75	0.9439	0.8750 -	1.2050	--	--	0 -	0		--
46	AVG_Total PeCDF	0.00	0.0000	0.0000 -	0.0000	--	91.57	0 -	0		--
47	AVG_Total HxCDF	0.00	0.0000	0.0000 -	0.0000	--	82.04	0.	0		--
48	AVG_Total HxCDD	0.00	0.0000	0.0000 -	0.0000	--	85.58	0 -	0		--
49	AVG_Total HpCDF	0.00	0.0000	0.0000 -	0.0000	--	89.03	0.	0		--
50	TEQ WHO 2005	0.00	1.0330	0.0000 -	0.0000	--	0.00	0 .	0		-
51	Single TCDF	29.83	1.2721	0.6450 -	0.8950	failed	--	0 -	0		passed
52	Single TCDF	26.08	8.3694	0.6450 -	0.8950	failed	-	0 -	0		passed
53	Single TCDF	27.83	1.4158	0.6450 -	0.8950	failed	-	0 -	0		passed
54	Single TCDF	30.54	1.1744	0.6450 -	0.8950	failed	-	0 -	0		passed
55	Single TCDF	31.02	0.0482	0.6450 -	0.8950	failed	-	0.	0		passed
56	Single TCDF	31.14	2.1921	0.6450 -	0.8950	failed	-	0 -	0		passed
57	Single TCDF	31.30	0.4170	0.6450 -	0.8950	failed	-	0 -	0		passed
58	Single TCDF	31.45	0.0309	0.6450 -	0.8950	failed	-	0.	0		passed
59	Single TCDF	32.06	1.7461	0.6450 -	0.8950	failed	-	0 -	0		passed
60	Single TCDF	32.85	0.7765	0.6450 -	0.8950	passed	-	0 -	0		passed
61	Single TCDF	33.42	0.0711	0.6450 -	0.8950	failed	--	0 -	0		passed
62	Single TCDD	30.94	2.3618	0.6450 -	0.8950	failed	--	0.	0		passed
63	Single TCDD	27.84	27.2173	0.6450 -	0.8950	failed	-	0.	0		passed

No.	Compound Name		QM Retention Time	$\begin{aligned} & \text { RM1 Ratio } \\ & \text { (A) } \\ & \hline \end{aligned}$	Ratio1 Limit		Ratio1 Status	$\begin{array}{\|l\|} \hline \text { Percent } \\ \text { Recovery (A) } \\ \hline \end{array}$		Recovery Limit	Recovery Status	
64		Single TCDD	28.08	72.8583	0.6450 -	0.8950	failed		--	0 -	0	passed
65		Single TCDD	29.12	0.7309	0.6450 -	0.8950	passed		\cdots	0 -	0	passed
66		Single TCDD	29.67	1.5109	0.6450 -	0.8950	failed		--	0 -	0	passed
67		Single TCDD	31.16	56.9728	0.6450 -	0.8950	failed		--	0 -	0	passed
68		Single TCDD	33.14	2.0975	0.6450 -	0.8950	failed		--	0 -	0	passed
69		Single PeCDD	38.16	1.4036	1.3150 -	1.7850	passed		\cdots	0 -	0	passed
70		Single PeCDD	35.36	3.5105	1.3150 -	1.7850	failed		-	$0-$	0	passed
71		Single PeCDD	38.09	0.8978	1.3150 -	1.7850	failed		--	0 -	0	passed
72		Single PeCDD	38.70	1.1649	1.3150 -	1.7850	failed		--	0.	0	passed
73		Single PeCDF	36.55	2.1625	1.3150 -	1.7850	failed		--	0.	0	passed
74		Single PeCDF	33.38	0.4705	1.3150 -	1.7850	failed		--	0 -	0	passed
75		Single PeCDF	36.42	0.4719	1.3150 -	1.7850	failed		-	$0-$	0	passed
76		Single PeCDF	36.64	0.8737	1.3150 -	1.7850	failed		--	0 -	0	passed
77		Single PeCDF	36.75	0.8460	1.3150 -	1.7850	failed		--	0.	0	passed
78		Single PeCDF	36.99	0.1363	$1.3150-$	1.7850	failed		--	0 -	0	passed
79		Single PeCDF	37.53	0.8536	1.3150 -	1.7850	failed		--	0.	0	passed
80		Single PeCDF	37.66	0.8669	1.3150 -	1.7850	failed		-	0.	0	passed
81		Single PeCDF	37.76	1.9720	1.3150 -	1.7850	failed		-	0.	0	passed
82		Single PeCDF	38.03	0.4445	$1.3150-$	1.7850	failed		--	0 -	0	passed
83		Single PeCDF	38.41	0.4725	$1.3150-$	1.7850	failed		--	0 -	0	passed
84		Single PeCDF	38.60	0.0304	1.3150 -	1.7850	failed		--	0 -	0	passed
85		Single PeCDF	38.74	0.0376	1.3150 -	1.7850	failed		--	0 -	0	passed
86		Single PeCDF	39.00	0.9605	1.3150 -	1.7850	failed		--	0.	0	passed
87		Single HpCDD	46.04	1.3658	0.8750 -	1.2050	failed		--	0.	0	passed
88		Single HpCDD	45.21	0.4649	$0.8750-$	1.2050	failed		--	0 -	0	passed
89		Single HxCDF	43.16	1.0693	1.0450 -	1.4350	passed		--	0 -	0	passed
90		Single HxCDF	40.10	0.5399	1.0450 -	1.4350	failed		--	0 -	0	passed
91		Single HxCDF	41.36	1.1634	1.0450 -	1.4350	passed		--	0 -	0	passed
92		Single HxCDF	41.49	2.0503	1.0450 -	1.4350	failed		-	0.	0	passed
93		Single HxCDF	42.18	5.9402	1.0450 -	1.4350	failed		--	0 -	0	passed
94		Single HxCDF	42.81	11.5800	1.0450 -	1.4350	failed		--	0 -	0	passed
95		Single HxCDF	42.90	5.9760	1.0450 -	1.4350	failed		--	0 -	0	passed
96		Single HxCDF	43.04	29.9647	1.0450 -	1.4350	failed		--	0 -	0	passed
97		Single HxCDD	41.33	1.6256	1.0450 -	1.4350	failed		--	0 -	0	passed
98		Single HxCDD	40.56	0.3840	1.0450 -	1.4350	failed		--	0 -	0	passed
99		Single HxCDD	41.48	5.8166	1.0450 -	1.4350	failed		--	0 -	0	passed
100		Single $H \times C D D$	42.14	2.8026	1.0450	1.4350	failed		--	0.	0	passed
101		Single $\mathrm{H} \times \mathrm{CDD}$	42.20	0.4881	1.0450 -	1.4350	failed		-	0.	0	passed
102		Single HxCDD	42.35	3.6060	1.0450 -	1.4350	failed		--	0 -	0	passed
103		Single HxCDD	42.47	4.0955	1.0450 -	1.4350	failed		--	0.	0	passed
104		Single HXCDD	42.65	3.6404	1.0450 -	1.4350	failed		--	0 -	0	passed
105		Single HxCDD	42.78	0.9013	1.0450 -	1.4350	failed		--	0 -	0	passed
106		Single HpCDF	44.86	0.8973	0.8750 -	1.2050	passed		-	0.	0	passed
107		Single HpCDF	44.97	30.3170	0.8750 -	1.2050	failed		--	0.	0	passed
108		Single HpCDF	45.07	3.7540	0.8750 -	1.2050	failed		--	0.	0	passed
109		Single HpCDF	45.22	1.1251	$0.8750-$	1.2050	passed		--	0 -	0	passed
110		Single HpCDF	45.39	1.1540	0.8750 -	1.2050	passed		--	0 -	0	passed
111		Single HpCDF	45.44	214.1723	$0.8750-$	1.2050	failed		--	$0-$	0	passed
112		Single HpCDF	46.05	56.3652	$0.8750-$	1.2050	failed		--	0 -	0	passed
113		Single HpCDF	46.60	0.9829	0.8750 -	1.2050	passed		--	0 -	0	passed

No.	Compound Name	Status Overview	$\begin{aligned} & \text { QM Retention } \\ & \text { Time } \end{aligned}$	QM Area	$\begin{aligned} & \hline \text { QM } \\ & \text { Mode } \end{aligned}$		RM1 Area	$\begin{array}{\|l\|l\|} \hline \text { RM1 } \\ \text { Mode } \\ \hline \end{array}$		Detection Limit (A)	Unqualifed Amount (A)	Adjusted Amount (A)	Signal-to-Noise
1	2378-TCDF	failed	31.02	247		A	12		A	0.0108	0.027399	n.d.	10
2	2378-TCDD	failed	32.03	1		A	53		A	0.0117	0007642	n.d. < 0.0117	3
3	12378-PeCDF	failed	36.55	327		A	706		A	0.0087	0.090153	n.d.	30
4	23478-PeCDF	failed	37.76	228		A	450		A	0.0081	0.058891	n.d.	23
5	12378-PeCDD	passed	38.16	135		A	189		A	0.0185	0.046330	0.0463	9
6	123478-HxCDF	passed	41.36	183		A	213		A	0.0076	0.034109	0.0341	10
7	$123678-\mathrm{HXCDF}$	failed	41.49	179		A	367		A	0.0069	0.040572	n.d.	18
8	$234678-\mathrm{HxCDF}$	failed	42.18	84		A	496		A	0.0075	0.048864	.d.	15
9	123478 - $\mathrm{H} \times$ CDD	failed	42.35	51		A	183		A	0.0116	0.028773	n.d.	9
10	123678 -HxCDD	failed	42.47	85		A	348		A	0.0115	0.051612	n.d.	12
11	123789-HxCDD	failed	42.78	220		A	198		A	0.0110	0.048549	n.d.	11
12	$123789-\mathrm{H} \times \mathrm{CDF}$	passed	43.16	604		A	646		A	0.0080	0.112129	0.1121	36
13	1234678-HPCDF	passed	44.86	450		A	404		A	0.0065	0.060496	0.0605	24
14	$1234678-\mathrm{HpCDD}$	failed	46.04	254		A	347		A	0.0090	0.071606	n.d.	24
15	1234789-HpCDF	passed	46.60	275		A	270		A	0.0098	0.057772	0.0578	16
16	OCDD	passed	49.04	474		A	469		A	0.0197	0.128737	0.1287	21
17	OCDF	failed	49.26	166		A	504		A	0.0135	0.085351	n.d.	16
18	13C12-1278-TCDD (CRS)	passed	32.39	182877		A	141979		A	0.0261	35.561501	35.5615	3342
19	13C12-1234-TCDD	passed	31.24	775909		A	646801		A	0.0253	200.000000	200.0000	19725
20	13C12-123468-HxCDD	passed	41.23	869249		A	1099216		A	0.0452	200.000000	200.0000	11068
21	13C12-2378-TCDF	passed	30.95	1020542		A	803019		A	0.0131	137.228298	137.2283	24860
22	13C12-2378-TCDD	passed	32.00	633733		A	518292		A	0.0257	164.417311	164.4173	16162
23	13C12-12378-PeCDF	passed	36.53	915920		A	1446830		A	0.0656	192.319888	192.3199	9217
24	13C12-23478-PeCDF	passed	37.75	826563		A	1307961		A	0.0657	173.963184	173.9632	8823
25	13C12-12378-PeCDD	passed	38.13	509119		A	808611		A	0.0425	190.015831	190.0158	14775
26	13C12-123478-HxCDF	passed	41.33	1303320		A	669293		A	0.0437	155.952245	155.9522	8921
27	13C12-123678-HxCDF	passed	41.48	1534566		A	805513		A	0.0416	175.851365	175.8514	10147
28	13C $12-234678-\mathrm{HxCDF}$	passed	42.15	1278759		A	680680		A	0.0448	158.707371	158.7074	8822
29	13C12-123478-HxCDD	passed	42.34	701999		A	880380		A	0.0477	169.935465	169.9355	9081
30	13C12-123678-HxCDD	passed	42.46	731025		A	910624		A	0.0463	170.885144	170.8851	9149
31	13C12-123789-HxCDD	passed	42.77	701872		A	885511		A	0.0484	172.652158	172.6522	8996
32	13C12-123789-HXCDF	passed	43.16	1254967		A	677666		A	0.0474	165.838920	165.8389	8641
33	13C12-1234678-HPCDF	passed	44.85	1520160		A	681303		A	0.0512	202.424273	202.4243	10381
34	13C12-1234878-HpCDD	passed	46.04	772310		A	811924		A	0.0532	186.062669	186.0627	9193
35	13C12-1234789-HpCDF	passed	46.60	983072		A	444445		A	0.0599	153.700199	153.7002	6679
36	13C12-OCDD	passed	49.04	1497676		A	1373140		A	0.0341	374.230406	374.2304	29977
37	13C12-OCDF	passed	49.23	1756885		A	1608128		A	0.0264	297.695980	297.6970	28024
38	Total TCDF	passed (1)	29.74	79		A	61		A	0.0108	0.014892	0.0149	8
39	Total TCDD	passed (1)	30.53	66		A	48		A	0.0117	0.015961	0.0160	7
40	Total PeCDF	failed	36.18	0		A	0		M	--	--	--	-
41	Total PeCDD	passed (1)	37.02	135		M	189		M	0.0185	0.046330	0.0463	9
42	Total HxCDF	passed (2)	41.54	787		M	858		M	0.0075	0.068410	0.1388	23
43	Total HxCDD	failed	41.73	0		M	0		A	--	--	--	--
44	Total HpCDD	failed	45.63	0		A	0		A	--	--	--	--
45	Total HPCDF	passed (3)	45.75	774		A	730		A	0.0078	0.042485	0.1275	15
46	AVG_Total PeCDF	passed (2)	0.00	871242			1377396			0.0656	183.141536	183.1415	9020
47	AVG_Total HxCDF	passed (4)	0.00	1342903			708288			0.0444	164.087475	164.0875	9133
48	AVG_Total HXCDD	passed (3)	0.00	711632			892172			0.0475	171.157589	171.1576	9069
49	AVG_Total HPCDF	passed (2)	0.00	1251616			562874			0.0555	178.062236	178.0622	8530
50	TEQ WHO 2005	passed (6)	0.00	2121			2191			0.0117	0.439573	0.4396	19
51	Single TCDF	failed	29.83	352		A	448		A	0.0108	0.084830	n. d .	22
52	Single TCDF	failed	26.08	15		A	127		A	0.0108	0.015121	n.d.	5
53	Single TCDF	failed	27.83	63		A	89		A	0.0108	0.016131	n.d.	7
54	Single TCDF	failed	30.54	75		A	88		A	0.0108	0.017175	n.d.	7
55	Single TCDF	failed	31.02	247		A	12		A	0.0108	0.027399	n.d.	10
56	Single TCDF	failed	31.14	38		A	84		A	0.0108	0.012944	n.d.	8
57	Single TCDF	failed	31.30	84		A	35		A	0.0108	0.012646	n.d.	4
58	Single TCDF	failed	31.45	123		A	4		A	0.0108	0.013441	n. d .	4
59	Single TCDF	failed	32.06	67		A	116		A	0.0108	0.019398	n.d.	10
60	Single TCDF	passed	32.85	79		A	61		A	0.0108	0.014892	0.0149	8
61	Single TCDF	failed	33.42	165		A	12		A	0.0108	0.018735	n.d.	6
62	Single TCDD	failed	30.94	119		A	280		A	0.0117	0.056098	n.d.	15
63	Single TCDD	failed	27.84	5		A	137		A	0.0117	0.020018	n.d.	5

No.	Compound Name		$\begin{array}{\|l\|} \hline \text { Status } \\ \text { Overview } \end{array}$	$\begin{aligned} & \hline \text { QM Retention } \\ & \text { Time } \\ & \hline \end{aligned}$	QM Area	$\begin{array}{\|l\|} \hline \text { QM } \\ \text { Mode } \end{array}$		RM1 Area	$\begin{array}{\|l\|} \hline \text { RM1 } \\ \text { Mode } \\ \hline \end{array}$		Detection Limit (A)	Unqualified Amount (A)		Adjusted Amount (A)	Signal-to-Noise
64		Single TCDD	failed	28.08	1		A	97		A	0.0117		0.013897	n.d.	6
65		Single TCDD	passed	29.12	66		A	48		A	0.0117		0.015961	0.0160	7
66		Single TCDD	failed	29.67	41		A	61		A	0.0117		0.014332	n.d.	4
67		Singie TCDD	failed	31.16	2		A	124		A	0.0117		0.017691	n.d.	6
68		Single TCDD	failed	33.14	40		A	84		A	0.0117		0.017418	n.d.	7
69		Single PeCDD	passed	38.16	135		A	189		A	0.0185		0.046330	0.0463	9
70		Single PeCDD	failed	35.36	38		M	132		M	0.0185		0.024324	n.d.	4
71		Single PeCDD	failed	38.09	75		A	67		A	0.0185		0.020389	n.d.	4
72		Single PeCDD	failed	38.70	73		A	85		A	0.0185		0.022658	n.d.	5
73		Single PeCDF	failed	36.55	327		A	706		A	0.0084		0.089705	n.d.	30
74		Single PeCDF	failed	33.38	88		A	42		A	0.0084		0.011294	n.d.	5
75		Single PeCDF	failed	36.42	66		A	31		A	0.0084		0.008381	n.d.	3
76		Single PeCDF	failed	36.64	52		A	46		A	0.0084		0.008490	n.d.	4
77		Single PeCDF	failed	36.75	61		A	52		A	0.0084		0.009802	n.d.	6
78		Single PeCDF	failed	36.99	115		A	16		A	0.0084		0.011305	n.d.	4
79		Single PeCDF	failed	37.53	78		A	66		A	0.0084		0.012517	n.d.	5
80		Single PeCDF	failed	37.66	75		A	65		A	0.0084		0.012105	n.d.	5
81		Single PeCDF	failed	37.76	228		A	450		A	0.0084		0.058872	n.d.	23
82		Single PeCDF	failed	38.03	103		A	46		A	0.0084		0.012922	n.d.	5
83		Single PeCDF	failed	38.41	84		A	40		A	0.0084		0.010694	n.d.	5
84		Single PeCDF	failed	38.60	125		A	4		A	0.0084		0.011218	n.d.	4
85		Single PeCDF	failed	38.74	152		A	6		A	0.0084		0.013738	n.d.	3
86		Single PeCDF	failed	39.00	124		A	119		M	0.0084		0.021029	n.d.	6
87		Single HPCDD	failed	46.04	254		A	347		A	0.0090		0.071606	n.d.	24
88		Single HPCDD	failed	45.21	186		A	86		A	0.0090		0.032468	n.d.	12
89		Single HXCDF	passed	43.16	604		A	646		A	0.0075		0.103941	0.1039	36
50		Single $\mathrm{H} \times \mathrm{CDF}$	failed	40.10	60		A	32		A	0.0075		0.007701	n.d.	4
91		Single $\mathrm{H} \times \mathrm{CDF}$	passed	41.36	183		A	213		A	0.0075		0.032880	0.0329	10
92		Singie HXCDF	failed	41.49	179		A	367		A	0.0075		0.045433	n.d.	16
93		Single HxCDF	failed	42.18	84		A	496		A	0.0075		0.048208	n.d.	15
94		Single HxCDF	failed	42.81	11		A	131		A	0.0075		0.011824	n.d.	5
95		Single $\mathrm{H} \times \mathrm{CDF}$	failed	42.90	18		A	105		A	0.0075		0.010226	n.d.	5
96		Single $\mathrm{H} \times \mathrm{CDF}$	failed	43.04	4		A	110		A	0.0075		0.009465	n.d.	5
97		Single HxCDD	failed	41.33	224		A	365		A	0.0114		0.070489	n.d.	14
98		Single $\mathrm{H} \times \mathrm{CDD}$	failed	40.56	131		A	50		A	0.0114		0.021745	n.d.	6
99		Single $\mathrm{H} \times \mathrm{CDD}$	failed	41.48	98		A	572		A	0.0114		0.080145	n.d.	17
100		Single HxCDD	failed	42.14	164		A	460		A	0.0114		0.074577	n.d.	18
101		Single HXCDD	failed	42.20	65		A	32		A	0.0114		0.011514	n.d.	4
102		Single HxCDD	failed	42.35	51		M	183		A	0.0114		0.027899	n.d.	9
103		Single $\mathrm{H} \times \mathrm{CDD}$	failed	42.47	85		A	348		A	0.0114		0.051741	n.d.	12
104		Single $\mathrm{H} \times \mathrm{CDD}$	failed	42.65	41		A	150		A	0.0114		0.022932	n.d.	9
105		Single $\mathrm{H} \times \mathrm{CDD}$	failed	42.78	220		A	198		A	0.0114		0.049952	n.d.	11
106		Single HPCDF	passed	44.86	450		A	404		A	0.0078		0.072337	0.0723	24
107		Single HpCDF	failed	44.97	4		A	107		A	0.0078		0.009366	n.d.	4
108		Single HpCDF	failed	45.07	20		A	75		A	0.0078		0.008081	n.d.	4
109		Single HpCDF	failed	45.22	45		A	50		A	0.0078		0.008017	n.d.	4
110		Single HPCDF	passed	45.39	49		A	56		A	0.0078		0.008886	0.0089	5
111		Single HPCDF	failed	45.44	3		A	574		A	0.0078		0.048822	n.d.	15
112		Single HPCDF	failed	46.05	2		A	93		A	0.0078		0.008060	n.d.	3
113		Single HPCDF	passed	46.60	275		A	270		A	0.0078		0.046230	0.0462	16

RT: 20.40-34.90

RT: 34.50-39.80

RT: 39.20-44.50

RT: 44.10-48.20

RT: 47.90-51.20


```
*** file opened Wed Feb 08 00:29:00 2017 ***
```

Started by	- XCalibur
Instrument Internet name	- DFS MS
Instrument mode1	DFS MS
Instrument service number	SN0000XXXX
Workstation internet name - LX18470	

Analysis started at: 08-Feb-17 00:28:59

Analysis will stop at user request

Firmware Version: 2.02

MCAL file name:

Sequence : ef723472-e848-43e5-a9f2-e1bcce0ed473

MID procedure: PFK16MAR24+MDT

Page 1

17FEB07-17

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
Window \# 3 mass	int	gr	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 C	20	1	6
409.7969	2	1	66
Window \# 4 mass	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
Window \# 5 mass	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
window \# 6 mass	int	gr	time (ms)
441.7422	1	1	95
442.97231	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 c	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes MID Window end time was 21.000000 minutes MID Window terminated after 34.600000 minutes MID Window end time was 34.600000 minutes

17FEB07-17
MID Window terminated after 39.500000 minutes
MID Window end time was 39.500000 minutes
MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\Xcalibur \System\DFS $\backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	97.0000
BQUAD	0.0500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	61.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	173.0000
ENSBR	0.0500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	172.0000	EXSBR	-0.4700
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	12.3500
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0175	FVINLET	0.0304	FVSRC	0.0292
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICALO	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	714.0000
LENS_SYM	14.3000	LM	1050.0000	LMII	500.0000
LMASS	97.0000	LKM	442.9723	MASS	97.0000
MDAC	1448058.3899	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2525.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-9.0000	RECURR	0.8977	RELEN	0.0000
RES	12431.6550	RPUSHER	-8.6227	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	638.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0206	tanal	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	97.0000	XLENS_POT	896.0000
XLENS_SYM	-8.5000	YLENS_POT	568.0000	YLENS_SYM	0.0000

```
Source Gauge: 1.9e-005 mbar
Analyzer Penning: 5.1e-008 mbar
Pirani Analyse: 1.7e-002 mbar
Pirani Source: 2.9e-002 mbar
Pirani Inlet System: 3.0e-002 mbar
```

Scantype is magnetic

Sourcemode is EI POS

MID Time Window 1: Resolution is 11577.
MID Time Window 2: Resolution is 11839.
MID Time Window 3: Resolution is 12397.
MID Time Window 4: Resolution is 12163.
Page 3

MID Time Window 5：Resolution is 14112.
MID Time Window 6：Resolution is 12431.
Amplifier offset： 87.

ネッドFile closed wed Feb 08 01：20：01 2017

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/07 22:30
140
LCS:11030:12937
101
17031003
OPR031003
DF18471-17FEB07
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
17031003
$y: 117 f e b 07 \backslash 17$ feb07-15.quan
$\mathrm{y}: 117 \mathrm{feb} 07 \backslash 17 \mathrm{feb} 07-15 . \mathrm{raw}$
y:\responsefilesidf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.0
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

No.	Compound Name	QM Retention Time	Status Overview	Amount Status	RM1 Time Status	$\begin{aligned} & \text { Ratiol } \\ & \text { Status } \end{aligned}$	Recovery Status	Native vs Labeled Time Status	$\begin{aligned} & \text { Status } \\ & \text { Info } \end{aligned}$
1	2378-TCDF	30.98	passed	passed	passed	passed	passed	passed	
2	2378-TCDD	32.02	passed	passed	passed	passed	passed	passed	
3	12378-PeCDF	36.54	passed	passed	passed	passed	passed	passed	
4	23478 -PeCDF	37.76	passed	passed	passed	passed	passed	passed	
5	12378-PeCDD	38.14	passed	passed	passed	passed	passed	passed	
6	123478-HxCDF	41.33	passed	passed	passed	passed	passed	passed	
7	$123678-\mathrm{HxCDF}$	41.48	passed	passed	passed	passed	passed	passed	
8	$234678-\mathrm{HxCDF}$	42.17	passed	passed	passed	passed	passed	passed	
9	123478-HxCDD	42.36	passed	passed	passed	passed	passed	passed	
10	123878-HxCDD	42.47	passed	passed	passed	passed	passed	passed	
11	123789-HxCDD	42.78	passed	passed	passed	passed	passed	passed	
12	$123789-\mathrm{HxCDF}$	43.17	passed	passed	passed	passed	passed	passed	
13	1234678-HpCDF	44.86	passed	passed	passed	passed	passed	passed	
14	1234678-HpCDD	46.04	passed	passed	passed	passed	passed	passed	
15	1234789-HpCDF	46.61	passed	passed	passed	passed	passed	passed	
16	OCDD	49.05	passed	passed	passed	passed	passed	passed	
17	OCDF	49.25	passed	passed	passed	passed	passed	passed	
18	13C12-1278-TCDD (CRS)	32.38	passed	passed	passed	passed	passed	passed	
19	13C12-1234-TCDD	31.24	passed	passed	passed	passed	passed	passed	
20	13C12-123468-HxCDD	41.23	passed	passed	passed	passed	passed	passed	
21	13C12-2378-TCDF	30.94	passed	passed	passed	passed	passed	passed	
22	13C12-2378-TCDD	31.99	passed	passed	passed	passed	passed	passed	
23	13C12-12378-PeCDF	36.52	passed	passed	passed	passed	passed	passed	
24	13C12-23478-PeCDF	37.74	passed	passed	passed	passed	passed	passed	
25	13C12-12378-PeCDD	38.13	passed	passed	passed	passed	passed	passed	
26	13C12-123478-HxCDF	41.32	passed	passed	passed	passed	passed	passed	
27	13C12-123678-HxCDF	41.47	passed	passed	passed	passed	passed	passed	
28	13C12-234678-HxCDF	42.16	passed	passed	passed	passed	passed	passed	
29	13C12-123478-HxCDD	42.33	passed	passed	passed	passed	passed	passed	
30	13C12-123678-HxCDD	42.45	passed	passed	passed	passed	passed	passed	
31	13C12-123789-HxCDD	42.76	passed	passed	passed	passed	passed	passed	
32	13C12-123789-HxCDF	43.15	passed	passed	passed	passed	passed	passed	
33	13C12-1234678-HpCDF	44.85	passed	passed	passed	passed	passed	passed	
34	13C12-1234678-HpCDD	46.03	passed	passed	passed	passed	passed	passed	
35	13C12-1234789-HpCDF	46.59	passed	passed	passed	passed	passed	passed	
36	13C12-OCDD	49.03	passed	passed	passed	passed	passed	passed	
37	13C12-OCDF	49.23	passed	passed	passed	passed	passed	passed	

Quantitation Settings

Data File Parameter

Acq. Data
Number of Entries
Comment
Vial
Sample Name
Sample ID
Inst ID
Client
Analyst
GC Column
BatchNo
Barcode

Files Parameter
Quan
Data
Response
Script
Mass Ref

Quan Parameter

QualBrowser Compatibility
Sum Area/Height
Quantitation Status
Injection Volume [hIJV]
Sample Volume [hSV]
Sample Weight [hSWT]
Dilution Factor [hDF]
Det. Limit Factor [hDLF]
Response Factor Mode
Fit Calc. Mode
Regression Mode
Weighted Regression Factor

2017/02/07 22:30
140
LCS:11030:12937
101
17031003
OPR031003
DF18471-17FEB07
jda02741
DB5MS $60 \mathrm{M} \times 0.25 \mathrm{um} \times 0.25 \mathrm{~mm}$
17031003
$y: 117 \mathrm{feb} 07 \backslash 17 \mathrm{feb} 07-15 . q u a n$
y:\17feb07\17feb07-15.raw
y:Iresponsefilesldf18471-17jan31dfical.resp
C:IXCALIBURISYSTEMIDFSISCRIPTSISCRIPT1.QSC

Compatibility off
Sum QM RM1
Dependend on Area
1.0
20.0
10.0
1.0
2.5

Average RF
Linear Fit
Non weighted Regression
1.0

Chromatogram

RT: 29.98-31.98 SM: 3G

Entry Parameters

Compound Name	2378 -TCDF
QM Retention Time	30.98
QM Area	120999
QM Integration Mode	A
RM1 Area	92121
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0187
Unqualified Amount (A)	19.425140
Adjusted Amount (A)	19.4251
Signal-to-Noise	2627
Client Flags	
Status Overview	passed
Status Info	

Entry Parameters

Compound Name	$2378-$ TCDD
QM Retention Time	32.02
QM Area	75184
QM Integration Mode	A
RM1 Area	61158
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0170
Unqualified Amount (A)	19.140032
Adjusted Amount (A)	19.1400
Signal-to-Noise	$\mathbf{2 8 5 0}$
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$12378-P e C D F$
QM Retention Time	36.54
QM Area	487104
QM Integration Mode	A
RM1 Area	766542
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0133
Unqualified Amount (A)	98.166210
Adjusted Amount (A)	98.1662
Signal-to-Noise	18876
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	23478 -PeCDF
QM Retention Time	37.76
QM Area	465524
QM Integration Mode	A
RM1 Area	731835
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0121
Unqualified Amount (A)	90.708808
Adjusted Amount (A)	90.7088
Signal-to-Noise	18265
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 37.16-39.16 SM: 3G

Entry Parameters

Compound Name	12378 -PeCDD
QM Retention Time	38.14
QM Area	285664
QM Integration Mode	A
RM1 Area	465854
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0298
Unqualified Amount (A)	95.313482
Adjusted Amount (A)	95.3135
Signal-to-Noise	8202
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 40.33-42.33 SM: 3G

Entry Parameters

Compound Name	$123478-\mathrm{HxCDF}$
QM Retention Time	41.33
QM Area	535694
QM Integration Mode	A
RM1 Area	675179
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0331
Unqualified Amount (A)	91.166926
Adjusted Amount (A)	91.1669
Signal-to-Noise	6702
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$123678-\mathrm{HxCDF}$
QM Retention Time	41.48
QM Area	637501
QM Integration Mode	A
RM1 Area	782387
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0280
Unqualified Amount (A)	90.941355
Adjusted Amount (A)	90.9414
Signal-to-Noise	7994
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.17-43.17 SM: 3G

Entry Parameters

Compound Name	$234678-\mathrm{HxCDF}$
QM Retention Time	42.17
QM Area	571029
QM Integration Mode	A
RM1 Area	725426
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0312
Unqualified Amount (A)	93.886365
Adjusted Amount (A)	93.8864
Signal-to-Noise	7645
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

> RT: 41.34-43.34 SM: 3G

Entry Parameters

Compound Name	$123478-H x C D D$
QM Retention Time	42.36
QM Area	418196
QM Integration Mode	A
RM1 Area	529889
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0262
Unqualified Amount (A)	96.714784
Adjusted Amount (A)	96.7148
Signal-to-Noise	9466
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.47-43.47 SM: 3G

Entry Parameters

Compound Name	$123678-\mathrm{HxCDD}$
QM Retention Time	42.47
QM Area	398716
QM Integration Mode	A
RM1 Area	496529
RM1 Integration Mode	A
Manint	0
Detection Limit (A)	0.0253
Unqualified Amount (A)	91.487348
Adjusted Amount (A)	91.4873
Signal-to-Noise	8898
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 41.78-43.78 SM: 3G

Entry Parameters

Compound Name	$123789-\mathrm{HxCDD}$
QM Retention Time	42.78
QM Area	427286
QM Integration Mode	A
RM1 Area	531069
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0244
Unqualified Amount (A)	94.509525
Adjusted Amount (A)	94.5095
Signal-to-Noise	9445
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 42.17-44.17 SM: 3G

Entry Parameters

Compound Name	123789-HxCDF
QM Retention Time	43.17
QM Area	473741
QM Integration Mode	A
RM1 Area	591696
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0371
Unqualified Amount (A)	91.327557
Adjusted Amount (A)	91.3276
Signal-to-Noise	6072
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234678-H p C D F$
QM Retention Time	44.86
QM Area	780141
QM Integration Mode	A
RM1 Area	808043
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0292
Unqualified Amount (A)	96.125247
Adjusted Amount (A)	96.1252
Signal-to-Noise	8173
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	$1234678-\mathrm{HpCDD}$
QM Retention Time	46.04
QM Area	445792
QM Integration Mode	A
RM1 Area	462909
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0365
Unqualified Amount (A)	92.269425
Adjusted Amount (A)	92.2694
Signal-to-Noise	6398
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 45.61-47.61 SM: 3G

Entry Parameters	
Compound Name	$1234789-H p C D F$
QM Retention Time	46.61
QM Area	505422
QM Integration Mode	A
RM1 Area	522727
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0465
Unqualified Amount (A)	95.433024
Adjusted Amount (A)	95.4330
Signal-to-Noise	5181
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

RT: 48.05-50.05 SM: 3G

Entry Parameters

Compound Name	OCDD
QM Retention Time	49.05
QM Area	876924
QM Integration Mode	A
RM1 Area	782932
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0375
Unqualified Amount (A)	188.314499
Adjusted Amount (A)	188.3145
Signal-to-Noise	12843
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	OCDF
QM Retention Time	49.25
QM Area	886777
QM Integration Mode	A
RM1 Area	804095
RM1 Integration Mode	A
ManInt	0
Detection Limit (A)	0.0253
Unqualified Amount (A)	181.350789
Adjusted Amount (A)	181.3508
Signal-to-Noise	17731
Client Flags	
Status Overview	passed
Status Info	

Chromatogram

Entry Parameters

Compound Name	13C12-1278-TCDD (CRS)
QM Retention Time	32.38
QM Area	190527
QM Integration Mode	A
RM1 Area	157519
RM1 Integration Mode	A
Manlnt	0
Detection Limit (A)	0.0194
Unqualified Amount (A)	29.685138
Adjusted Amount (A)	29.6851
Signal-to-Noise	3668
Client Flags	
Status Overview	passed
Status Info	

Entry Parameters

No.	Compound Name	$\begin{array}{\|l} \hline \text { Quan. } \\ \text { Mass } \\ \hline \end{array}$	Ratio Mass 1	Specified RT [min]	$\begin{array}{\|l\|} \hline \text { QM Retention } \\ \text { Time } \\ \hline \end{array}$	RM1 Retention Time	Labeled RT	RM1 Time Status	Native vs Labeled Time Status
1	2378-TCDF	305.8987 +/-5 ppm	303.9016 +/- 5 ppm	30.98	30.98	30.98	30.94	passed	passed
2	2378-TCDD	$321.8936+/-5 \mathrm{ppm}$	319.8965 +/-5 ppm	32.01	32.02	32.02	31.99	passed	passed
3	12378-PeCDF	$341.8567+1-5 \mathrm{ppm}$	$339.8597+/ .5 \mathrm{ppm}$	36.54	36.54	36.54	36.52	passed	passed
4	23478-PeCDF	341.8567 +/-5 ppm	$339.8597+/-5 \mathrm{ppm}$	37.76	37.76	37.76	37.74	passed	passed
5	12378-PeCDD	357.8516 +/- 5 ppm	$355.8546+/-5 \mathrm{ppm}$	38.15	38.14	38.14	38.13	passed	passed
6	123478 - HxCDF	$375.8178+$ +/ 5 pprn	$373.8208+$ +- 5 ppm	41.34	41.33	41.35	41.32	passed	passed
7	123678 - HXCDF	375.8178 +/-5 ppm	$373.8208+/-5 \mathrm{ppm}$	41.49	41.48	41.48	41.47	passed	passed
8	234678 -HxCDF	375.8178 +/-5 ppm	$373.8208+/ .5 \mathrm{ppm}$	42.16	42.17	42.17	42.16	passed	passed
9	123478-HxCDD	$391.8127+/ .5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	42.35	42.36	42.36	42.33	passed	passed
10	123678-HxCDD	$391.8127+i-5$ pprn	389.8157 +/- 5 ppm	42.47	42.47	42.47	42.45	passed	passed
11	123789-HxCDD	$391.8127+/-5 \mathrm{ppm}$	$389.8157+/-5 \mathrm{ppm}$	42.78	42.78	42.79	42.76	passed	passed
12	$123789-\mathrm{HXCDF}$	375.8178 +/-5 ppm	$373.8208+$ +- 5 ppm	43.17	43.17	43.18	43.15	passed	passed
13	$1234678-\mathrm{HpCDF}$	$409.7789+/ .5 \mathrm{ppm}$	407.7818 +/- 5 ppm	44.86	44.86	44.86	44.85	passed	passed
14	$1234678-\mathrm{HpCDD}$	$425.7737+/ .5 \mathrm{ppm}$	$423.7766+1.5 \mathrm{ppm}$	46.05	46.04	46.05	46.03	passed	passed
15	1234789-HpCDF	409.7789 +/ 5 ppm	407.7818 +l- 5 ppm	46.61	46.61	46.62	46.59	passed	passed
16	OCDD	459.7348 +/-5 ppm	$457.7377+/ .5 \mathrm{ppm}$	49.05	49.05	49.05	49.03	passed	passed
17	OCDF	$443.7399+$ +- 5 ppm	$441.7428+1.5 \mathrm{ppm}$	49.24	49.25	49.25	49.23	passed	passed
18	13C12-1278-TCDD (CRS)	$333.9339+/ .5 \mathrm{ppm}$	331.9368 +/-5 ppm	32.37	32.38	32.38	32.38	passed	passed
19	13C12-1234-TCDD	$333.9339+$ + 5 ppm	$331.9368+/ .5 \mathrm{ppm}$	31.24	31.24	31.24	31.24	passed	passed
20	13C12-123468-HxCDD	$403.8529+$ + 5 ppm	$401.8559+1.5 \mathrm{ppm}$	41.23	41.23	41.23	41.23	passed	passed
21	13C12-2378-TCDF	$317.9389+$ - 5 ppm	$315.9419+/ .5 \mathrm{ppm}$	30.95	30.94	30.94	31.10	passed	passed
22	13C12-2378-TCDD	$333.9339+$ - 5 ppm	$331.9368+/ .5 \mathrm{ppm}$	31.99	31.99	31.99	31.99	passed	passed
23	13C12-12378-PeCDF	353.8970 +/-5 5 pm	$351.9000+$ +- 5 ppm	36.51	36.52	36.52	36.54	passed	passed
24	13C12-23478-PeCDF	353.8970 +/-5ppm	$351.9000+/ / 5 \mathrm{ppm}$	37.75	37.74	37.74	37.79	passed	passed
25	13C12-12378-PeCDD	369.8919 +/-5 ppm	$367.8949+/-5 \mathrm{ppm}$	38.12	38.13	38.13	38.13	passed	passed
26	13C12-123478-HxCDF	385.8610 +/-5 ppm	$383.8639+/-5 \mathrm{ppm}$	41.32	41.32	41.32	41.27	passed	passed
27	13C12-123678-HxCDF	385.8610 +/-5 ppm	$383.8639+/ .5 \mathrm{ppm}$	41.47	41.47	41.47	41.52	passed	passed
28	13C12-234678-HxCDF	385.8610 +/-5 ppm	$383.8639+1 / 5 \mathrm{ppm}$	42.15	42.16	42.16	42.17	passed	passed
29	13C12-123478-HxCDD	$403.8529+$ +-5 ppm	$401.8559+/ .5 \mathrm{ppm}$	42.33	42.33	42.34	42.34	passed	passed
30	13C12-123678-HxCDD	$403.8529+$ +/ 5 ppm	$401.8559+/ / 5 \mathrm{ppm}$	42.46	42.45	42.45	42.45	passed	passed
31	13C12-123789-HxCDD	$403.8529+/ .5 \mathrm{ppm}$	$401.8559+/-5 \mathrm{ppm}$	42.77	42.76	42.76	42.75	passed	passed
32	13C12-123789-HxCDF	$385.8610+/-5 \mathrm{ppm}$	$383.8639+/-5 \mathrm{ppm}$	43.16	43.15	43.15	43.18	passed	passed
33	13C12-1234678-HpCDF	$419.8220++$ 5ppm	$417.8253+/-5 \mathrm{ppm}$	44.84	44.85	44.85	44.89	passed	passed
34	13C12-1234678-HpCDD	$437.8140+/ .5 \mathrm{ppm}$	$435.8169+1.5 \mathrm{ppm}$	46.03	46.03	46.04	46.04	passed	passed
35	13C12-1234789-HpCDF	419.8220 +/. 5 ppm	$417.8253+/ .5 \mathrm{ppm}$	46.60	46.59	46.61	46.44	passed	passed
36	13C12-OCDD	$471.7750+/-5 \mathrm{ppm}$	$469.7779+1.5 \mathrm{ppm}$	49.04	49.03	49.05	49.05	passed	passed
37	13C12-OCDF	455.7802 +/- 5 ppm	453.7831 +/-5 ppm	49.22	49.23	49.23	49.29	passed	passed

No.	Compound Name	QM Retention Time	RM1 Ratio (A)	Ratio 1 Limit		Ratio1 Status	Percent Recovery (A)		Recovery Limit		Recovery Status	
1	2378-TCDF	30.98	0.7613	0.6450 -	0.8950	passed		97.13	75 -	158		passed
2	2378-TCDD	32.02	0.8134	0.6450 -	0.8950	passed		95.70	67 -	158		passed
3	12378-PeCDF	36.54	1.5737	1.3150 -	1.7850	passed		98.17	80.	134		passed
4	23478 -PeCDF	37.76	1.5721	1.3150 -	1.7850	passed		90.71	68 -	160		passed
5	12378-PeCDD	38.14	1.6308	1.3150 -	1.7850	passed		95.31	$70-$	142		passed
6	123478-HxCDF	41.33	1.2604	1.0450 -	1.4350	passed		91.17	72 -	134		passed
7	$123678-\mathrm{HxCDF}$	41.48	1.2273	1.0450 -	1.4350	passed		90.94	84 -	130		passed
8	234678-HxCDF	42.17	1.2704	1.0450 -	1.4350	passed		93.89	70.	156		passed
9	123478-HxCDD	42.36	1.2671	1.0450 -	1.4350	passed		96.74	70.	164		passed
10	123678-HxCDD	42.47	1.2453	1.0450 -	1.4350	passed		91.49	76.	134		passed
11	123789-HxCDD	42.78	1.2429	1.0450 -	1.4350	passed		94.54	64 -	162		passed
12	123789-HxCDF	43.17	1.2490	1.0450 -	1.4350	passed		91.33	78 -	130		passed
13	1234678-HpCDF	44.86	1.0358	0.8750 -	1.2050	passed		96.13	82.	122		passed
14	1234678-HpCDD	46.04	1.0384	0.8750 -	1.2050	passed		92.27	70.	140		passed
15	1234789-HpCDF	46.61	1.0342	0.8750 -	1.2050	passed		95.43	78 -	138		passed
16	OCDD	49.05	0.8928	0.7550 -	1.0250	passed		94.16	78 -	144		passed
17	OCDF	49.25	0.9068	0.7550 -	1.0250	passed		90.68	63 -	170		passed
18	13C12-1278-TCDD (CRS)	32.38	0.8268	0.6450 -	0.8950	passed		37.11	$31-$	191		passed
19	13C12-1234-TCDD	31.24	0.8170	0.6450 -	0.8950	passed		100.00	0.	0		passed
20	13C12-123468-HxCDD	41.23	1.3144	1.0450 -	1.4350	passed		100.00	0 -	0		passed
21	13C12-2378-TCDF	30.94	0.7904	0.6450 .	0.8950	passed		62.16	40.	135		passed
22	13C12-2378-TCDD	34.99	0.7879	0.6450 -	0.8950	passed		64.20	40 -	135		passed
23	13C12-12378-PeCDF	36.52	1.5982	1.3150 -	1.7850	passed		83.51	40.	135		passed
24	13C12-23478-PeCDF	37.74	1.6077	1.3150 -	1.7850	passed		77.71	40 -	135		passed
25	13C12-12378-PeCDD	38.13	1.6184	1.3150 -	1.7850	passed		83.64	40.	135		passed
26	13C12-123478-HxCDF	41.32	0.5321	0.4250 -	0.5950	passed		73.91	40 -	135		passed
27	13C12-123678-HxCDF	41.47	0.5310	0.4250 -	0.5950	passed		64.34	40 -	135		passed
28	13C12-234678-HxCDF	42.16	0.5222	0.4250 -	0.5950	passed		76.41	40 -	135		passed
29	13C12-123478-HxCDD	42.33	1.2642	1.0450 -	1.4350	passed		85.02	40 -	135		passed
30	13C12-123678-HxCDD	42.45	1.2705	1.0450 -	1.4350	passed		82.50	40 -	135		passed
31	13C12-123789-HxCDD	42.76	1.2621	1.0450 -	1.4350	passed		64.16	40.	135		passed
32	13C12-123789-HxCDF	43.15	0.5243	0.4250 -	0.5950	passed		71.79	$40 \cdot$	135		passed
33	13C12-1234678-HpCDF	44.85	0.4494	0.3650 -	0.5150	passed		98.01	40.	135		passed
34	13C12-1234678-HpCDD	46.03	1.0720	0.8750 -	1.2050	passed		90.34	40.	135		passed
35	13C12-1234789-HpCDF	46.59	0.4449	$0.3650-$	0.5150	passed		72.51	40.	135		passed
36	13C12-OCDD	49.03	0.9055	0.7550 -	1.0250	passed		93.04	40.	135		passed
37	13C12-OCDF	49.23	0.8908	0.7550 -	1.0250	passed		73.13	40 -	135		passed


```
        17FEB07-15
##* file opened Tue Feb 07 22:35:54 2017 ***
Started by - Xcalibur
Instrument Internet name - DFS MS
Instrument mode1 - DFS MS
Instrument service number - SNOOO0xXXX
workstation internet name - Lx18470
Analysis started at: 07-Feb-17 22:35:53
Analysis will stop at user request
Firmware version: 2.02
```

MCAL file name:
Sequence : ef723472-e848-43e5-a9f2-e1bcce0ed473

MID procedure: PFK16MAR24+MDT

Mid Time Windows:
Start Measure End Cycletime

$\#$	1	$11: 30 \mathrm{~min}$	$9: 30 \mathrm{~min}$	$21: 00 \mathrm{~min}$	1.00 sec
$\#$	2	$21: 00 \mathrm{~min}$	$13: 36 \mathrm{~min}$	3436 min	1.00
sec					
$\#$	$34: 36 \mathrm{~min}$	$4: 53 \mathrm{~min}$	$39: 30 \mathrm{~min}$	0.90 sec	
$\#$	34	$39: 30 \mathrm{~min}$	$4: 45 \mathrm{~min}$	44.15 min	0.80
\#					
$\#$	5	$44: 15 \mathrm{~min}$	$3: 45 \mathrm{~min}$	$48: 00 \mathrm{~min}$	0.80 sec
$\#$	6	$48: 00 \mathrm{~min}$	$3: 00 \mathrm{~min}$	$51: 00 \mathrm{~min}$	0.80 sec

Mid Masses: Window \# 1

Page 1

331.9363	5	1	23
333.9333	5	1	23
339.8592	1	1	118
341.8562	1	1	118
354.9787 c	20	1	5
375.8364	2	1	59
Window \# 3			
mass F	int	gr	time (ms)
330.97871	20	1	6
339.8592	1	1	133
341.8562	1	1	133
351.8994	3	1	44
353.8965	3	1	44
355.8541	1	1	133
357.8511	1	1	133
367.8943	3	1	44
369.8914	3	1	44
380.9755 c	20	1	6
409.7969	2	1	66
Window \# 4			
mass F	int	gr	time (ms)
373.8201	1	1	117
375.8172	1	1	117
380.97551	20	1	5
383.8634	3	1	39
385.8604	3	1	39
389.8151	1	1	117
391.8121	1	1	117
401.8554	3	1	39
403.8524	3	1	39
430.9723 c	20	1	5
445.7550	2	1	58
Window \# 5			
mass F	int	gr	time (ms)
404.97551	20	1	5
407.7812	1	1	117
409.7783	1	1	117
417.8244	3	1	39
419.8215	3	1	39
423.7761	1	1	117
425.7732	1	1	117
435.8164	3	1	39
437.8134	3	1	39
479.7160	2	1	58
480.9691 c	20	1	5
Window \# 6			
mass F	int	gr	time (ms)
441.7422	1	1	95
442.97237	20	1	4
443.7393	1	1	95
453.7825	1	1	95
455.7795	1	1	95
457.7372	1	1	95
459.7342	1	1	95
469.7774	3	1	31
471.7745	3	1	31
492.9691 C	20	1	4
513.6770	2	1	47

MID Window terminated after 21.000000 minutes
MID Window end time was 21.000000 minutes
MID Window terminated after 34.600000 minutes
MID Window end time was 34.600000 minutes
Page 2

17FEB07-15
MID Window terminated after 39.500000 minutes MID Window end time was 39.500000 minutes MID Window terminated after 44.250000 minutes MID Window end time was 44.250000 minutes MID Window terminated after 48.000000 minutes MID Window end time was 48.000000 minutes MID Window terminated after 51.000000 minutes MID Window end time was 51.000000 minutes

Tune file name: C:\Xcalibur \backslash System \backslash DFS $\backslash M S I \backslash 17 J A N 26 . D F S T u n e$
DFS - Parameter

ACCU	1000.0000	BCORRS	0.0170	BMASS	98.0000
BQUAD	0.0500	CAPIL	0.0000	CAPTSET	0.0000
CCURR	0.0000	COUNTING	0.0000	DELAY	0.0000
DRAW	-25.0000	DRAWC	0.0000	DRAWS	0.0000
DYNVOLTAGE	20.0000	ECORR	0.9995	ECURR	1.0000
EDAC	7969177.0000	EDACG	1.0000	EDACZ	61.3333
ELEN	-45.0000	EMULT	1300.0000	ENS	173.0000
ENSBR	0.0500	ERATIO	1.0000	ESA	679.0600
ESIPAR	0.0000	EXS	172.0000	EXSBR	-0.4700
FDMA	18000000.0000	FILTER	100.0000	FLENS	1.0000
FM	10.0000	FMII	50.0000	FQUAD	12.3500
FQUADGAIN	1.0000	FREQ	400.0000	FSLOPE	36000000.0000
FVANAL	0.0171	FVINLET	0.0297	FVSRC	0.0286
FWIN	0.7000	HCURR	0.0000	HVANAL	0.0000
HVSRC	0.0000	ICAL0	0.0011	ICAL1	0.4030
ICAL2	0.5865	IONEN	0.0000	IST	0.0000
ISTC	260.0000	ISTS	260.0000	LENS_POT	714.0000
LENS_SYM	14.3000	LM	1050.0000	LMII	500.0000
LMASS	98.0000	LKM	442.9723	MASS	98.0000
MDAC	1460524.2399	MRANGE	1304.6486	NSAM	200.0000
NSCAN	2524.0000	NSMAX	8.0000	NSMIN	66.0000
NPEAK	11.0000	MULT	0.0000	PSAM	10.0000
PUSHER	-9.0000	RECURR	0.8952	RELEN	0.0000
RES	12191.3823	RPUSHER	-8.6960	RDRAW	0.0000
RDRAWC	0.0000	RWIN	2.0000	SCIDLE	0.0000
SHIELD_POT	638.0000	SHIELD_SYM	0.0000	SHIGH	1050.0000
SKIM	0.0000	SLOW	10.0000	SS	2.0000
SW	0.0206	TANAL	0.0000	TCURR	0.0000
TD	30.0000	TS	60.6748	THRESH	2.0000
TIS	0.2000	TREF	100.0000	TSAM	200.0000
TSET	0.0000	TUBEL	0.0000	UROT	0.0000
USERVAR	0.0000	UTQ1	150.0000	UTQ2	190.0000
UTQ3	80.0000	VMASS	98.0000	XLENS_POT	896.0000
XLENS_SYM	-8.5000	YLENS_POT	568.0000	YLENS_SYM	0.0000
Source Gauge: $1.9 \mathrm{e}-005 \mathrm{mbar}$ Analyzer Penning: $5.1 \mathrm{e}-008 \mathrm{mbar}$ Pirani Analyse: $1.7 \mathrm{e}-002 \mathrm{mbar}$ Pirani Source: $2.8 \mathrm{e}-002 \mathrm{mbar}$ Pirani Inlet System: $3.0 \mathrm{e}-002$ mbar					

Scantype is magnetic

Sourcemode is EI POS
MID Time window 1: Resolution is 11751.
MID Time Window 2: Resolution is 11911.
MID Time window 3: Resolution is 12493.
MID Time window 4: Resolution is 12138.

MID Time window 5: Resolution is 12874. MID Time Window 6: Resolution is 12191.

Amplifier offset: 88.
*** File closed Tue Feb 07 23:26:55 2017

Page 4
APPROVED
AlL01 Page 555 of 560

Extraction Logs

Dioxins/Furans by HRMS

Moisture Data

Lancaster Laboratones
Environmental

CLIENT: ARS International, LLC
SDG: AlL01

MOISTURE

SAMPLE NUMBERS:

Sample \#	Sample Code
8807304	$-007-$
8807305	$-004-$
8807306	$-002-$

COMMENTS:
Method defined actions are taken for any failed matrix QC.

Laboratory Compliance Quality Control

Moisture Data Report

Batch \#: 17033820006

Sample ID	Sample					Analysis		Verified Date (Emp\#)
	Batch ID	Analysis\#	Tare Wt	Wt	Dry Wt	\%Moisture	Date (Emp\#)	
8807304	A	00111	1.1117	6.8375	7.1478	11.72	2/2/17 (1201/SWF)	2/3/17 (236/CW)
8807305	A	00111	1.1029	7.4271	5.4341	41.68	2/2/17 (1201/SWF)	2/3/17 (236/CW)
8807306	A	00111	1.1461	7.3436	7.6701	11.16	2/2/17 (1201/SWF)	2/3/17 (236/CW)
P807415BKG	A	00111	1.1268	8.5154	8.7034	11.02	2/ 2/17 (1201/SWF)	2/3/17 (236/CW)
P807415DUP	A	00111	1.1210	8.5683	8.7404	11.07	2/2/17 (1201/SWF)	2/3/17 (236/CW)
LCS 89.5\% Std.		00111	1.1167	5.0223	1.6453	89.47	2/2/17 (1201/SWF)	2/3/17 (236/CW)

ARS International, LLC

Laboratory Analysis Report

ARS1-17-00215

Prepared for:

Applied Sciences Company

Joel I. Cehn
4714 Windsor Blvd
Cambria, CA 93428
cehn@aol.com
Phone: (510) 863-1570

> Notes: ARS International, LLC assumes no liability for the use or the interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

Contact Person: Questions regarding this analytical report should be addressed to:

Case Narrative

SDG\# ARS1-17-00215

COC AQUEOUS SAMPLES

CASE NARRATIVE

Client:	Applied Sciences Company
Project:	BBI
SDG Number:	ARS1-17-00215
Received Date:	$1 / 24 / 2017$
Report Date:	$2 / 22 / 2017$

SAMPLE RECEIPT

The samples were received in good condition. The samples were screened for radioactive contamination as per procedure ARS-062 "Sample Receiving".

ANALYTICAL DATA

This data package contains sample and QC results for four (4) aqueous samples (3 actual samples and 1 trip blank) requested for the above referenced project on $1 / 23 / 2017$.

The analytical method utilized for the VOA analysis was ARS-159/SW846 8260B.
The analysis for Gross Alpha spectroscopy was performed using SOP ARS-090/SM 7110C.
The analysis for Strontium was performed using SOP ARS-032/Eichrom SRW-01.
The following analytical batches are associated with these samples: ARS1-B17-00152 for the VOA analysis, ARS1-B17-00214 for Gross Alpha and batch ARS1-B17-00188 for Strontium.

The result data that are flagged with " U " indicate that the activity is below the MDC.
Sample results are being reported on an "as is" basis (aqueous).
Sample OS-10 was collected on $1 / 16 / 2017$ and received on $1 / 24 / 2017$ exceeding the holding time for a nonpreserved sample. Samples OS-3 and BB-17 expired on the day of receipt but all were analyzed after consulting with the client who authorized analysis. The samples were also above the 6 degree C limit and all were authorized for analysis by the client.

Some of the requested analytical results did not meet the required detection limits due to insufficient sample volume and possible matrix interference.

The Gross Alpha analysis was originally logged for analysis by GPC-A-001 (Gross Alpha/Beta Activity in Water; EPA 900.0) but was re-logged for analysis by GPC-A-028 (Gross Alpha Radioactivity in Water with High Dissolved Solids; Standard Methods 7110 C) to try to meet the requested detection limits.

American Radiation Services Project Manager/Laboratory Director's Comments:

"I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this sample data package and the computer-readable EDD, as applicable, submitted on diskette or by modem, has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. I certify that this electronic image and all hardcopies produced from this image accurately represent the data and is in compliance with the company specific requirements, both technically and for completeness, other than the conditions detailed above or in the sample data package narrative. Release, by submission through email, the data contained in this electronic image and the computer-readable EDD (as applicable), has been authorized by the laboratory Manager/Technical Director or the Manager's designee."

Laboratory Manager, ARS International
Printed: $2 / 16 / 2017$ 11:31 AM
Page 1 of 1

		SDG	ARS1-17-00215		
\#	SDG/ABatch	Date	Dept	Technical Note	User ID
1	ARS1-17-00215	01/24/2017 2:07 PM	MGMT	Samples received not preserved except for Trip Blank and OS-3 for VOA.	RVARNELL
2	ARS1-17-00215	01/31/2017 10:42 AM	SDG	User Deleted Analysis from SDG; Analysis: GPC-A-001 -- Reason: Wrong Method	RVARNELL
3	ARS1-17-00215	01/31/2017 11:31 AM	SDG	User Deleted Analysis from Sample; Fraction: 001; Analysis: GPC-A-028 -- Reason: Not Needed	RVARNELL
4	ARS1-17-00215	01/31/2017 11:32 AM	SDG	User Deleted Analysis from Sample; Fraction: 003; Analysis: GPC-A-028 -- Reason: Not Needed	RVARNELL
5	ARS1-17-00215	02/01/2017 10:46 AM	SDG	After obtaining client's approval, sample ARS1-17-00215 was filtered prior to analysis.	SLEESE
6	ARS1-17-00215	02/01/2017 10:47 AM	SDG	previous note referred to ARS1-17-00215-004 (BB-17)	SLEESE

Notes (Case Narrative):

Comments:

1.0) All MDA/MDC values are calculated on a sample specific basis.

2.0) Soil and Sludge analysis are reported on a wet basis or an as received basis unless otherwise indicated.
3.0) Data in this report are within the limits of uncertainty specified in the reference method unless otherwise specified.
4.0) Modified analysis procedures are procedures that are modified to meet the certain specifications. An example may be the use of a water method to analyze a solid matrix due to the lack of an officially recognized procedure for the analysis of the solid matrix. Modified analyses are indicated by the subsequent addition of " m " to the procedure number (i.e. 900.0 M).
5.0) Total activity is actually total gamma activity and is determined utilizing the prominent gamma emitters from the naturally occurring radioactive decay chains and other prominent radioactive nuclides. Total activity may be lower than the actual total activity due to the extent of secular equilibrium achieved in the various decay chains at the time of analysis. The total activity is not representative of nuclides that emit solely alpha or beta particles.
6.0) Ra-228 is determined via secular equilibrium with its daughter, Actinium 228 (Gamma Spectroscopy only).
7.0) U-238 is determined via secular equilibrium with its daughter, Thorium 234 (Gamma Spectroscopy only).
8.0) All gamma spectroscopy was performed utilizing high purity germanium detectors (HPGe).
9.0) ARS makes every attempt to match sample density to calibrated density; however, in some cases, it is not practical or possible to do so and data results may be affected (Gamma Spectroscopy only).
10.0) Gamma spectroscopy results are calculated values based on the ORTEC ${ }^{(8)}$ GammaVision ENV32 Analysis Engine.
11.0) ACLASS DOD and ISO 17025 certification applies only to the following analytes and methods: Gross Alpha and Gross Beta (EPA 900, SM71108\&C, SW846 9310); Radium 226 (EPA 903, EPA 903.1, SM 7500 Ra-B, SW846 9315); Radium 228 (EPA 904, SM 7500 Ra-B SW846 9320); lodine-131(EPA 901.1); Uranium by ICPMS (EPA 200.8); Strontium 89/90 (EPA 905, Eichrom SRW01, HASL $300 \mathrm{Sr}-03-\mathrm{RC}$); Tritium (EPA 906, EPA 906M); Gamma Emitters (EPA 901.1, SM7120B, HASL 300 Ga-01-R); Americium-241, Curium 242/244, Plutonium 239/240 and 241, Thorium 228/230/232, Uranium 234/233 and 238 (Eichrom ACW03 VBS); Lead 210 (HASL 300 Pb-01-RC, Eichrom OTW01); Polonium 210 (HASL 300 Po-01-RC, HASL 300 Po-02-RC); Technetium-99 (Eichrom TCW02, Eichrom TCS01M).

Method References:

1.0) EPA 600/4-80-032; Prescribed Procedures for the Measurements of Radioactivity in Drinking Water, August 1980.
2.0) Standard Methods for the Examination of Water and Wastewater (On-Line Edition)
3.0) EPA SW-846; Test Methods for Evaluating Solid Waste, (On-Line edition)
4.0) EPA 600/4/79-020; Methods for Chemical Analysis of Water and Waste, March 1983.
5.0) HASL 300; The Procedures Manual of the Environmental Measurements Laboratory, Volume I, 28th Edition February, 1997.

Definitions:

CRDL Contract Required Detection Limit
CSU Combined Standard Uncertainty
DLC Decision Level Concentration (ANSI N42.23) or critical level
DO Duplicate Original
DUP Method Duplicate
LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate
MDA Minimum Detectable Activity
MDC (Minimum Detectable Concentration) minimum concentration of the analyte that ARS can detect utilizing the specific analysis
MBL Method Blank
MS/MSD Matrix Spike/Matrix Spike Duplicate
N/A Not Applicable
NP Not Provided
NR Not Referenced

Data Qualifiers:

B	The analyte is found in both the associated method blank and the sample. This flag indicates probable blank contamination.
D	Sample analysis accomplished through dilution.
J	The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range).
Q	One or more quality control criteria failed (e.g., LCS recovery, surrogate spike recovery, or CCV recovery).
\mathbf{S}	Spike
*SC	Subcontracted out to another qualified laboratory
\mathbf{U}	Activity is below the MDC or MDL

Sample Identification Cross Reference

SDG\# ARS1-17-00215
COC AQUEOUS SAMPLES

SAMPLE IDENTIFICATION CROSS-REFERENCE

Applied Sciences Company SAMPLE ID(s)	ARS SAMPLE ID NUMBER(s)
OS-3	ARS1-17-00215-001
OS-10	ARS1-17-00215-002
Trip Blank	ARS1-17-00215-003
BB-17	ARS1-17-00215-004

2609 North River Road, Port Allen, Louisiana 70767
1 (800) 401-4277 FAX (225) 381-2996

Chain of Custody and Supporting Documentation

SDG\# ARS1-17-00215
COC AQUEOUS SAMPLES
Chain of Custody Record
Chain of Custody Record

company name: hpplied Seinence Co.
External and Internal Surveys

Printed: $1 / 31 / 2017$ 11:18 AM
Page 1 of 2

Prep Code	Procedure	Count Time					
5030B	ARS-159						
Rot	Lcsu/ut	ms u/ul	RadY LI/UL	Gravr u/ul	RER	RpD	Surru/ul
$0.5 \mathrm{ug} / \mathrm{L}$	79/123	60/140	30/110	40/110	1	25	N/A
	N/A	N/A	N/A	N/A	N/A	N/A	80/120
	N/A	N/A	N/A	N/A	N/A	N/A	80/120
	N/A	N/A	N/A	N/A	N/A	N/A	80/120
	N/A	N/A	N/A	N/A	N/A	N/A	80/120
N/A	ARS-032						
RDi	LCs Li/UL	Ms LT/UL	Radr u/ut	Gravy u/ul	ReR	RPD	surru/uL
$1 \mathrm{pCl} / \mathrm{L}$	75/125	60/140	30/110	40/110	1	25	N/A
N/A	ARS-090						
RDL	LCSLurul	Ms LiMu	RadY Ll/ut	Gravy Lu/uL	RER	RPD	Surr LT/ut
$1 \mathrm{pCi} / \mathrm{L}$	75/125	60/140	30/110	40/110	1	25	N/A

DQO Report for SDG
ARS1-17-00215

ARS International
Baton Rouge Laboratory

SDG Report - Samples and Containers

ARS International
Baton Rouge Laboratory
Printed: 1/31/2017 10:45 AM
Analyses Assigned Per Fraction

Sample Count Totals Per Analysis

Samples Count
$m \quad N \quad$

Analysis Description

SDG	ARS1-17-00215
Client	Applied Sciences Compan

2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

Analytical Results Sample Data Summary

SDG\# ARS1-17-00215 COC AQUEOUS SAMPLES
international

```
ARS Sample Delivery Group: ARS1-17-00215
Client Sample ID: OS-3
Sample Collection Date: 01/17/17
```

Sample Matrix: Aqueous
Percent Solids: N/A
ARS Sample Delivery Group: ARS1-17-00215
Client Sample ID: OS-3
Sample Collection Date: 01/17/17

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00215-001
Date Received: 01/24/17
Report Date: 02/16/17
Sample Volume (mL): 1

Purge Volume (mL): 5
Soil Extract Volume (uL):
Soil Aliquot Volume (uL):

1

GC Column: Elite-VMS
Level:
Preparation Method: ARS-159/5030B
Analysis Method: ARS-159/SW846 8260B

Volatile Organics

CAS\#	Analyte	Analysls Result	MDL	PQL	CRDL	Dllutlon Factor	Qual	Analysis Units	Analysis Date/Time	Analysls Technician
79-01-6	Trichloroethene	<0.300	0.300	1.00	0.500	1	\cup	ug/L	01/26/17 19:14	APOLLARD

CAS\#	Surrogate	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
17060-07-0	1,2-Dichloroethane-d4	50.0	53.6	ug/L	107\%	80/120
460-00-4	Bromofluorobenzene	50.0	53.1	ug/L	106\%	80/120
1868-53-7	Dibromofluoromethane	50.0	41.3	ug/L	82.6\%	80/120
2037-26-5	Toluene-d8	50.0	54.7	ug/L	109\%	80/120

 report in less than full requires the written consent of the client

```
ARS Sample Delivery Group: ARS1-17-00215
Client Sample ID: OS-10
```

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00215-002
Date Received: 01/24/17
Report Date: 02/16/17

Radiochemistry

Analysis Description	Analysis Results	$\mathbf{C S U}+$ /- 2 s	MDC	DLC	CRDL	Qual	Analysis Units	Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
Sr-90	0.087	0.543	0.934	0.442	1	u	pCi/L	ARS-032/Eichrom SRW-01	02/03/17 13:40	CT	56\%
GROSS ALPHA	0.679	0.736	1.074	0.374	1	U	PCi/L	ARS-090/SM 7110 C	02/07/17 9:34	BSCHREITER	N/A

Sample Volume (mL): 1

Purge Volume (mL): 5

GC Column: Elite-VMS

Level:
Soil Extract Volume (uL)
Preparation Method: ARS-159/5030B
Analysis Method: ARS-159/SW846 8260B

Volatile Organics

CAS\#	Analyte	Analysis Result	MDL	PQL	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
79-01-6	Trichloroethene	<0.300	0.300	1.00	0.500	1	U	ug/L	01/26/17 19:39	APOLLARD

CAS\#	Surrogate	Spiked Amount	Analysis Result	Analysis Units	\% Recovery	Recovery Limits
17060-07-0	1,2-Dichloroethane-d4	50.0	53.3	ug/L	107\%	80/120
460-00-4	Bromofluorobenzene	50.0	52.6	ug/L	105\%	80/120
1868-53-7	Dibromofluoromethane	50.0	40.7	ug/L	81,3\%	80/120
2037-26-5	Toluene-d8	50.0	54.6	ug/L	109\%	80/120

 report in less than full requires the written consent of the client.

ARS Sample Delivery Group: ARS1-17-00215
Client Sample ID: TRIP BLANK
Sample Coliection Date: 01/18/17
Sample Matrix: Aqueous
Percent Solids: N/A

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00215-003
Date Received: 01/24/17
Report Date: 02/16/17

Sample Volume (mL): 1
Purge Volume (mL): 5

GC Column: Elite-VMS

Preparation Method: ARS-159/5030B
Analysis Method: ARS-159/SW846 8260B

Volatile Organics

CAS\#	Analyte	Analysis Result	MDL	PQL	CRDL	Dilution Factor	Qual	Analysis Units	Analysis Date/Time	Analysis Technician
79-01-6	Trichloroethene	<0.300	0.300	1.00	0.500	1	u	ug/L	01/26/17 20:03	APOLLARD
CAS\#	Surrogate			Spike	mount	Analy	Result	Analysis Units	\% Recovery	Recovery Limits
17060-07-0	1,2-Dichloroethane-d4				50.0		53.8	ug/L	108\%	80/120
460-00-4	Bromofluorobenzene				50.0		52.7	ug/L	105\%	80/120
1868-53-7	Dibromofluoromethane				50.0		41.8	ug/L	83.6\%	80/120
2037-26-5	Toluene-d8				50.0		55.2	ug/L	110\%	80/120

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client

ARS Sample Dellvery Group: ARS1-17-00215
Cllent Sample ID: BB-17
Sample Collection Date: 01/17/17
Sample Matrix: Aqueous
Percent Solids: N/A

Request or PO Number: Quote\# 161115 SL
ARS Sample ID: ARS1-17-00215-004
Date Received: 01/24/17
Report Date: 02/16/17

Radiochemistry

Analysis Description	Analysis Results	CSU +/-2	MDC	DLC	CRDL	Qual	Analysis Units	Method	Analysis Date/Time	Analysis Technician	Tracer/Chem Recovery
Sr-90	0.872	1.171	1.921	0.910	1	u	$\mathrm{pCi} / \mathrm{L}$	ARS-032/Eichrom SRW-01	02/03/17 13:40	CT	68\%
GROSS ALPHA	16.209	6.856	4.105	1.406	1		pCi/L	ARS-090/SM 7110 C	02/07/17 9:34	BSCHREITER	N/A

Projer/MGnager Review
 report in less than full requires the written consent of the client.

Radiological Analysis Quality Control Results

SDG\# ARS1-17-00215
COC AQUEOUS SAMPLES

QC Results per Analytical Batch

Analytical Batch	ARS1-B17-00188
SDG	ARS1-17-00215
Analysis	Strontium-90 (Aqueous)
Analysis Test Method	ARS-032/Gas Proportional Counter
Analysis Code	GPC-A-009
Report Units	PCi/L

Acceptable QC Performance Ranges

QC Sample Type		Performance Items and Ranges					
Laboratory Control Sample		Recovery (\%):		>75		<125	
Matrix Spike		Recovery (\%):		>60		<140	
Duplicate		Replicate Error Ratio (RER):				<1	
		Duplicate Error Ratio (DER):				<3	
		Relative Percent Difference (RPD \%):				≤ 25	
Laboratory Control Sample			Analysis Date	02/03/17 13:40	Analysis Technician	CT	
Analysis Batch Sample ID	QC Type	Analyte	Results	CSU (2s)	Expected Value	LCS Rec (\%)	MDC
ARS1-B17-00188-01	LCS	SR-90	20.615	3.164	19.413	106.2	0.391
Duplicate RER/DER/RPD			Analysis Date	02/03/17 13:40	Analysis Techniclan	CT	
Analyte	Results LCS	CSU LCS (2s)	Results LCSD	CSU LCSD (2s)	RER	DER	RPD
SR-90	20.615	3.164	20.990	3.223	0.059	0.163	1.8
Method Blank			Analysis Date	02/03/17 13:40	Analysis Technician	CT	
Analysis Batch Sample ID		QC Type	Analyte	Results	CsU (2s)	MDC	Qual
ARS1-B17-00188-03		MBL	SR-90	-0.091	0.231	0.409	U

Projegt Mornager Review
Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

LELAP Certificate\# 01949

Notes: American Radiation Services, Inc. assumes no liability for the use or interpretation of any analytical results provided other than the cost of the analysis itself. Reproduction of this report in less than full requires the written consent of the client.

LELAP Certificate\# 01949

Stable Chemistry Analysis Quality Control Results

SDG\# ARS1-17-00215
COC AQUEOUS SAMPLES

 QC Results per Analytical Batch			Analytical Batch					
			SDG		ARS1-17-00215			
			Analysis		GCMS-8260B-AQ			
				Method	ARS-159/SW846 8260B			
			Analysis Code		GCMS-8260B-AQ			
			Report Units		ug/L			
Laboratory Control Sample		Analysis Date		01/26/17 18:25	Analysis Technician		APOLLARD	
CAS \#	Analyte	LCS Results	LCSD Results	Known Value	\% Rec	Limits	RPD	Limits
79-01-6	Trichloroethene	51.4	52.9	50.0	103	79-123	2.88	25
Method Blank		Analysis Date		01/26/17 18:01	Analysis Technician		APOLLARD	
CAS \#	Analyte	Blank Results		Qualifier	MDL		PQL	
79-01-6	Trichlorgethene	<0.300		U	0.300		1.00	

[^9] report in less than full requires the written consent of the client.

Radiological Analysis EPA 905.0/SRW-01
 SDG\# ARS1-17-00215 COC AQUEOUS SAMPLES

Caloulations
Nata Euty
Soer $2-6-17$

Recount / Reprep Form

SDG \& Aliquot \#(s):

ARS/-17-00215-002 +004

Analytes: $\quad \leq p-90$
Reason for required action: NEEdS / PCi/L CROL,

$\stackrel{\text { 츨 }}{\text { 층 }}$

首号

$\frac{4}{5}$
$\frac{0}{0}$
$\frac{0}{4}$

$\begin{aligned} & 1 \\ & 8 \\ & 8 \\ & \hline 8 \end{aligned}$	1 8 8 8 i	1 8 8	8

은
穴
흔
ARS international
Baton Rouge Laboratory

Procedure Data
ABatch Sample ID
ARS1-B17-00188-01
ARS1-B17-00188-02
ARS1-B17-00188-03
ARS1-B17-00188-04
OS-10
ARS1-B17-00188-05

Sr Yield Calculation Sheet 00188

	$\stackrel{N}{\underset{N}{N}} \stackrel{\underset{N}{N}}{\underset{\sim}{\lambda}}$
$\begin{aligned} & 0 \\ & \stackrel{0}{E} \\ & \text { No } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	θ

$\underset{\&}{\mathbf{O}}$

Analysis Batch ID ARS1-B17-00188

$N \sim$ $\underset{8}{8}$
 Blind Iso3
3.98
12.45
12.45
13.09
12.45
Printed: 2/6/201

$$
\begin{aligned}
& \text { P17 9:02 AM } \\
& \text { Page } 1 \text { of } 1 \\
& \text { Mod Date } \\
& 01 / 19 / 2017 \\
& 01 / 19 / 2017
\end{aligned}
$$

American Radiation Services
Baton Rouge Laboratory
Printed 2/3/2017 1:50 PM
Page 1 of 1

GEN 693
C 11160
LONG BKG
WJS

Printed: 2/16/2017 4:19 PM

	$O K$
	$O K$

\square
Process Date Range: $12 / 22 / 16-02 / 03 / 17$
American Radiation Services
Baton Rouge Laboratory

Population Statistics				Trending Analysis	
	30			Most recent point outside of the 3-sigma values.	OK
Population Size	0	Date	02/03/17	8 consecutive most recent points on one side of the mean.	OK
Average	0.2913	CPM/DPM	0.2892	2 of 3 most recent points above 2 sigma.	OK
Standard Deviation	0.0026			4 of 5 most recents points beyond the 1 -sigma.	OK
+3 -sigma value	0.2991	Date		7 trending most recent points in a row.	OK
- 3 -sigma value	0.2835	CPM		15 most recent points inside 1 sigma.	OK
		Count Mins		8 most recent points outside 1 sigma.	OK

Printed: 2/16/2017 4:19 PM
Page 1 of 1

30			Trending Analysis	
			Most recent point outside of the 3 -sigma values.	OK
	Date	02/03/17	8 consecutive most recent points on one side of the mean.	OK
0.2880	CPM/DPM	0.2871	2 of 3 most recent points above 2 sigma.	OK
0.0019			4 of 5 most recents points beyond the 1 -sigma.	OK
0.2938	Date		7 trending most recent points in a row.	OK
0.2822	CPM		15 most recent points inside 1 sigma.	OK
	Count Mins		8 most recent points outside 1 sigma.	OK

[^10]Baton Rouge Laboratory
LB4100-C - ALPHA EFFICIENCY
Printed: 2/16/2017 4:19 PM
 LB4100-C - ALPHA EFFICIENCY - DETECTOR B1
Process Date Range: $12 / 22 / 16-02 / 03 / 17$ Process Date Range: $12 / 22 / 16-02 / 03 / 17$

LB4100-C - ALPHA EFFICIENCY

American Radiation Services
Baton Rouge Laboratory

Population Statistics

0.34
2/21
Printed: 2/16/2017 4:21 PM

LB4100-C - ALPHA EFFICIENCY - DETECTOR B2									
Process Date Range: $12 / 22 / 16$ - 02/03/17									
0.32									
0.32									
0.32									
0.32									
$\begin{aligned} & 0.81 \\ & 0.3 .31 \\ & 0.31 \end{aligned}$	-		\bullet				\bullet		
				\checkmark		\bullet			
0.31									
0.31									
0.30									
12/21	12/26	12/31	01/05	01/10	01/15	01/20	01/25	01/30	02/04

Printed: 2/16/2017 2:58 PM
Page 1 of 1

Population Statistics		DER Analysis	OK	Trending Analysis	
Population Size	29	DER	1.4060	Most recent point outside of the 3 -sigma values.	OK
Population Size	3	Long B Date	01/28/17	8 consecutive most recent points on one side of the mean.	OK
Average	0.0652	Long B CPM	0.0644	2 of 3 most recent points above 2 sigma.	OK
Standard Deviation	0.0257	Count Mins	900.00	4 of 5 most recents points beyond the 1-sigma.	OK
+ 3-sigma value	0.1423	Date	02/03/17	7 trending most recent points in a row.	OK
- 3 -sigma value	-0.0118	CPM	0.1083	15 most recent points inside 1 sigma.	OK
		Count Mins	120.00	8 most recent points outside 1 sigma.	OK

American Radiation Services

LB4100-C - Alpha Daily BKG Check

Baton Rouge Laboratory
Printed: 2/16/2017 3:48 PM
Page 1 of 1

LB4100-C - Alpha Daily BKG Check
American Radiation Services
Baton Rouge Laboratory
0.1200
0.1000
0.0800
0.0600
\sum_{0}^{2}
0.0400

0.0200
0.0000
12
-0.0200

	Population Frequency Distribution (Histogram)						
	Bin	Frequency					
	0.01	1		10			
	0.03	6	1$\frac{6}{6}+1$ 1				
	0.05	10			7		
	0.06 0.08	7			7		
	$\begin{array}{r}0.08 \\ \hline \text { More }\end{array}$	5			3	5	
					+		
					S	,	1
					2 z	2-20	
			nnt nns	nne	n ne	n no	nna...

Printed: 2/16/2017 3:01 PM

DER Analysis	$\mathbf{O K}$		Trending Analysis
DER	1.0422	Most recent point outside of the 3 -sigma values.	$\mathbf{O K}$
Long B Date	$01 / 28 / 17$	8 consecutive most recent points on one side of the mean.	$\mathbf{O K}$
Long B CPM	0.0411	2 of 3 most recent points above 2 sigma.	$\mathbf{O K}$
Count Mins	900.00	4 of 5 most recents points beyond the 1 -sigma.	$\mathbf{O K}$
Date	$02 / 03 / 17$	7 trending most recent points in a row.	$\mathbf{O K}$
CPM	0.0667	15 most recent points inside 1 sigma.	$\mathbf{O K}$
Count Mins	120.00	8 most recent points outside 1 sigma.	$\mathbf{O K}$

American Radiation Services

LB4100-C - Alpha Daily BKG Check

Population Statistics		
Population Size	29	
	Average	0.0382
Standard Deviation	0.0157	
+3 -sigma value	0.0852	
-3 -sigma value	-0.0088	

DER Analysis	OK DER	0.4622	Most recent point outside of the 3 -sigma values.
Long B Date	$01 / 28 / 17$	8 consecutive most recent points on one side of the mean.	$\mathbf{O K}$
Long B CPM	0.0322	2 of 3 most recent points above 2 sigma.	$\mathbf{O K}$
Count Mins	900.00	4 of 5 most recents points beyond the 1 -sigma.	$\mathbf{O K}$
Date	$02 / 03 / 17$	7 trending most recent points in a row.	$\mathbf{O K}$
CPM	0.0250	15 most recent points inside 1 sigma.	$\mathbf{O K}$
Count Mins	120.00	8 most recent points outside 1 sigma.	$\mathbf{O K}$

American Radiation Services
Baton Rouge Laboratory
LB4100-C - Alpha Daily BKG Check

Population Statistics		DER Analysis	OK	Trending Analysis
Population Size	29	DER	1.0967	Most recent point outside of the 3-sigma values.
		Long B Date	01/28/17	8 consecutive most recent points on one side of the mean.
Average	0.0328	Long B CPM	0.0311	2 of 3 most recent points above 2 sigma.
Standard Deviation	0.0178	Count Mins	900.00	4 of 5 most recents points beyond the 1-sigma.
+ 3-sigma value	0.0862	Date	02/03/17	7 trending most recent points in a row.
- 3 -sigma value	-0.0207	CPM	0.0167	15 most recent points inside 1 sigma.
		Count Mins	120.00	8 most recent points outside 1 sigma.

LB4100-C - ALPHA BACKGROUND - DETECTOR B2

Printed: 2/16/2017 2:21 PM

	Trending Analysis	
	Most recent point outside of the 3 -sigma values.	OK
	8 consecutive most recent points on one side of the mean.	OK
	2 of 3 most recent points above 2 sigma.	OK
	4 of 5 most recents points beyond the 1 -sigma.	OK
	7 trending most recent points in a row.	OK
	15 most recent points inside 1 sigma.	OK
	8 most recent points outside 1 sigma.	OK

LB4100-C - ALPHA LONG BACKGROUND - DETECTOR A1 Process Date Range: 07/17/16-02/04/17
American Radiation Services
Baton Rouge Laboratory

Printed: 2/16/2017 2:22 PM

	$O K$
	$O K$
$O K$	
$O K$	

Printed: 2/16/2017 2:53 PM

Instrument Background Analysis
American Radiation Services
Baton Rouge Laboratory

Population Statistics				Trending Analysis
Population Size	30			Most recent point outside of the 3 -sigma values.
				8 consecutive most recent points on one side of the mean.
Average	0.0457			2 of 3 most recent points above 2 sigma.
Standard Deviation	0.0089			4 of 5 most recents points beyond the 1 -sigma.
+ 3 -sigma value	0.0724			7 trending most recent points in a row.
- 3 -sigma value	0.0191			15 most recent points inside 1 sigma.
	30.0000			8 most recent points outside 1 sigma.

Printed: 2/16/2017 2:24 PM

	OK

| LB4100-C - ALPHA LONG BACKGROUND - DETECTOR B1 |
| :---: | :---: |
| Process Date Range: $07 / 17 / 16-02 / 04 / 17$ |
| $10 / 25$ |

Printed: 2/16/2017 2:27 PM

Instrument Background Analysis

American Radiation Services
Baton Rouge Laboratory

Printed: 2/16/2017 4:21 PM
Page 1 of 1

Population Statistics				Trending Analysis	
Population Size				Most recent point outside of the 3 -sigma values.	OK
Population Size		Date	02/03/17	8 consecutive most recent points on one side of the mean.	OK
Average	0.4712	CPM/DPM	0.4769	2 of 3 most recent points above 2 sigma.	OK
Standard Deviation	0.0029			4 of 5 most recents points beyond the 1-sigma.	OK
+ 3 -sigma value	0.4798	Date		7 trending most recent points in a row.	OK
- 3 -sigma value	0.4627	CPM		15 most recent points inside 1 sigma.	OK
		Count Mins		8 most recent points outside 1 sigma.	OK

[^11]
Printed: 2/16/2017 4:21 PM

Population Statistics				Trending Analysis	
Population Size				Most recent point outside of the 3-sigma values.	OK
Population Size		Date	02/03/17	8 consecutive most recent points on one side of the mean.	OK
Average	0.4610	CPM/DPM	0.4622	2 of 3 most recent points above 2 sigma.	OK
Standard Deviation	0.0027			4 of 5 most recents points beyond the 1-sigma.	OK
+ 3 -sigma value	0.4691	Date		7 trending most recent points in a row.	OK
- 3 -sigma value	0.4528	CPM		15 most recent points inside 1 sigma.	OK
		Count Mins		8 most recent points outside 1 sigma.	OK

[^12]\textrm{k}=2)
3.0%

```

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.

P O NUMBER 06-0431, Item 1

SOURCE CALIBRATED BY:

Q A APPROVED:


1380 Seaboard Industrial Blvd. Atlanta, Georgla 30318
Tel 404.352.8677
Fax 404-352-2837
www.analyticsinc.com

\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73519-526
Th-230 47 mm Diameter \(\times 0.9 \mathrm{~mm}\) Thick Stainless Steel Disk in Stainless Steel Planchet

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a zns scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

\section*{ISOTOPE:}

ACTIVITY (dps)
HALF-IIFE:
CALIBRATION DATE:
RELATIVE EXPANDED
UNCERTAINTY \((\mathrm{k}=2): \quad 3.0 \%\)

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.

F O NUMBER 06-0431, Item 1

SOURCE CALIBRATED BY:

Q A APPROVED:


1380 Seaboard Industrial Blvd.

\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73520-526
Th-230 47 mm Diameter x 0.9 mm Thick Stainless Steel Disk in stainless steel planchet

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a zns scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

ISOTOPE:
ACTIVITY (dps):
HALF-LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY ( \(k=2\) );

Th-230
1.907 E 2
7.538 E4 years

September 11, 2006 12:00 EST
\(3.0 \%\)

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.
\(P O\) NUMBER 06-0431, Item I

SOURCE CALIBRATED BY:

Q A APPROVED:


1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318
Tel 404.352-8677
Fax 404•352•2837
www.analyticsinc.com

\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73521-526
Th-230 47 mm Diameter \(\times 0.9 \mathrm{~mm}\) Thick Stainless Steel Disk in Stainless Steel Planchet

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a ZnS scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

ISOTOPE:
ACTIVITY (dps):
HALF-LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY \((k=2)\) :

Th-230
1.916 ER
7.538 E4 years

September 11, 2006 12:00 EST
\(3.0 \%\)

Diameter of Active Area: 33 mm . Low Ringed Bottom Planchet.
CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.

P O NUMBER 06-0431, Item 1

SOURCE CALIBRATED BY:


Daniel M. \%ontgomery, Radiochemist

Q A APPROVED:


\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73522-526
Sr-90 in Aluminized Mylar on 47 mm Diameter Aluminum Ring
This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
Sr-90
ACTIVITY (dps):
HALF -LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED
UNCERTAINTY ( \(\mathrm{k}=2\) ): \(3.3 \%\)

Impurities: \(\gamma\)-impurities \(<0.1 \%\)
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains Y-90 in secular equilibrium with Sr-90. The \(Y-90\) activity is equal to the \(\operatorname{sr}-90\) activity. Since Sr-90 and Y-90 both decay \(100 \%\) by beta emission, the total beta activity for the source is twice the certified Sr-90 activity. The half-life for \(Y-90\) is 64.08 hours.

PO NUMBER 06-0422, Item 1

SOURCE PREPARED BY:
M. Drmitrove
M. Dimitrova, Radiochemist

Q A APPROVED:


\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73523-526
Sr-90 in Aluminized Mylar on 47 mm Diameter Aluminum Ring This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
ACTIVITY (dps):
HALF -LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY \((k=2): 3.3 \%\)

Sr-90
1.837 E 2
28.79 years

October 9, 2006 12:00 EST

Impurities: \(\gamma\)-impurities <0.1\%
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains Y-90 in secular equilibrium with Sr-90. The \(Y-90\) activity is equal to the \(\operatorname{sr-90}\) activity. Since Sr-90 and Y-90 both decay \(100 \%\) by beta emission, the total beta activity for the source is twice the certified Sr-90 activity. The half-life for \(Y-90\) is 64.08 hours.

P O NUMBER 06-0422, Item 1

SOURCE PREPARED BY:


Q A APPROVED:


\title{
CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source
}

73524-526
Sr-90 in Aluminized Mylar on 47 mm Diameter Aluminum Ring
This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
Sr-90
ACTIVITY (dps):
HALF -LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED UNCERTAINTY ( \(\mathrm{k}=2\) ): \(3.3 \%\)

Impurities: \(\gamma\)-impurities <0.1\%
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the fragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains Y-90 in secular equilibrium with Sr-90. The \(Y-90\) activity is equal to the Sr-90 activity. Since Sr-90 and Y-90 both decay 100\% by beta emission, the total beta activity for the source is twice the certified \(\operatorname{sr}-90\) activity. The half-life for \(Y-90\) is 64.08 hours.

P O NUMBER 06-0422, Item I

SOURCE PREPARED BY:


Q A APPROVED:


\section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

73525-526
8z-90 in Aluminized Mylar on 47 mm Diameter Aluminum Ring This standard radionuclide source was prepared gravimetrically from a calibrated master solution. The master solution was calibrated by liquid scintillation counting. The calibration was checked by beta counting after source preparation.

ANALYTICS maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Reg. Guide 4.15, Revision 1.

ISOTOPE:
ACTIVITY (dps):
HALF-LIFE:
CALIBRATION DATE:
RELATIVE EXPANDED
UNCERTAINTY \((k=2): \quad 3.3 \%\)

Impurities: \(\gamma\)-impurities<0.1早
Diameter of active area: \(33 \mathrm{~mm} .0 .8 \mathrm{mg} / \mathrm{cm}^{2}\) aluminized mylar.
No expiration date has been given for this source due to the Eragile nature of the mylar covering. This source should be carefully tested for leakage at least every six months. If leakage is detected this source should be disposed of by approved radioactive waste disposal procedures.

NOTE: This source also contains \(Y-90\) in secular equilibrium with Sr-90. The \(Y-90\) activity is equal to the Sr-90 activity. Since Sr-90 and \(Y-90\) both decay \(100 \%\) by beta emission, the total beta activity for the source is twice the certified sr-90 activity. The half-life for \(Y-90\) is 64.08 hours.

P O NUMBER 06-0422, Item 1

SOURCE PREPARED BY:

M. Dimitrova, Radiochemist

Q A APPROVED:

\begin{tabular}{|c|c|c|}
\hline  & ZLIO－S
suepers
gZS－t98SL
EONH WSO & OI fuesed 4001 ON foy x！upew los \\
\hline & so！ & sanquejnuew \\
\hline \multicolumn{2}{|l|}{LT／6T／L sen！dx3} & 75 \\
\hline \multicolumn{2}{|l|}{9r／6r／L pe！！！ə入} & 0Eて－41 \\
\hline \multirow[t]{2}{*}{｜｜｜｜｜｜｜｜｜｜｜｜｜} & ｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜ & STEO－S \\
\hline & \begin{tabular}{l}
\％が 0 \\
lolzlessoo \\
\％Za0000 \({ }^{-}\) \\
6 c Z1 \\
289：Z1
\end{tabular} & \begin{tabular}{l}
 ＇7）еш аэนขอมแด \％ \\
 Wda umoury pis
\end{tabular} \\
\hline
\end{tabular}

ZLLO－S PIS pelyuan
SLEO－S PIS pelyanun
uoprey！fen pıepuefs 0cz－41

\section*{STD ID: S-0315}




\author{
Assay Definition-
}

Assay Description:
AB Widw Window assa
Assay TYpe: CPM
Report Name: Report1
Output Data Path: C: \Packard \(\backslash\) Tricarb \(\backslash\) Results \(\backslash\) ARS \(\backslash\) AB WIDE WINDOW
Raw Results Path: C: \(\backslash\) Packard \(\backslash\) Tricarb \(\backslash\) Results \(\backslash\) ARS \(\backslash\) AB
WIDE WINDOW
\(2 \backslash 20160719\) _1149

Count Conditions-
Nuclide: Wide Window
Quench Indicator: tSIE
External Std Terminator (sec): 0.5 2s\%
Pre-Count Delay (min): 0.00
Quench Set: n/a
Quench Set: n/a
Count Time (min): 120.00
Count Mode: Normal 1
\#Vials/Sample: 1
Background Subtract: Off
Low CPM Threshold: Off
2 Sigma \% Terminator: On
\[
\begin{array}{rrrr}
\text { LL } & \text { UL } & \text { 2Sigma } \% \text { Terminator } \\
0.0 & 2000.0 & 0.50 \\
0.0 & 2000.0 & 0.50 \\
0.0 & 2000.0 & 0.50
\end{array}
\]

\section*{Count Corrections-}

> Heterogeneity Monitor: n/a Heterogenelty Bunitor: C ) 75
> elay Before Burst (nsec) :

> Static Controller: On
Colored Samples: n/a


Units

Half Life Correction: Off
Regions Half Life

\section*{Regions}
Half Life-

Reference Time








 mmmmmmmmmm



```

F=~
\#नननन्नN

```
7/20/2016 3:03:58 AM
Protocol\# 6 - AB WIDE WINDOW 2.lsa

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{S-0315 Verification Weights} \\
\hline Tech & JPB \\
\hline Pippete: & LH63076 \\
\hline Scale ID: & 12332539 \\
\hline Standard 1.1 D & S-0315 \\
\hline Standard 21 D & S-0172 \\
\hline Sample 10 & ht(g) \\
\hline S=0315-V1 & 1.0179 \\
\hline S-0315-V2 & 1.0128 \\
\hline S.0315-v3 & 1.0146 \\
\hline 5-0315-v4. & 1.0172 \\
\hline S-0315-V5 & 1.0178 \\
\hline S-0172-V1 & 1.0304 \\
\hline S-0172-V2 & 1.0299 \\
\hline 5-0172-V3 & 1.0176 \\
\hline S-0172-V4: & 1.0387 \\
\hline S-0172-V5 & 1.0211 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{S-0315 Verification Weights} \\
\hline Tech: & JPB \\
\hline Pippete: & LH63076 \\
\hline Scale 10. & 12332539 \\
\hline Standard 1 ID: & S-0315 \\
\hline Standard 210 & S-0172 \\
\hline Sampletid & Std. Weight(g) \\
\hline 5-0315-V1 & 1.0179 \\
\hline S-0315 V2 & 1.0128 \\
\hline 5-0315-V3 & 1.0146 \\
\hline s-0315. V4 & 1.0172 \\
\hline S-0315-V5 & 1.0178 \\
\hline 5-0172-11 & 1.0304 \\
\hline 5-0172-12 & 1.0299 \\
\hline S-0172-V3 & 1.0176 \\
\hline 5-0172-V4 & 1.0387 \\
\hline 5-0172-V5 & 1.0211 \\
\hline
\end{tabular}

UNIVERSITY OF MIAMI
ROSENSTIEL
SCHOOL of MARINE \&
ATMOSPHERIC SCIENCE

TRITIUM LABORATORY

Data Release \#17-024
Job \# 3491

JOEL I. CEHN, CHP
TRITIUM SAMPLES

\author{
Dr. James D. Happell \\ Assistant Research Professor
}

Distribution:
Joel I. Cehn, CHP 4714 Windsor Blvd. Cambria, CA 93428

Tritium Scale New Half-life
Tritium concentrations are normally expressed in TU, where 1 TU indicates a T/H abundance ratio of \(10^{-18}\). The values refer to the tritium scale recommended by U.S. National Institute of Science and Technology (NIST, formerly NBS), and International Atomic Energy Agency (IAEA). The TU-numbers are based on the NIST tritium water standard \#4926E. Age corrections and conversions are made using the recommended half-life of 12.32 years, i.e., a decay rate of \(\lambda=5.626 \%\) year-1. In this scale, 1 TU is equivalent to 7.151 \(\mathrm{dpm} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O}\), or \(3.222 \mathrm{pCi} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O}\), (equivalent to \(\mathrm{pCi} / \mathrm{L}\) in freshwater) or \(0.1192 \mathrm{~Bq} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O}\) ( \(\mathrm{Bq}=\mathrm{disint/sec)}\). We can also express tritium concentrations in pCi/L upon client request.

Tritium concentrations in TU or \(\mathrm{pCi} / \mathrm{L}\) are calculated for date of sample collection, REFDATE in the table, as provided by the submitter. If no such date is available, date of sample arrival at our laboratory is used.

The stated errors, eTU or err, are one standard deviation (1 sigma) including all conceivable contributions. In the table, QUANT is quantity of sample received, and ELYS is the amount of water taken for electrolytic enrichment. DIR means direct run (no enrichment).

\section*{Very low tritium values}

In some cases, negative tritium values are listed. Such numbers can occur because the net tritium count rate is, in principle the difference between the count rate of the sample and that of a tritium-free sample (background count or blank sample). Given a set of "unknown" samples with no tritium, the distribution of net results should become symmetrical around 0 TU or \(\mathrm{pCi} / \mathrm{L}\). The negative values are reported as such for the benefit of allowing the user unbiased statistical treatment of sets of the data. For other applications, 0 TU or pCi/L should be used.

\section*{Additional information}

Refer to Services Rendered (Tritium), Section II.8, in the "Tritium Laboratory Price Schedule; Procedures and Standards; Advice on Sampling", and our Web-site www.rsmas.miami.edu/groups/tritium.

Tritium efficiencies and background values are somewhat different in each of the nine counters and values are corrected for cosmic intensity, gas pressure and other parameters. For tritium, the efficiency is typically 1.00 cpm per 100 TU (direct counting). At \(50 \times\) enrichment, the efficiency is equivalent to 1.00 cpm per 2.4 TU . The background is typically 0.3 cpm , known to about \(\pm 0.02 \mathrm{cpm}\). Our reported results include not only the Poisson statistics, but also other experimental uncertainties such as enrichment error, etc.
```


[^0]: * DTSC Human Health Risk Assessment, Note 2, Dioxins, May 2009.
 † Phase 3 Chemical Data Gap Investigation, CDM Federal Programs, October 2014.
 \ddagger Review of State Soil Cleanup Levels For Dioxin, U.S. EPA, National Center for Environmental Assessment, December 2009.

[^1]: § A 2006 rainwater sample also contained $29 \mathrm{pCi} / \mathrm{L}$ tritium.
 ${ }^{* *}$ Final Groundwater Report Area IV Radiological Study, HydroGeologic, Inc., July 24, 2012. See also DTSC’s re-test showing no radioactivity, (page 27)
 http://www.dtsc-ssfl.com/files/lib offsite investig/bbi/Reports/67220 Feb 2014 OS-10 lab results.pdf

[^2]: Notes: ARS International, LLC assumes no liability for the use or the interpretation of any analytical results provided other than the cost of the analysis itself.

[^3]: ARS International, LLC
 2609 North River Road
 Port Allen, LA 70767-3469
 225.381.2991 Office
 225.381.2996 FAX
 www.amrad.com

[^4]: report in less than full requires the written consent of the client.

[^5]: Project Manaqer Review

[^6]: \# - All peaks for activity calculation had bad shape.

 * - Activity omitted from total
 \& - Activity omitted from total and all peaks had bad shape.

[^7]: \# - All peaks for activity calculation had bad shape.

 * - Activity omitted from total
 \& - Activity omitted from total and all peaks had bad shape.

[^8]: Status Info

[^9]:

[^10]: American Radiation Services

[^11]: LB4100-C - BETA EFFICIENCY - DETECTOR A1

[^12]:

 Printed: 2/16/2017 4:21 PM

 | LB4100-C - BETA EFFICIENCY - DETECTOR A4 |
 | :---: |
 | Process Date Range: $12 / 22 / 16-02 / 03 / 17$ |

 ## LB4100-C - BETA EFFICIENCY

 American Radiation Services
 Baton Rouge Laboratory
 Printed: 2/16/2017 4:24 PM
 LB4100-C - BETA EFFICIENCY - DETECTOR B1

 ## LB4100-C - BETA EFFICIENCY

 American Radiation Services
 Baton Rouge Laboratory

 |
 Statistical Process Control | Population Frequency Distribution (Histogram) | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
 | | Bin | Frequency | | | | | | 3 |
 | | 0.44 | 1 | | | | | | |
 | | 0.44 | 7 | | | | | | |
 | | 0.44 | 4 | | | | | | |
 | | 0.44 | 8 | | | | | | |
 | | 0.44 | 7 | | | | | | |
 | | More | 3 | | | | | | |
 | | | | | | | | | |
 | | | | n^1 | n^1 | | n11 | n11 | n, | nanum |

 LB4100-C - Beta Daily BKG Check
 American Radiation Services
 Baton Rouge Laboratory

 | Population Statistics | | DER Analysis | OK | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | 9 | DER | 0.9555 | Most recent point outside of the 3-sigma values. | OK |
 | Population Size | | Long B Date | 01/28/17 | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.9299 | Long B CPM | 0.8600 | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.1083 | Count Mins | 900.00 | 4 of 5 most recents points beyond the 1-sigma. | OK |
 | + 3-sigma value | 1.2546 | Date | 02/03/17 | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.6051 | CPM | 0.9500 | 15 most recent points inside 1 sigma. | OK |
 | | | Count Mins | 120.00 | 8 most recent points outside 1 sigma. | OK |

 Printed: 2/16/2017 3:03 PM Page 1 of 1

 | Population Statistics | | DER Analysis | OK | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | 29 | DER | 0.6187 | Most recent point outside of the 3 -sigma values. | OK |
 | | | Long B Date | 01/28/17 | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.9210 | Long B CPM | 0.9744 | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.0827 | Count Mins | 900.00 | 4 of 5 most recents points beyond the 1 -sigma. | OK |
 | +3 -sigma value | 1.1690 | Date | 02/03/17 | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.6730 | CPM | 0.9167 | 15 most recent points inside 1 sigma. | OK |
 | | | Count Mins | 120.00 | 8 most recent points outside 1 sigma. | OK |

 Printed: 2/16/2017 3:04 PM

 | Population Statistics | | DER Analysis | OK | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | 29 | DER | 1.5260 | Most recent point outside of the 3 -sigma values. | OK |
 | | | Long B Date | 01/28/17 | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.8529 | Long B CPM | 0.8344 | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.0756 | Count Mins | 900.00 | 4 of 5 most recents points beyond the 1 -sigma. | OK |
 | +3 -sigma value | 1.0796 | Date | 02/03/17 | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.6262 | CPM | 0.7083 | 15 most recent points inside 1 sigma. | OK |
 | | | Count Mins | 120.00 | 8 most recent points outside 1 sigma. | OK |

 LB4100-C - BETA BACKGROUND - DETECTOR A4
 Process Date Range: $12 / 22 / 16-02 / 03 / 17$

 ## LB4100-C - Beta Daily BKG Check

 American Radiation Services
 Baton Rouge Laboratory

 Printed: 2/16/2017 3:04 PM
 Page 1 of 1

 | Population Statistics | | DER Analysis | OK | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | 9 | DER | 1.7736 | Most recent point outside of the 3-sigma values. | OK |
 | Population Size | | Long B Date | 01/28/17 | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.6770 | Long B CPM | 0.6889 | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.0543 | Count Mins | 900.00 | 4 of 5 most recents points beyond the 1-sigma. | OK |
 | + 3-sigma value | 0.8398 | Date | 02/03/17 | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.5142 | CPM | 0.5583 | 15 most recent points inside 1 sigma. | OK |
 | | | Count Mins | 120.00 | 8 most recent points outside 1 sigma. | OK |

 | LB4100-C - BETA BACKGROUND - DETECTOR B1 | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Process Date Range: $12 / 22 / 16-02 / 03 / 17$ | | | | | | | | | |
 | 0.9000 | | | | | | | | | |
 | 0.8000
 -- UWL (2. $)^{2}$ | | | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | | |
 | ```0.5000 - LCL(3 S) 0.4000``` | | | | | | | | | |
 | 0.3000 anan | | | | | | | | | |
 | 0.2000 | | | | | | | | | |
 | 0.1000 | | | | | | | | | |
 | | | | | | | | | | |
 | 12/21 | 12/26 | 12/31 | 01/05 | 01/10 | 01/15 | 01/20 | 01/25 | 01/30 | 02/04 |

 ## LB4100-C - Beta Daily BKG Check

 Baton Rouge Laboratory
 Printed: 2/16/2017 3:05 PM

 | Population Statistics | | DER Analysis | OK | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | 29 | DER | 0.6980 | Most recent point outside of the 3-sigma values. | OK |
 | Population Size | | Long B Date | 01/28/17 | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.7546 | Long B CPM | 0.7156 | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.0931 | Count Mins | 900.00 | 4 of 5 most recents points beyond the 1 -sigma. | OK |
 | + 3-sigma value | 1.0338 | Date | 02/03/17 | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.4754 | CPM | 0.7750 | 15 most recent points inside 1 sigma. | OK |
 | | | Count Mins | 120.00 | 8 most recent points outside 1 sigma. | OK |

 Baton Rouge Laboratory

 \section*{LB4100-C - Beta Daily BKG Check} | | |
 | ---: | :---: |
 | DER Analysis | OK |
 | DER | 0.6980 |
 | Long B Date | $01 / 28 / 17$ |
 | Long B CPM | 0.7156 |
 | Count Mins | 900.00 |
 | Date | $02 / 03 / 17$ |
 | CPM | 0.7750 |
 | Count Mins | 120.00 |

 Printed: 2/16/2017 2:54 PM

 | Population Statistics | | | | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | | | | Most recent point outside of the 3-sigma values. | OK |
 | Population Size | | | | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.9270 | | | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.0594 | | | 4 of 5 most recents points beyond the 1-sigma. | OK |
 | +3 -sigma value | 1.1052 | | | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.7488 | | | 15 most recent points inside 1 sigma. | OK |
 | | 30.0000 | | | 8 most recent points outside 1 sigma. | OK |

 | LB4100-C - BETA LONG BACKGROUND - DETECTOR A1 | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Process Date Range: $07 / 17 / 16$ - 02/04/17 | | | | |
 | 1.20 | | | | |
 | 1.00 UWL (2 S | | | | |
 | 0.80 | | \bullet ¢ \downarrow | | - |
 | 0.50 | | | | |
 | 0.40 | | | | |
 | 0.20 | | | | |
 | 0.00 边 | | | | |
 | 07/1 | 09/05 | 10/25 | 12/14 | 02/02 |

 |
 Statistical Process Control | Population Frequency Distribution (Histogram) | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Bin | Frequency | 1 | 6 | | 18 | 2 | 2 |
 | | 0.79 0.85 | $\frac{1}{1}$ | | | | | | |
 | | 0.91 | 6 | | | | | | |
 | | 0.97 | 18 | | | | | | |
 | | 1.02 | 2 | | | | | | |
 | | More | 2 | | | | | | |
 | | | | | | | | | |
 | | | | | nor | n 0 | nno | ${ }^{+m}$ | man..n |

 American Radiation Services
 Instrument Background Analysis
 Baton Rouge Laboratory
 Printed: 2/16/2017 2:55 PM

 | LB4100-C - BETA LONG BACKGROUND - DETECTOR A2 | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Process Date Range: $07 / 17 / 16-02 / 04 / 17$ | | | | |
 | 1.20 | | | | |
 | | | | | |
 | 0.80 | | | | |
 | 0.70 | | | | |
 | 0.40 | | | | |
 | 0.20 | | | | |
 | | | | | |
 | 07/17 | 09/05 | 10/25 | 12/14 | 02/02 |

 American Radiation Services
 Instrument Background Analysis
 Baton Rouge Laboratory

 | Population Statistics | | | Trending Analysis |
 | :---: | :---: | :---: | :---: |
 | Population Size | 30 | | Most recent point outside of the 3 -sigma values. |
 | | | | 8 consecutive most recent points on one side of the mean. |
 | Average | 0.9138 | | 2 of 3 most recent points above 2 sigma. |
 | Standard Deviation | 0.0400 | | 4 of 5 most recents points beyond the 1-sigma. |
 | + 3-sigma value | 1.0338 | | 7 trending most recent points in a row. |
 | - 3-sigma value | 0.7937 | | 15 most recent points inside 1 sigma. |
 | | 30.0000 | | 8 most recent points outside 1 sigma. |

 LB4100-C - BETA LONG BACKGROUND - DETECTOR A2
 Printed: 2/16/2017 2:55 PM

 |
 Statistical Process Control | Population Frequency Distribution (Histogram) | | | | | | | |
|---|---|---|---|---|---|---|---|---|
 | | Bin | Frequency | | | 6 | 11 | 8 |
 | | 0.75 | 1 | | | | | |
 | | 0.78 | 1 | | | | | |
 | | 0.81 | 3 | | | | | |
 | | 0.85 | 6 | | | | | |
 | | 0.88 | 11 | | | , ${ }^{2}$ | | |
 | | More | 8 | | | H20 ${ }^{2}$ | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | $\cdots 75$ | not | | nor | 000 | nım. |

 American Radiation Services
 Instrument Background Analysis Baton Rouge Laboratory

 Printed: 2/16/2017 2:56 PM

 American Radiation Services
 Instrument Background Analysis Printed: 2/16/20172:56 PM
 Baton Rouge Laboratory

 | Population Statistics | | | | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | 31 | | | Most recent point outside of the 3 -sigma values. | OK |
 | Population Size | 30 | | | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.7087 | | | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.0236 | | | 4 of 5 most recents points beyond the 1 -sigma. | OK |
 | +3 -sigma value | 0.7794 | | | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.6380 | | | 15 most recent points inside 1 sigma. | OK |
 | | 30.0000 | | | 8 most recent points outside 1 sigma. | OK |

 Printed: 2/16/2017 2:56 PM

 | Population Statistics | | | | Trending Analysis | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Population Size | | | | Most recent point outside of the 3 -sigma values. | OK |
 | Population Size | | | | 8 consecutive most recent points on one side of the mean. | OK |
 | Average | 0.7728 | | | 2 of 3 most recent points above 2 sigma. | OK |
 | Standard Deviation | 0.0272 | | | 4 of 5 most recents points beyond the 1 -sigma. | OK |
 | + 3 -sigma value | 0.8544 | | | 7 trending most recent points in a row. | OK |
 | - 3 -sigma value | 0.6913 | | | 15 most recent points inside 1 sigma. | OK |
 | | 30.0000 | | | 8 most recent points outside 1 sigma. | OK |

 American Radiation Services
 Instrument Background Analysis
 Baton Rouge Laboratory

 ## c 11160

 Sr-90/Y90 Efficiency Calibrations 12/8/14

 $$
 \begin{aligned}
 & \text { Approved } \\
 & \text { jor } 12-10-14
 \end{aligned}
 $$

 | | | | | | -11 | 60 | | $a 1$ | $\sqrt{\sim}$ | $0 n 5$ | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Sr-90 | | | | | | | | | | | | | | | | |
 | | | | | | Total | | | | | | | | | | | |
 | | | | | | Activtiy | | | | | | | | | | | |
 | | | Staudard | | | (Sr - 90 in | | | | | | | | | | | |
 | | | Specific | | | DPM) on | | | expected | | | | | | | | |
 | | | Activity | rence | Mass | reference | dded | $\mathrm{g} \mathrm{SrNO} 3 /$ | (img | planchet | planchet tare | planchet | Chemical | separation | | | Sr-90 half- |
 | 10 | Standard 1D | (dpri/g) | date | added (g) | date | (mg as Sr) | $\mathrm{g}_{5} \mathrm{Sr}$ | SrNO3) | gross (g) | (g) | net (mg) | Yieid | date/time | count dateitime | count midpoint | lite days |
 | Sr Cal 1B | S.0121 | 11281.80593 | 3/312000 | 1.9114 | 11410.51 | 5.0000 | 2.4153 | 12.077 | 7.6030 | 75910 | 12.0 | 0.9937 | 128:204412:\% | 12/8/1410? | 12/8114 2:04 PM | 10515.51 |
 | Sr Cal 2B | 50121 | 1128180593 | 31312006 | 10121 | 11418.41 | 50000 | 2.4153 | 12.077 | ${ }^{7} .6040$ | 75920 | 12.0 | 0.9937 | 128:2014 12:19 | 128141402 | 12/8/14 2:04 PM | 10515.51 |
 | Sr Cal 413 | S-012 | 11281.89503 | 1/312006 | 10022 | 11419.54 | 5.0000 | 2.4153 | 12.077 | 7.6150 | 7.6030 | 12.0 | 0.9937 | 128:201412:12 | 128841402 | 12/8114 2:04 PM | 10515.51 |
 | Sr Cal 5 S | $5-0121$ | 11281.89503 | 33312000 | 1.0127 | 11425.18 | 5.0000 | 2.4153 | 12.077 | 7.6110 | 7.5990 | 12.0 | 0.9937 | 12/20014 12:16 | 128.141402 | 12/8114 2:04 PM | 10515.51 |
 | Sr Cal IB | S-0\|21 | 11281.8059: | 3012060 | 1014 | 11410.51 | 5.0000 | 2.4153 | 12.077 | "0130 | 7.5910 | 12.0 | 0.9937 | 12/82014 12:12 | 1285141409 | 12/8/14 2:11 PM | 10515.51 |
 | Sr Cal 2 B | S-01? | 1128189593 | 3/31,2006 | 1.0021 | 11418.41 | 5.0000 | 2.4153 | 12.077 | - 010 ± 0 | 73930 | 12.0 | 0.9937 | 12א201412:19 | $1281414.0{ }^{\circ}$ | 12/8714 2:11 PM | 10515.51 |
 | Sr Cal 4 B | S-012 | 1128180593 | $3 / 312006$ | 1.0122 | 11419.54 | S0000 | 2.4153 | 12.077 | 70.50 | ?.6030 | 12.0 | 0.9937 | 12:8:201412:12 | 128:14 14:00 | 12/8/142:11 PM | 10515.5! |
 | Sr Cal BB | S-112) | 11281.80593 | 3312006 | 10127 | 11425.18 | 50000 | 2.4153 | 12.077 | 3, 3110 | - 5400 | 12.0 | 0.9937 | 12:82014 $2: 16$ | 128:141409 | 12/8/14 2:11 PM | 10515.51 |
 | 5 Cal 18 | C-012) | 112×189593 | 31312000 | 10134 | 11410.51 | Scheo | 2.4153 | 12.077 | 7.6000 | - 3910 | 12.0 | 0.9937 | 123801412:12 | 128.14.488 | 12/8/14 2:20 PM | 10515.51 |
 | Sr Cat $2 B$ | 50121 | 11281.8059 ? | 31312006 | 1017 | 11418.4! | 5.0000 | 2.4153 | 12.077 | 76040 | 35020 | 12.0 | 0.9037 | 12:82014 12:99 | 12x14 1418 | 12/8/14 2:20 PM | 10515.51 |
 | $\mathrm{St} \mathrm{Cal}=13$ | $5-0721$ | 112818059% | 3.71206 | 1.0122 | 11419.54 | 5.0600 | 2.4153 | 12.077 | 7.0150 | 710.00 | 12.0 | 0.9937 | $12 \times 201+12: 12$ | 128.1414! | 12/8114 2:20 PM | 10515.51 |
 | Se Cat 5 B | S-0)21 | 112818599 | 3312000 | 1.0127 | 11425.18 | 5.0600 | 2.453 | 12.077 | 7.8110 | " 5000 | 12.0 | 0.9937 | $12 \times 204+12: 16$ | 128:414:18 | 1228/14 2:20 PM | 10515.51 |
 | St Cal 1 B | S-0121 | 128185993 | 3:31200 | 1.0114 | 11410.51 | 5.08016 | 2.4153 | 12.077 | 7.6030 | $\because 5910$ | 12.0 | 0.9937 | 12s203+12.9 | 12 SW 14.25 | 12/8114 2:27 PM | 10515.51 |
 | Sr Cal 2 B | S-02] | 1123180593 | 3.312000 | 10351 | 11418.41 | 50 mm | 2.4153 | 12.077 | 7.0040 | $\bigcirc 590$ | 12.0 | 0.9937 | 1298201412:19 | 12/8141425 | 12/8114 2:27 PM | 10515.51 |
 | Sr cam 413 | S(1) | 112818050 | 231:200s | 1029 | 1141954 | 510040 | 2.453 | 12.077 | 7.650 | ${ }^{7} .60 .30$ | 12.0 | 0.9937 | 128800612:12. | 128.4.423 | 1288:14 2:27 PM | 10515.51 |
 | Sr Cal $\mathrm{BB}^{\text {a }}$ | 5012 | 112x18059? | 3112006 | 1012 | 11425.18 | 5.1010\% | 2.4153 | 12.077 | 36110 | 53090 | 12.0 | 0.9937 | 128204 12:10 | 12964 425 | 12/8/14 $2: 27$? ${ }^{\text {M }}$ | 10515.51 |
 | | | | | | 11425.18 | | | 0.000 | | | 00 | HDIV/0! | | | 1/0/00 12:00 AM | 10515.51 |
 | | | | | | 11425.18 | | | 0.000 | | | 0.0 | HDIV/0! | | | 1/0/00 12:00 AM | 10515.51 |

 $$
 \begin{aligned}
 & \text { 旨 }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { 然 }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { 为 }
 \end{aligned}
 $$

 合

 | Sr-90 | | | | | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | ID | Standard ID | Standard
 Specific
 Activity
 (dpm/g) | reference date | $\begin{gathered} \text { Mass } \\ \text { added (g) } \end{gathered}$ | Total Activtiy Added ($\mathrm{Sr} \mathrm{r}-90 \mathrm{in}$ DPM) on reference date | $\begin{gathered} \text { carrier } \\ \text { added } \\ \text { (mg as } \mathrm{Sr} \text {) } \end{gathered}$ | $\underset{\mathrm{g} \mathrm{Sr}}{\mathrm{~g} \mathrm{SrNO}}$ | carrier expected (mg SrNO3) | planchet gross (g) | planchet tare (g) | planchet
 net (ing) | Chemical Yield | separation date/time | count date/time | count midpoint | Sr-90 half. life days |
 | Y-90 | | | | | | | | | | | | | | | | |
 | | | | | | Total | | | | | | | | | | | |
 | | | Standard | | | Activtiy | | | | | | | | | | | |
 | | | Specific | | | div | | | carrier | | | | | | | | Sr-90 |
 | | | Activity | collection | Mass | ($\mathrm{Sr}-90 \mathrm{in}$ | added | ${ }_{3} \mathrm{SrNO} 3 /$ | expected | anchet | het | planchet | | | | | decay |
 | ID | Standard iD | ($\mathrm{d} \mathrm{p} \pi / \mathrm{l}$) | date | added (g) | DPM) | (mg) | g Sr | (mg) | gross (g) | (g) | net (mg) | Yield | separation date | count date | $\mathrm{Sr}-90$ half-life days | days |
 | X Cal 13 | S-0121 | 112×180593 | 3/312006 | 1.9114 | 11410.51 | 5.0000 | 2.4153 | 12.077 | 7.6030 | 7.5910 | 12.0 | 0.9937 | 12/8/2014 12:12 | 12/8:1+15:13 | 10515.51 | 3174.51 |
 | Y Cal 2B | S-0121 | 11281.895\%? | 131/2000 | 10121 | 11418.41 | 5.0000 | 2.415 | 12.077 | 7.60 .40 | 7.5020 | 12.0 | 0.9937 | 1288/2014 12:19 | $12 / 8 / 14$ 15:13 | 10515.51 | 3174.51 |
 | Y Cal 4 B | S-4131 | 11281.3959\% | 3:312006 | 1.0122 | 11419.54 | 5.0000 | 2415 | 12.877 | 7.0150 | 76030 | 12.0 | 0.9937 | 12/8/201412:12 | 12'8/14 15:13 | 10515.51 | 3174.51 |
 | Y cal 58 | S-1321 | 11281.8959.3 | 3:312006 | 1.0927 | 11425.18 | 50000 | 2.415 | 12.077 | 2.0110 | $759 \%)$ | 12.0 | 0.9937 | $1288201412: 16$ | 12 Sit 15:3 | 10515.51 | 3174.51 |
 | Y Cal 18 | S-0121 | 11281.59593 | 3/312006 | 1.1014 | 11410.51 | 50000 | 2.415 | 12.077 | 76030 | 7.5910 | 12.0 | 0.9937 | 12/8/201412:12 | $128 / 415: 19$ | 10515.51 | 3174.51 |
 | Y Cal 23 | S-0121 | 1128189593 | 33312000 | 1.0121 | 11418.41 | 50000 | 2.45 | 12.077 | 7.0040 | 7.5920 | 12.0 | 0.9937 | 12/8i2014 12:19 | 128:1415:19 | 10515.51 | 3174.51 |
 | Y Cal 413 | S-0121 | 112×1.89503 | 3.31:2006 | 1.0122 | 11419.54 | S.0000 | 2.415 | 12.077 | 7.6150 | 7.6030 | 12.0 | 0.9937 | 128/2014 12:12 | 12.8141519 | 10515.51 | 3174.51 |
 | $Y \mathrm{Cals}$ | $5-0121$ | 11281.89593 | 3:312006 | 1.0127 | 11425.18 | 50000 | 2.415 | 12.077 | 7.6110 | 7.5990 | 12.0 | 0.9937 | 12:82014 12:16 | $12 \times 1415: 19$ | 10515.51 | 3174.51 |
 | Y (all 18 | 5×0121 | 1125189593 | 331/2006 | 1.0114 | 11410.51 | 50000 | 2.415 | 12.077 | 76030 | 75010 | 12.0 | 0.9937 | 12:82001412:12 | 128.41529 | 10515.51 | 3174.51 |
 | γ (al 2 B | S-0) I_{1} | 11231.8059: | 3:312006 | 1.0121 | 11418.41 | 51000 | 2.115 | 12.077 | 7 (0) +10 | 75920 | 12.0 | 0.9937 | 128:201+12:19 | 128.14180 | 10515.5! | 317451 |
 | Y Cal AB | S-0121 | 1128189593 | 3:312006 | 1.0122 | 11419.54 | 5.0000 | 2415 | 12.077 | 76150 | 76030 | 12.0 | 0.9937 | $128800412: 12$ | 12.81+15:3 | 10515.51 | 3174.51 |
 | X Cal 513 | S-0121 | 112×189593 | 31312000 | 1.0127 | 11425.18 | 50000 | 2415 | 12.077 | 7.6110 | 7.5900 | 12.0 | 0.9937 | 12:5201412:16 | 12.8.1415.29 | 10515.51 | 3174.51 |
 | Y Cal 13 | S-0121 | 112×180502 | :31/2006 | 1.0114 | 11410.51 | 50000 | 245 | 12.077 | 7.60 .30 | 75010 | 12.0 | 0.9837 | 128:2014 12:12 | $12.81+15.35$ | 10515.51 | 3174.51 |
 | Y Cal 213 | S-012 | 11281 Nosus | 3312006 | 1.0121 | 11418.41 | 50000 | 2.415 | 12.077 | 76040 | 7.5020 | 12.0 | 0.9937 | 12/8:201.12:19 | $12 \times 1+1535$ | 10515.51 | 3174.51 |
 | Y Y $a, ~ 4 B$ | $5-1921$ | 11281.5959? | 31212006 | 1.0122 | 11419.54 | S0000 | 2415 | 12.077 | 70150 | 7 7,050 | 12.0 | 0.9937 | 12:8:201. 12.12 | $1281+1385$ | 10515.51 | 3174.51 |
 | Y Call ${ }^{\text {a }}$ | S-1)1:3 | 118 S 1 S0.593 | 3312006 | 1.0127 | 11425.18 | 5 (0031) | 2115 | 12.077 | 76110 | 759% | 12.0 | 0.9937 | $12 \times 201+126$ | 12:51415:35 | 10515.5) | 3174.51 |

 | ID | Sr-90 decay days to count midpoint | Sr decay correction to count midpoint | Sr-90 activtiy at count iniclpoint (DPM) | Y-90 half-life days | Y-90 ingrowth days to count midpoint | $\begin{aligned} & \text { Y-90 } \\ & \text { ingrowth } \end{aligned}$ | Y-90 Eff (from below) | samplc counts | sample time | bkg counts | bkg time min | net CPM | Detector | Sr-90 Eff |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Y-90 | | | | | | | | | | | | | | |
 | | Sr decay correction to | | Sr-90 activtiy at count separation | $\begin{gathered} \text { Y-90 } \\ \text { decay } \end{gathered}$ | Y-90 half- | | Y-90 | sample | | | | | | |
 | ID | separation | count midpoint | (DPM) | days | life days | Y-90 Decay | Activity | counts | sample time | bkg counts | bkg time min | net CPM | Detector | Y-90 Eff |
 | y Cal 18 | 0.81119 | 12/8/14 3:15 PM | 9197.4 | 0.1274 | 2.667 | 0.967420 | 10968.760 | 21960 | 50 | 826 | 900.0 | 4.392 .8822 | AI | 0.40049 |
 | Y Col 2B | 0.81119 | 12/8/14 3:15 PM | 9203.8 | 0.1226 | 2.667 | 0.968643 | 10990.230 | 20014 | 5.0 | 889 | 900.0 | 4001.8122 | A2 | 0.36412 |
 | Y Cal 48 | 0.81119 | 12/8/14 3:15 PM | 9204.7 | 0.1274 | 2.667 | 0.967420 | 10977.437 | 21388 | 5.0 | 748 | 400.0 | 4276.7689 | A3 | 0.38960 |
 | Y Cal SB | 0.81119 | 12/8/14 3:15 PM | 9209.2 | 0.1247 | 2.667 | 0.968118 | 10990.792 | $204 ? 8$ | 5.0 | 25 | 900.0 | 4084.5422 | A4 | 0.37163 |
 | Y Cill 18 | 0.81119 | 12/8/14 3:21 PM | 9197.4 | 0.1316 | 2.667 | 0.966372 | 10956.887 | 22316 | 5.0 | 664 | 900.0 | 4462.4622 | BI | 0.40727 |
 | Y Cal 213 | 0.81119 | 12/8/14 3:21 PM | 9203.8 | 0.1267 | 2.667 | 0.967594 | 10978.333 | 10944 | 50 | 755 | 9100 | 3987.9611 | B2 | 0.36326 |
 | Y Cal 13 | 0.81119 | $12 / 8 / 143: 21 \mathrm{PM}$ | 9204.7 | 0.1316 | 2.667 | 0.966372 | 10965.554 | 21275 | 50 | 34.42 | 900 | 4251.1756 | B3 | 0.38768 |
 | Y Cal 58 | 0.31119 | 12/8/14 3:21 PM | 9209.2 | 0.1288 | 2.667 | 0.967070 | 10978.895 | 2022.4 | 50 | 713 | 900.0 | 4044.0078 | B4 | 0.36834 |
 | Y cal 18 | 0.81119 | [2/8/14 3:31 PM | 9197.4 | 0.1385 | 2.667 | 0.964630 | 10937.127 | 2154, | 5.0 | 833 | 9100.9 | 4307.8744 | Cl | 0.39388 |
 | Y (al $2 B$ | 0.81119 | 12/8/14 3:31 PM | 9203.8 | 0.1337 | 2.667 | 0.965849 | 10958.535 | 20147 | 5.0 | 922 | 9000 | 40083756 | C2 | 0.36578 |
 | Y cal $4 B$ | 0.81119 | 12/8/14 3:31 PM | 9204.7 | 0.1385 | 2.667 | 0.964630 | 10945.778 | 20506 | 5.0 | 793 | 900.0 | 4100.3189 | C3 | 0.37460 |
 | Y Cal 5 B | 0.81119 | 12/8/14 3:31 PM | 9209.2 | 0.1358 | 2.667 | 0.965326 | 10959.095 | 20204 | 5.0 | 852 | $9(4) 0$ | 4040.8533 | C4 | 0.36872 |
 | \times Cat 1B | 0.81119 | 12/8/14 3:37 PM | 9197.4 | 0.1427 | 2.667 | 0.963585 | 10925.288 | $\underline{1002}$ | 5.0 | 70.3 | 9000 | 4331.6189 | D1 | 0.39648 |
 | Y Ca 2 B | 0.81119 | 12/8/14 3:37 PM | 9203.8 | 0.1378 | 2.687 | 0.964804 | 10946.673 | 10:11 | 50 | 715 | 9000 | 4061.4056 | D2 | 0.37102 |
 | Y Cal 13 | 0.81119 | 12/8/14 3:37 PM | 9204.7 | 0.1427 | 2.667 | 0.963585 | 10933.930 | 2083: | 50 | 0.47 | 9000 | 4165.8811 | D3 | 0.38100 |
 | Y Cal 51 | 0.81119 | 12/8/14 3:37 PM | 9209.2 | 0.1399 | 2.667 | 0.964281 | 10947.232 | 2091 | 50 | 780 | 1900,0 | 40573333 | D4 | 0.37063 |

 GEN 688
 C 11160
 Sr
 BZF


    ~~~~~N
    
    Count Time Voltage
    GEN 689
    C 11160
    Sr
    BZF
    \[

    \]
    \[
    \text { TOD }
    \]
    
    
    \begin{tabular}{|c|}
    \hline \\
    \hline  \\
    \hline  \\
    \hline  \\
    \hline  \\
    \hline  \\
    \hline  \\
    \hline
    \end{tabular}

    \section*{Sr-90/Y90 Efficiency Calibrations}
    \begin{tabular}{ll} 
    Tech: & B Steffens \\
    Pipet \# & FJ40469 \\
    Scale ID & H113112173560P \\
    Standard \# & S-0121
    \end{tabular}
    
    

    Sample ID Std weight \(g\).
    S-0300-V1A 1.02349 S-0300-V2A 0.9938 y S-0300-V3A \(\quad 1.0008 \mathrm{~g}\)
    S-0300-V4A 1.0046 g
    S-0300-V5A 1.0117 g
    Performed By: Bteffen-
    
    ARS
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{2}{*}{\begin{tabular}{l}
    Chemist: \\
    Date/Time:
    \end{tabular}} & \multicolumn{2}{|l|}{Vau Vu} & & & & & & & & & \\
    \hline & 12-8-14 & 00 & & & & & & & & & \\
    \hline Balance ID & Balance Calibration Date & Pipette.ID & Nominal Weight & Weight \#1 & Weightur & Weightis & MEAN & \[
    \begin{gathered}
    \text { Acceptance } \\
    \text { Limits } \\
    \pm 2 \% \text { Mean } \\
    \hline
    \end{gathered}
    \] & STDEV & RSS\% & \[
    \begin{gathered}
    \text { Acceptance } \\
    \text { Limits } \\
    <1 \% \text { RSD } \\
    \hline
    \end{gathered}
    \] \\
    \hline 12332539 & 6/2/14 & F440469 & 1.00 & 1.000 & 1.004 & 1.007 & 1.00 & Pass & 0.004 & 0.350 & Pass \\
    \hline
    \end{tabular}
    Revision Date: 09/11/14
    Carrier Pipette Calibration Sheet
    
    
    \begin{tabular}{ll} 
    Tech: & J Byrd \\
    Pipet \# & MU02055 \\
    Scale ID & 12332539 \\
    Standard \# & S-0300
    \end{tabular}
    \begin{tabular}{lr} 
    Sample ID & Std weight g. \\
    \hline S-0300-V1A & 1.0234 \\
    S-0300-V2A & 0.9938 \\
    S-0300-V3A & 1.0008 \\
    S-0300-V4A & 1.0046 \\
    S-0300-V5A & 1.0117
    \end{tabular}

    Performed By: J Byrd

    Sr-90 Verification 1/5/2016
    \begin{tabular}{lll} 
    & JPB \\
    Tech: & OSA \\
    Q Steffens- & \(1-5-16\) \\
    Pipet \# & MU02055 \\
    Scale ID & \multicolumn{1}{c}{12332539} \\
    Standard \# & S-0300
    \end{tabular}

    Sample ID Std weight g.
    S-0300-V1A \(\quad 1.0234 \mathrm{~g}\)
    S-0300-V2A 0.9938 g
    S-0300-V3A 1.0008 g
    S-0300-V4A 1.0046 g
    S-0300-V5A 1.0117 g
    Performed By: B-Steffens-
    \[
    \begin{aligned}
    & \text { J, Byrd } \\
    & \text { OA } \\
    & 1-5-16
    \end{aligned}
    \]
    GEN 710
    C 11160
    Sr
    WJS
    \begin{tabular}{lllcccccc} 
    & Detector ID & Sample ID & Alpha & Beta & Count Time & Voltage & TOD \\
    2469.5 & C1 & S-0300-V4A & 9 & 4939 & 120 & 1410 & \(1 / 5 / 1616: 31\) \\
    2442 & C2 & S-0300-V5A & 13 & 4884 & 120 & 1410 & \(1 / 5 / 1616: 31\) \\
    25345 & B1 & S-0300-V1A & 8 & 5069 & 120 & 1410 & \(1 / 5 / 1616: 34\) \\
    2411.5 & B2 & S-0300-V2A & 12 & 4823 & 120 & 1410 & \(1 / 5 / 1616: 34\) \\
    2451 & B4 & S-0300-V3A & 9 & 4902 & 120 & 1410 & \(1 / 5 / 1616: 34\)
    \end{tabular}
    
    
    ha beta simultaneous operating voltage: 1380 , 420 Optimum alpha only operating voltage: 42
    
    \begin{tabular}{l} 
    Optimum alpha beta simultaneous operating voltage: 4380 \\
    \multicolumn{4}{c|}{ Optimum alpha only operating voltage: 420} \\
    \\
    A2 \\
    Beta slope at beta voltage \\
    Alpha slope at beta voltage \\
    Alpha slope at alpha voltage
    \end{tabular}
    Printed 12/30/2011 09:35

    Printed 12/30/2011 09:35

    Printed 12/30/2011 09:35
    
    
    Printed 12/30/2011 09:35

    Printed 12/30/2011 09:35
    
    \begin{tabular}{rr} 
    Optimum alpha beta simultaneous operating voltage: 1380 \\
    \multicolumn{2}{c|}{ Optimum alpha only operating voltage: } \\
    & \\
    & B3 \\
    & \\
    Beta slope at beta voltage & \(2.85 \%\) \\
    Alpha slope at beta voltage & \(1.23 \%\) \\
    Alpha slope at alpha voltage & \(0.98 \%\)
    \end{tabular}

    Printed 12/30/2011 09:35

    Printed 12/30/2011 09:35

    Printed 12/30/2011 09:35

    Printed 12/30/2011 09:35
    

    Printed 12/30/2011 09:35
    
    
    

    Tennelec LB41-PF4 Low Background \(\boldsymbol{\alpha} / \boldsymbol{\beta}\) Counter (Instrument C)
    

    2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

    \title{
    Radiological Analysis Standard Methods 7110C
    }

    \author{
    SDG\# ARS1-17-00215 \\ COC AQUEOUS SAMPLES
    }
    Printed: 2/6/2017 8:12 AM \(\begin{array}{r}\text { Page } 1 \text { of } 1\end{array}\)
    \begin{tabular}{|c|c|c|}
    \hline  & \[
    \frac{\underset{\sim}{\lambda}}{\underset{\sim}{y}}
    \] &  \\
    \hline  & \(\cdots\) & \[
    \dot{\theta}
    \] \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|}
    \hline Matrix & AQ \\
    \hline \multirow[t]{5}{*}{Prep Code} & Client ID \\
    \hline & IDW-WATER-01-011917-001 \\
    \hline & 5159-6461 \\
    \hline & OS-10 \\
    \hline & BB-17 \\
    \hline
    \end{tabular}

    \section*{Analysis Batch ID ARS1-B17-00214}
    \begin{tabular}{ccc} 
    Analysis & GPC-A-028 \\
    SDG & FR & Run \\
    \\
    ARS1-17-00184 & 001 & 1
    \end{tabular} Parent: ARS1-17-00184-001 \begin{tabular}{lll} 
    Parent: ARS1-17-00184-001 \\
    ARS1-17-00213 & 001 & 1 \\
    ARS1-17-00215 & 002 & 1 \\
    \hline ARS1-17-00215 & 004 & 1
    \end{tabular}
    Description Gross Alpha (Water) \(\stackrel{\sim}{\sim}\) \(\underset{\substack{n \\ \\ \\ \\ \hline}}{ }\)
    
    ARS International
    Baton Rouge Laboratory
    
    ABatch Sample ID
    ARS1-B17-00214-01 ARS1-B17-00214-02 ARS1-B17-00214-03 ARS1-B17-00214-04 ARS1-B17-00214-09 ARS1-B17-00214-05 ARS1-B17-00214-06
    ARS1-B17-00214-07
    \[
    \begin{array}{lllll}
    \hline \text { Blind ID } & \text { ABatch Sample ID } & \text { Blind Group } & \text { Std ID } \\
    \hline \text { B-23158 } & \text { ARS1-B17-00214-01 } & \text { B-Th230 } & \text { S-0315 } \\
    \text { B-23159 } & \text { ARS1-817-00214-02 } & \text { B-Th230 } & \text { S-0315 }
    \end{array}
    \]
    \[
    \left.\begin{array}{cc}
    c & \text { LCS Report } \\
    \text { Analytical } \\
    \text { Batch: ARS1-B17-00214 }
    \end{array}\right]
    \]
    \[
    \begin{array}{r}
    \text { Printed: } 2 \pi / 2017 \text { 1:51 PM } \\
    \text { Page } 1 \text { of } 1
    \end{array}
    \]
    Baton Rouge Laboratory
    ABatch Sample ID
    ARS1-B17-00214-09
    \[
    \begin{array}{ccc}
    \text { Sample Type } & \text { Empty Wt } \mathbf{1} & \text { Filled Wt } \mathbf{1} \\
    \text { MS } & 1.579 & 2.616
    \end{array}
    \]
    \[
    \begin{array}{cc}
    \text { Net Wt } \mathbf{1} & \text { Std ID1 } \\
    1.037 & \mathrm{~S}-0315
    \end{array}
    \]
    \[
    \begin{aligned}
    & \text { Spike Report } \\
    & \text { tch: ARS1-B17-00214 } \\
    & \begin{array}{l}
    \text { Isotope } 1 \\
    \begin{array}{l}
    \text { Th-230 }
    \end{array} \\
    \text { Empty Wt } 2
    \end{array} \text { Filled Wt } 2
    \end{aligned}
    \]
    \[
    \text { Net Wt } 2
    \]
    \[
    \text { Std ID } 2
    \]
    \[
    \text { Isotope } 2
    \]
    \[
    \begin{aligned}
    & \text { Printed: 2/6/2017 8:50 AM } \\
    & \text { Page } 1 \text { of } 1
    \end{aligned}
    \]
    \[
    \begin{aligned}
    & \text { User ID } \\
    & \text { SCAUSEY }
    \end{aligned}
    \]
    
    American Radiation Services
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline & & \multicolumn{5}{|l|}{LB4100-C} & \multicolumn{6}{|l|}{\\Ars-f52mv91\LB4100\LB4100\GRAY\DATA\GENER717.XLD} \\
    \hline \multicolumn{2}{|l|}{} & \multicolumn{5}{|l|}{ARS1-B17-00214} & \multicolumn{3}{|l|}{9} & \multicolumn{3}{|l|}{9} \\
    \hline \[
    \begin{aligned}
    & \text { LMS } \\
    & \text { Batch Sample ID }
    \end{aligned}
    \] & \[
    \begin{aligned}
    & \text { Detector } \\
    & \hline \mathbf{1 0} \\
    & \hline
    \end{aligned}
    \] & L84110 Sample 10 & Alpha Counts & \[
    \begin{aligned}
    & \text { Betáy } \\
    & \text { Counts }
    \end{aligned}
    \] & \[
    1 \begin{aligned}
    & \text { count } \\
    & \text { Minss }
    \end{aligned}
    \] & 484110 Voltage & 484110 Count Date &  &  & \[
    \begin{aligned}
    & \text { LMMS } \\
    & \text { Runive }
    \end{aligned}
    \] & Lraction & Aratysis \\
    \hline ARS1-617-00214-06 & C1 & 17-00214-06 & 9.00 & 164.00 & 60.00 & 1410.00 & 02/07/17 10:34 & ARS1-B17-00214 & ARS1-17-00215 & & 1002 & GPC-A-028 \\
    \hline ARS1-B17-00214-07 & C2 & 17-00214-07 & 37.00 & 388.00 & 60.00 & 1410.00 & 02/07/17 10:34 & ARS1-817-00214 & ARS1-17-00215 & & 1004 & GPC-A-028 \\
    \hline ARS1-B17-00214-08 & Cl & 17-00214-08 & 14.00 & 496.00 & 50.00 & 1410.00 & 02/07/17 10:34 & ARS1-B17-00214 & & & & \\
    \hline ARS1-B17-00214-09 & C4 & 17-00214-09 & 39.00 & 528.00 & 60.00 & 1410.00 & 02/07/17 10:34 & ARS1-B17-00214 & & & & \\
    \hline ARS1-B17-00214-01 & A1 & 17-00214-01 & 140.00 & 226.00 & 60.00 & 1410.00 & 02/07/17 10:34 & ARS1-B17-00214 & & & & \\
    \hline ARS 1-B17-00214-02 & A2 & 17-00214-02 & 109.00 & 190.00 & 60.00 & 1410.00 & 02/07/17 10:34 & ARS1-B17-00214 & & & & \\
    \hline ARS1-B17-00214-03 & A4 & 17-00214-03 & 8.00 & 181.00 & 60.00 & 1410.00 & 02/07/17 10:34 & ARS1-B17-00214 & & & & \\
    \hline ARS1-B17-00214-04 & B1 & 17-00214-04 & 20.00 & 541.00 & 60.00 & 1410.00 & 02/07/17 10:34 & ARS1-817-00214 & ARS1-17-00184 & & 1001 & GPC-A-028 \\
    \hline ARS1-817-00214-05 & B2 & 17-00214-05 & 94.00 & 225.00 & 60,00 & 1410.00 & 02/07/17 10:34 & ARS1-B17-00214 & ARS1-17-00213 & & 1001 & GPC-A-028 \\
    \hline
    \end{tabular}
    Printed 2/7/2017 10:46 AM
     \({ }^{13} 33\) pci
    號
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline ABatchsampleid & SDG & Fraction & BP_MDA & Sb_val & UCF & cF & GrossCountRate & BKGCountrate & NetCountrate & PlatingRecovery & InstrileName & DetectoriD & InstrumentkeV & NuclideAbd & Tracermeasact & tracerknownAct \\
    \hline ARS1-617-00214-01 & & & & & 2.22 & 1.96 & 2.333333333 & 0.087777778 & 2.244699677 & & GENER \(717 \times 1\) XLD & A1 & & & & \\
    \hline ARS1-B17-00214-02 & & & & & 2.22 & 1.96 & 1.816666667 & 0.043333333 & 1.772678271 & & GENER \(717 . \times 10\) & \(A^{2}\) & & & & \\
    \hline ARS1-B17-00214-03 & & & & & 2.22 & 1.96 & 0.133333333 & 0.043333333 & 0.089534671 & & GENER \(717 \times 1\) LD & \(A^{4}\) & & & & \\
    \hline ARS1-B17-00214-04 & ARS 1-17-00184 & 001 & & & 2.22 & 1.96 & 0.333333333 & 0.037777778 & 0.291092938 & & GEN=R717. \({ }_{\text {LLD }}\) & B1 & & & & \\
    \hline ARS1-B17-00214-05 & ARS 1-17-00213 & 002 & & & 2.22 & 1.96 & 1.566666667 & 0.038888889 & 1.526726612 & & GENER \(717 \times 1\) & \({ }^{\text {B2 }}\) & & & & \\
    \hline ARS 1-817-00214-06 & ARSS 1-17-00215 & 002 & & & 2.22 & 1.96 & 0.15 & 0.055555556 & 0.093966878 & & GENER \(717 \times\) XLD & C1 & & & & \\
    \hline ARS1-B17-00214-07 & ARS 1-17-00215 & 004 & & & 2.22 & 1.96 & 0.616666667 & 0.05 & 0.565605511 & & GENER \(717 \times\) KL & \(\mathrm{C}^{2}\) & & & & \\
    \hline ARS 1-817-00214-08 & & & & & 2.22 & 1.96 & 0.233333333 & 0.067777778 & 0.164202036 & & GENER \(717 . \times 10\) & c3 & & & & \\
    \hline ARS1-B17-00214-09 & & & & & 2.22 & 1.96 & 0.65 & 0.052222222 & 0.596434514 & & GENER \(717 \times\) XLD & C4 & & & & \\
    \hline
    \end{tabular}
    Printed \(2 / 7 / 2017\) 10:46 AM
    Page 4 of 5
    \begin{tabular}{|c|c|c|c|c|c|c|}
    \hline 5 & TPUF_6 & Deltati & Deleat2 & Delta 3 & Delta T4 & Deltat5 \\
    \hline 0.1 & 0 & & & & & \\
    \hline 0.1 & 0 & & & & & \\
    \hline 0.1 & 0 & & & & & \\
    \hline 0.1 & 0 & & & & & \\
    \hline 0.1 & 0 & & & & & \\
    \hline 0.1 & 0 & & & & & \\
    \hline 0.1 & 0 & & & & & \\
    \hline 1 & 0 & & & & & \\
    \hline . 1 & 0 & & & & & \\
    \hline
    \end{tabular}
    
    Batch Result Verification Report
    
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
    \hline \[
    \begin{array}{|c|}
    \hline 8 \\
    \hline 0 \\
    0 \\
    \frac{0}{2} \\
    \hline
    \end{array}
    \] & &  & 合 & N &  & & & N
    ì
    i &  & \(\frac{1}{\sim}\) \\
    \hline \[
    5
    \] &  &  &  & & & &  &  &  &  \\
    \hline
    \end{tabular}
    
    \({ }^{5} \frac{8}{2}\)
    
    

    \section*{GEN 717
    C 11160
    GA
    WJS}
    \begin{tabular}{|c|c|}
    \hline \multicolumn{2}{|l|}{\multirow[b]{8}{*}{\begin{tabular}{l}
     \\
     \\
     \\
     \\
     \\
     \\
    
    \end{tabular}}} \\
    \hline & \\
    \hline
    \end{tabular}
    American Radiation Services
    LB4100-C - ALPHA EFFICIENCY
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline & & & & Most recent point outside of the 3 -sigma values. & OK \\
    \hline Population Size & 1 & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.2901 & CPM/DPM & 0.2863 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0024 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.2973 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.2829 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
    \hline Pulation Size & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.2913 & CPM/DPM & 0.2901 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0026 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.2992 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.2833 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    American Radiation Services
    LB4100-C - ALPHA EFFICIENCY
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline & 0 & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & 0 & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.2877 & CPM/DPM & 0.2837 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0021 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
    \hline + 3-sigma value & 0.2941 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.2814 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{10}{*}{\begin{tabular}{l}
     \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multicolumn{3}{|l|}{\multirow[t]{8}{*}{}} & \multirow[t]{8}{*}{8} & \multirow[t]{8}{*}{9} & \\
    \hline & 0.28 & 1 & & & & & & \\
    \hline & 0.29
    0.29 & 2 & & & & & & \\
    \hline & 0.29 & 8 & & & & & & \\
    \hline & 0.29 & 9 & & & & & & \\
    \hline & More & 3 & & & & & & 3 \\
    \hline & & & & & & & & 23 \\
    \hline & & & & & & & &  \\
    \hline & & & \(00^{0}\) & \(n \mathrm{n}\) & \(n \mathrm{n}\) & \(n \mathrm{n}\) & \(n \times 0\) & Nan m \\
    \hline
    \end{tabular}
    Printed: 2/21/2017 11:00 AM
    Page 1 of 1
    \begin{tabular}{|l|l|l|l|} 
    & & \multicolumn{2}{|c|}{ Trending Analysis } \\
    \hline & & Most recent point outside of the 3-sigma values. & \(\mathbf{O K}\) \\
    \hline Date & \(02 / 07 / 17\) & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
    \hline CPM/DPM & 0.3272 & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
    \hline Date & & 4 of 5 most recents points beyond the 1-sigma. & \(\mathbf{O K}\) \\
    \hline CPM & & 7 trending most recent points in a row. & \(\mathbf{O K}\) \\
    \hline Count Mins & & 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
    \hline
    \end{tabular}
    \begin{tabular}{c} 
    LB4100-C - ALPHA EFFICIENCY - DETECTOR B1 \\
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\) \\
    \hline
    \end{tabular}
    LB4100-C - ALPHA EFFICIENCY
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|r|c|}
    \hline \multicolumn{2}{|c|}{ Population Statistics } \\
    \hline Population Size & \(\mathbf{3 0}\) \\
    \hline Average & 0.3250 \\
    \hline Standard Deviation & 0.0031 \\
    \hline+3 -sigma value & 0.3343 \\
    \hline-3 -sigma value & 0.3158 \\
    \hline & \\
    \hline
    \end{tabular}
    0.34
    0.34
    0.33
    0.8 C 3
    \(\frac{\sum_{8}}{82}\)
    0.32
    0.31
    12
    
    \begin{tabular}{|l|l|l|l|l|} 
    & & & \multicolumn{2}{|c|}{ Trending Analysis } \\
    \hline & & Most recent point outside of the 3-sigma values. & \(\mathbf{O K}\) \\
    \hline Date & \(02 / 07 / 17\) & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
    \hline CPM/DPM & 0.3146 & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
    \hline Date & & 4 of 5 most recents points beyond the 1-sigma. & \(\mathbf{O K}\) \\
    \hline CPM & & 7 trending most recent points in a row. & \(\mathbf{O K}\) \\
    \hline Count Mins & & 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
    \hline
    \end{tabular}
    LB4100-C - ALPHA EFFICIENCY - DETECTOR B2
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    
    
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline & 30 & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & 11 & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.2850 & CPM/DPM & 0.2908 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0022 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
    \hline + 3 -sigma value & 0.2917 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.2783 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    LB4100-C - ALPHA EFFICIENCY - DETECTOR C1
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{11}{*}{\begin{tabular}{l}
     \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multicolumn{3}{|l|}{\multirow[t]{9}{*}{}} & & \multirow[t]{8}{*}{\[
    6
    \]} & \\
    \hline & 0.28 & 1 & & & & \multirow[t]{8}{*}{} & & \\
    \hline & 0.28 & 3 & & & & & & \\
    \hline & 0.28 & 8 & & & & & & \\
    \hline & 0.29 & 11 & & & & & & \\
    \hline & 0.29 & 6 & & & & & & \\
    \hline & More & 1 & & & & & & \\
    \hline & & & & & & & & \\
    \hline & & & & & & &  & \[
    1
    \] \\
    \hline & & & \(\bigcirc 10\) & \[
    \text { n } 20
    \] & \(\bigcirc 20\) &  & \(n \rightarrow 0\) & nan.... \\
    \hline
    \end{tabular}
    American Radiation Services
    LB4100-C - ALPHA EFFICIENCY
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline & 30 & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & 0 & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.2875 & CPM/DPM & 0.2922 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0023 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
    \hline + 3 -sigma value & 0.2943 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.2807 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}

    \footnotetext{
    LB4100-C - ALPHA EFFICIENCY - DETECTOR C2
    
    }
    
    
    \[
    \begin{aligned}
    & \text { LB4100-C - ALPHA EFFICIENCY - DETECTOR C3 } \\
    & \text { Process Date Range: } 12 / 28 / 16-02 / 07 / 17 \\
    & \hline
    \end{aligned}
    \]
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{\[
    30
    \]} & & & Most recent point outside of the 3-sigma values. \\
    \hline & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.2707 & CPM/DPM & 0.2738 & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0024 & & & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3-sigma value & 0.2779 & Date & & 7 trending most recent points in a row. \\
    \hline - 3 -sigma value & 0.2634 & CPM & & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    ]
    
    
    LB4100-C - ALPHA EFFICIENCY
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.2819 & CPM/DPM & 0.2810 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0022 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.2886 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3-sigma value & 0.2753 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Statistical Process Control
    American Radiation Services
    Baton Rouge Laboratory
    LB4100-C - Alpha Daily BKG Check
    Printed: 2/21/2017 10:50 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 2.8103 & Most recent point outside of the 3 -sigma values. & OK \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0647 & Long B CPM & 0.0878 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0252 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.1401 & Date & 02/07/17 & 7 trending most recent points in a row. & OK \\
    \hline - 3-sigma value & -0.0108 & CPM & 0.0333 & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:51 AM
    
    LB4100-C - ALPHA BACKGROUND - DETECTOR A2
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    
    American Radiation Services
    LB4100-C - Alpha Daily BKG Check \begin{tabular}{r|c|}
    \hline DER Analysis & OK \\
    DER & 0.6490 \\
    \hline Long B Date & \(02 / 04 / 17\) \\
    \hline Long B CPM & 0.0433 \\
    \hline Count Mins & 900.00 \\
    \hline Date & \(02 / 07 / 17\) \\
    \hline CPM & 0.0583 \\
    \hline Count Mins & 120.00
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.6490 & Most recent point outside of the 3-sigma values. \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.0451 & Long B CPM & 0.0433 & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0197 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3-sigma value & 0.1043 & Date & 02/07/17 & 7 trending most recent points in a row. \\
    \hline - 3 -sigma value & -0.0141 & CPM & 0.0583 & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    American Radiation Services
    LB4100-C - Alpha Daily BKG Check
    Printed: 2/21/2017 10:51 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & 09 & DER & 0.5539 & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0394 & Long B CPM & 0.0433 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0165 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.0889 & Date & 02/07/17 & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & -0.0101 & CPM & 0.0333 & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    LB4100-C - ALPHA BACKGROUND - DETECTOR A4
    Process Date Range: \(12 / 28 / 16\) - 02/07/17

    .Page 1 of 1
    
    Statistical Process Control
    Printed: 2/21/2017 10:51 AM
     LB4100-C - ALPHA BACKGROUND - DETECTOR B1
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)

    \section*{LB4100-C - Alpha Daily BKG Check}
    American Radiation Services
    Baton Rouge Laboratory
    LB4100-C - ALPHA BACKGROUND - DETECTOR B2
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    \begin{tabular}{|c|c|l} 
    DER Analysis & OK & \\
    DER & 1.6468 & Most recent point outside of the 3 -sigma values. \\
    \hline Long B Date & \(02 / 04 / 17\) & 8 consecutive most recent points on one side of the mean. \\
    \hline Long B CPM & 0.0389 & 2 of 3 most recent points above 2 sigma. \\
    \hline Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. \\
    \hline Date & \(02 / 07 / 17\) & 7 trending most recent points in a row. \\
    \hline CPM & 0.0167 & 15 most recent points inside 1 sigma. \\
    \hline Count Mins & 120.00 & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    LB4100-C - Alpha Daily BKG Check
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{11}{*}{\begin{tabular}{l}
    INTERNATIONAL \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multicolumn{3}{|l|}{\multirow[t]{9}{*}{}} & \multirow[t]{9}{*}{\[
    6
    \]} & \multirow[t]{9}{*}{\[
    9
    \]} & \multirow[t]{9}{*}{\(3{ }^{3}\)} \\
    \hline & 0.00 & 2 & & & & & & \\
    \hline & 0.01 & 2 & & & & & & \\
    \hline & 0.03 & 8 & & & & & & \\
    \hline & 0.04 & 6 & & & & & & \\
    \hline & 0.05 & 9 & & & & & & \\
    \hline & More & 3 & & & & & & \\
    \hline & & & & & & & & \\
    \hline & & & & & & & & \\
    \hline & & & \(n \mathrm{n}\) & \(n n^{1}\) & nns & \(\bigcirc \mathrm{na}\) & Onc & Namm \\
    \hline
    \end{tabular}
    \begin{tabular}{|r|c|}
    \hline \multicolumn{2}{|c|}{ Population Statistics } \\
    \hline Population Size & 29 \\
    \hline Average & 0.0330 \\
    \hline Standard Deviation & 0.0176 \\
    \hline+3 -sigma value & 0.0859 \\
    \hline-3 -sigma value & -0.0198 \\
    \hline & \\
    \hline
    \end{tabular}
    \(\mathbf{- 0 . 0 4 0 0}\)
    \(-0.0400\)
    Printed: 2/21/2017 10:51 AM
    \begin{tabular}{|c|c|l|l|}
    \hline DER Analysis & \multicolumn{4}{|c|}{\(\mathbf{O K}\)} & \multicolumn{2}{|c|}{ Trending Analysis } \\
    \hline DER & 0.1187 & Most recent point outside of the 3 -sigma values. & \(\mathbf{O K}\) \\
    \hline ong B Date & \(02 / 04 / 17\) & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
    \hline -ong B CPM & 0.0556 & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
    \hline Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & \(\mathbf{O K}\) \\
    \hline Date & \(02 / 07 / 17\) & 7 trending most recent points in a row. & \(\mathbf{O K}\) \\
    \hline CPM & 0.0583 & 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
    \hline Count Mins & 120.00 & 8 most recent points outside 1 sigma. & \(\mathbf{O K}\) \\
    \hline
    \end{tabular}

    \footnotetext{
    LB4100-C - ALPHA BACKGROUND - DETECTOR C1 Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    }

    \section*{LB4100-C - Alpha Daily BKG Check}
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|r|c|}
    \hline \multicolumn{2}{|c|}{ Population Statistics } \\
    \hline Population Size & 30 \\
    \hline Average & 0.0564 \\
    \hline Standard Deviation & 0.0255 \\
    \hline+3 -sigma value & 0.1329 \\
    \hline-3 -sigma value & -0.0201 \\
    \hline & \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:51 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.9129 & Most recent point outside of the 3-sigma values. & OK \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0592 & Long B CPM & 0.0500 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0268 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.1395 & Date & 02/07/17 & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & -0.0211 & CPM & 0.0333 & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:51 AM
    Page 1 of 1
    
    
    

    American Radiation Services
    Baton Rouge Laboratory

    \section*{LB4100-C - Alpha Daily BKG Check}
    \begin{tabular}{|r|r|r|c|}
    \hline \multicolumn{2}{|c|}{ Population Statistics } & DER Analysis & OK \\
    \hline Population Size & 29 & DER & 1.2703 \\
    \hline Average & 0.0445 & Long B Date & \(02 / 04 / 17\) \\
    \hline Standard Deviation & 0.0158 & Count Mins & 0.0678 \\
    \hline+3 -sigma value & 0.0919 & 900.00 \\
    \hline-3 -sigma value & -0.0028 & Date & \(02 / 07 / 17\) \\
    \hline & & CPM & 0.0417 \\
    \hline & & Count Mins & 120.00 \\
    \hline
    \end{tabular}
    0.0200

    8 c . 3 . racent points above 2 sigma.
    7 trending most recent points in a row.
    15 most recent points inside 1 sigma.
    8 most recent points outside 1 sigma.
    LB4100-C - ALPHA BACKGROUND - DETECTOR C3
    Process Date Range: \(12 / 28 / 16\) - 02/07/17
    Trending Analysis
    4 of 5 most recents points beyond the 1 -sigma.
    American Radiation Services
    LB4100-C - Alpha Daily BKG Check
    \begin{tabular}{|c|c|c|c|}
    \hline DER Analysis & OK & \multicolumn{2}{|c|}{ Trending Analysis } \\
    DER & 0.2620 & Most recent point outside of the 3 -sigma values. & \(\mathbf{O K}\) \\
    \hline Long B Date & \(02 / 04 / 17\) & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
    \hline Long B CPM & 0.0522 & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
    \hline Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & \(\mathbf{O K}\) \\
    \hline Date & \(02 / 07 / 17\) & 7 trending most recent points in a row. & \(\mathbf{O K}\) \\
    \hline CPM & 0.0583 & 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
    \hline Count Mins & 120.00 & 8 most recent points outside 1 sigma. & \(\mathbf{O K}\) \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:43 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline & 30 & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & 10 & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0700 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0098 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.0994 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.0406 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & 0 & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0469 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0084 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.0720 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3-sigma value & 0.0217 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    
    
    
    
    \begin{tabular}{|c|c|c|}
    \hline \(10 / 31\) & \(12 / 20\) & \(02 / 08\) \\
    \hline
    \end{tabular}

    American Radiation Services
    Baton Rouge Laboratory
    LB4100-C - ALPHA LONG BACKGROUND - DETECTOR A4
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3 -sigma values. \\
    \hline & & & & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.0452 & & & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0088 & & & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3 -sigma value & 0.0715 & & & 7 trending most recent points in a row. \\
    \hline - 3 -sigma value & 0.0190 & & & 15 most recent points inside 1 sigma. \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    \[
    \text { Process Date Range: } 07 / 24 / 16-02 / 11 / 17
    \] Process Date Range: 07/24/16-02/11/17
    
    

    02/08
    
    LB4100-C - ALPHA LONG BACKGROUND - DETECTOR B1
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{12}{*}{\begin{tabular}{l}
    INTERNATIONAL \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multirow[t]{11}{*}{\[
    1
    \]} & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{6}} & \multirow[t]{2}{*}{11} & \multirow[t]{5}{*}{7} & \multirow[t]{7}{*}{5} \\
    \hline & 0.01 & 1 & & & & & & \\
    \hline & 0.02 & 0 & & & & \multirow[t]{8}{*}{} & & \\
    \hline & 0.03 & 6 & & & & & & \\
    \hline & 0.04 & 11 & & & & & & \\
    \hline & 0.04 & 7 & & & & & \multirow[t]{5}{*}{} & \\
    \hline & More & 5 & & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{} & & & \\
    \hline & & & & & & & &  \\
    \hline & & & & & & & & +2****** \\
    \hline & & & & & & & &  \\
    \hline & & & & \(n \mathrm{n}\) & n ○ & nna & のヘ1 & \\
    \hline
    \end{tabular}
    American Radiation Services
    Instrument Background Analysis
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. \\
    \hline & & & & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.0347 & & & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0081 & & & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3-sigma value & 0.0591 & & & 7 trending most recent points in a row. \\
    \hline -3-sigma value & 0.0104 & & & 15 most recent points inside 1 sigma. \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular} Process Date Range: 07/24/16-02/11/17
    American Radiation Services

    \section*{Instrument Background Analysis}
    Printed: 2/21/2017 10:44 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
    \hline ion Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0339 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0071 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.0553 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.0125 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{10}{*}{} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multicolumn{3}{|l|}{\multirow[t]{8}{*}{}} & \multirow[t]{2}{*}{12} & \multicolumn{2}{|l|}{\multirow[t]{8}{*}{\[
    4
    \]
    \[
    3
    \]}} \\
    \hline & 0.02 & 1 & & & & & & \\
    \hline & 0.02 & 1 & & & & \multirow[t]{6}{*}{} & & \\
    \hline & 0.03 & 9 & & & & & & \\
    \hline & 0.04
    0.04 & 12 & & & & & & \\
    \hline & \begin{tabular}{c}
    0.04 \\
    \hline More
    \end{tabular} & 4
    3 & & & & & & \\
    \hline & & & & & & & & \\
    \hline & & & & & & & & \\
    \hline & & & \(n \mathrm{nl}\) & 0 n & nn2 & \(n \mathrm{n}\) & nの1 & AnAmm \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0592 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0136 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3 -sigma value & 0.1001 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.0183 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:44 AM
    
    Instrument Background Analysis
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
    \hline Population Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0526 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0104 & & & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
    \hline + 3 -sigma value & 0.0838 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3-sigma value & 0.0214 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    \[
    \begin{gathered}
    \text { LB4100-C - ALPHA LONG BACKGROUND - DETECTOR C2 } \\
    \text { Process Date Range: } 07 / 24 / 16-02 / 11 / 17 \\
    \hline
    \end{gathered}
    \]
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{10}{*}{\begin{tabular}{l}
     \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin 0.04 & Frequency & \multicolumn{2}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
    1 \\
    6
    \end{tabular}}} & \multirow[t]{8}{*}{} & & & \\
    \hline & 0.04 & 1 & & & & 7 & & \\
    \hline & \begin{tabular}{l}
    0.04 \\
    0.05 \\
    \hline
    \end{tabular} & 8 & & & &  & & \\
    \hline & 0.06 & 7 & & & & + \({ }^{2} \times 2\) & 5 & \\
    \hline & 0.07 & 5 & & & & & & \\
    \hline & More & 3 & & & & - \(\mathrm{S}^{2}\) & W & 3 \\
    \hline & & & & & & & & - \\
    \hline & & & & & &  &  &  \\
    \hline & & & nnı & nna & nne & n ne & ก 0 & annm \\
    \hline
    \end{tabular}
    Printed: 2/21/2017 10:44 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{3}{*}{} & \multicolumn{3}{|l|}{\multirow[b]{3}{*}{\(\underset{O}{\mathrm{y}} \mathrm{O}\)}} & \multirow[b]{3}{*}{\[
    y
    \]} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\(\stackrel{y}{0}\)}} & \multirow[b]{3}{*}{} \\
    \hline & & & & & & & \\
    \hline & & & & & & & \\
    \hline
    \end{tabular}

    \section*{Instrument Background Analysis}
    American Radiation Services
    Baton Rouge Laboratory
    
    
    

    07/23

    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline ation Size & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.0523 & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0108 & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.0849 & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.0198 & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    0.09
    0.07
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{9}{*}{\begin{tabular}{l}
     \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multicolumn{2}{|l|}{\multirow[t]{7}{*}{\(\int^{1} \sqrt{3}\)}} & \multirow[t]{7}{*}{9} & & & \\
    \hline & 0.03
    0.04 & 1
    3 & & & & - 8 & & \\
    \hline & 0.05 & 9 & & & & - \({ }^{2}\) & & \\
    \hline & 0.06
    0.07 & 8 & & & &  & & 5 \\
    \hline & O.07 & 4 & & & &  & 4 & 5 \\
    \hline & & & & & & 1-3 \({ }^{3}{ }^{2}{ }^{2}\) & & - \(\mathrm{T}^{2}\) \\
    \hline & & & & & &  &  &  \\
    \hline & & & n no & n nı & n ne & n nc & \(\bigcirc \cap 7\) & mamm \\
    \hline
    \end{tabular}
    American Radiation Services
    LB4100-C - BETA EFFICIENCY
    Printed: 2/21/2017 10:57 AM
    \begin{tabular}{|c|l|l|l|} 
    & & \multicolumn{2}{|c|}{ Trending Analysis } \\
    \hline & & Most recent point outside of the 3-sigma values. & \(\mathbf{O K}\) \\
    \hline Date & \(02 / 07 / 17\) & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
    \hline & & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
    \hline CPM/DPM & 0.4694 & 4 of 5 most recents points beyond the 1-sigma. & \(\mathbf{O K}\) \\
    \hline CPM & & 7 trending most recent points in a row. & \(\mathbf{O K}\) \\
    \hline Count Mins & & 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
    \hline
    \end{tabular}
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{9}{*}{\begin{tabular}{l}
     \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{7}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multirow[t]{7}{*}{} & \multirow[t]{7}{*}{11} & \multicolumn{2}{|l|}{\multirow[t]{7}{*}{4
    \[
    5
    \]}} & \\
    \hline & 0.47 & 1 & & & & & \\
    \hline & 0.47 & 11 & & & & & \\
    \hline & 0.47 & 4 & & & & & \\
    \hline & 0.47 & 5 & & & & & \\
    \hline & More & 4 & & & & & T 4 \\
    \hline & & & & & & &  \\
    \hline & & & n17 117 & กヘフ & ก17 & n 17 & nanm \\
    \hline
    \end{tabular}
    

    \section*{LB4100-C - BETA EFFICIENCY}
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.4607 & CPM/DPM & 0.4587 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0027 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.4687 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.4527 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular} LB4100-C - BETA EFFICIENCY - DETECTOR A2
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    
    
    American Radiation Services
    LB4100-C - BETA EFFICIENCY
    Printed: 2/21/2017 10:57 AM
    
    LB4100-C - BETA EFFICIENCY - DETECTOR A4
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. \\
    \hline & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.4728 & CPM/DPM & 0.4699 & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0025 & & & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3-sigma value & 0.4802 & Date & & 7 trending most recent points in a row. \\
    \hline - 3 -sigma value & 0.4654 & CPM & & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    Process Date Range: \(12 / 28 / 16\) - 02/07/17
    
    Page 1 of
    Printed: 2/21/2017 10:57 AM
     LB4100-C - BETA EFFICIENCY - DETECTOR B1
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    LB4100-C - BETA EFFICIENCY
    American Radiation Services
    Baton Rouge Laboratory
    
    Printed: 2/21/2017 10:57 AM
    
    \[
    \begin{gathered}
    \text { LB4100-C - BETA EFFICIENCY - DETECTOR B2 } \\
    \text { Process Date Range: } 12 / 28 / 16-02 / 07 / 17 \\
    \hline
    \end{gathered}
    \]
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{9}{*}{\begin{tabular}{l}
     \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{8}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multicolumn{2}{|l|}{\multirow[t]{7}{*}{}} & \multirow[t]{7}{*}{3} & \multirow[t]{7}{*}{8} & \multirow[t]{7}{*}{\[
    7
    \]} & \multirow[t]{7}{*}{4} \\
    \hline & 0.44 & \(\frac{1}{7}\) & & & & & & \\
    \hline & 0.44 & 3 & & & & & & \\
    \hline & 0.44 & 8 & & & & & & \\
    \hline & 0.44 & 7 & & & & & & \\
    \hline & More & 4 & & & & & & \\
    \hline & & & & & & & & \\
    \hline & & & 011 & - 111 & \(\bigcirc 11\) & の11 & \(\bigcirc 11\) & namm \\
    \hline
    \end{tabular}
    Printed: 2/21/2017 10:57 AM
    
    LB4100-C - BETA EFFICIENCY
    American Radiation Services
    Baton Rouge Laboratory
    
    
    Printed: 2/21/2017 10:58 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3 -sigma values. & OK \\
    \hline & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.4560 & CPM/DPM & 0.4573 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0024 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3 -sigma value & 0.4634 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.4487 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    \begin{tabular}{lllll}
    \hline
    \end{tabular}
    
    American Radiation Services
    LB4100-C - BETA EFFICIENCY
    
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3 -sigma values. \\
    \hline & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.4626 & CPM/DPM & 0.4567 & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0026 & & & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3 -sigma value & 0.4703 & Date & & 7 trending most recent points in a row. \\
    \hline - 3 -sigma value & 0.4549 & CPM & & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    
    \begin{tabular}{|c|c|c|c|c|c|c|}
    \hline \multirow[t]{2}{*}{} & \multicolumn{6}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multicolumn{3}{|l|}{\multirow[t]{7}{*}{4}} & \multirow[t]{2}{*}{9} \\
    \hline & 0.46 & - 1 & & & & \\
    \hline \(1 \times\) & 0.46 & 2 & & & & - \({ }^{\text {2 }}\) \\
    \hline , & 0.46 & 4 & & & & - \\
    \hline & 0.46 & 9 & & & & 6 \(\mathrm{S}^{2}\) \\
    \hline \[
    \Leftrightarrow
    \] & 0.46 & 6 & & & &  \\
    \hline  & More & 8 & & & &  \\
    \hline INTERNATIONAL & & & \multirow[t]{2}{*}{\[
    1
    \]} & 2 & \multirow[t]{2}{*}{} & - \\
    \hline Statistical Process Control & & & &  & & 120 \\
    \hline & & & \(n 16\) & nac & nat & n 16 \\
    \hline
    \end{tabular}
    Printed: 2/21/2017 10:58 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline & & Date & 02/07/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.4668 & CPM/DPM & 0.4661 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0017 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.4720 & Date & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.4616 & CPM & & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    

    American Radiation Services
    Baton Rouge Laboratory
    LB4100-C - BETA EFFICIENCY
    
    02/05
    Population Frequency Distribution (Histogram)
    
    .

    169 of 292
    American Radiation Services
    LB4100-C - Beta Daily BKG Check
    Printed: 2/21/2017 10:49 AM
    
    LB4100-C - BETA BACKGROUND - DETECTOR A1
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{\[
    29
    \]} & DER & 1.0399 & Most recent point outside of the 3 -sigma values. \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.9250 & Long B CPM & 0.8600 & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.1044 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. \\
    \hline + 3-sigma value & 1.2382 & Date & 02/07/17 & 7 trending most recent points in a row. \\
    \hline - 3 -sigma value & 0.6118 & CPM & 0.9583 & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    
    so/zo \(\tau \varepsilon / \tau 0\)
    
    \(12 / 2\)
    Statistical Process Control
    Printed: 2/21/2017 10:49 AM
    1/
    4100-C - BETA BACKGROUND - DETECTOR A2
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    
    
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.3036 & Most recent point outside of the 3-sigma values. \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.9172 & Long B CPM & 0.9111 & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0851 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3-sigma value & 1.1724 & Date & 02/07/17 & 7 trending most recent points in a row. \\
    \hline - 3-sigma value & 0.6620 & CPM & 0.8833 & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    1.4000
    Printed: 2/21/2017 10:55 AM
    
    
    LB4100-C - Beta Daily BKG Check
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{29} & DER & 0.6396 & Most recent point outside of the 3 -sigma values. \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.8468 & Long B CPM & 0.8644 & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0807 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3 -sigma value & 1.0891 & Date & 02/07/17 & 7 trending most recent points in a row. \\
    \hline - 3-sigma value & 0.6046 & CPM & 0.8083 & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    LB4100-C - BETA BACKGROUND - DETECTOR A4
    \begin{tabular}{|c|c|c|c|c|c|c|c|}
    \hline \[
    \begin{aligned}
    & 1.0000 \\
    & 0.8000
    \end{aligned}
    \] & \multicolumn{7}{|l|}{} \\
    \hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{0.}} \\
    \hline & & & & & & & \\
    \hline \multicolumn{8}{|l|}{0.4000} \\
    \hline \multicolumn{8}{|l|}{0.2000} \\
    \hline \multicolumn{8}{|l|}{0.0000} \\
    \hline 12/27 & 01/06 & 01/11 & 01/16 & 01/21 & 01/26 & 01/31 & 02/05 \\
    \hline
    \end{tabular}
    
    Printed: 2/21/2017 10:49 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & DER & 0.6088 & Most recent point outside of the 3-sigma values. & OK \\
    \hline lation Size & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.6733 & Long B CPM & 0.6633 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0571 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
    \hline + 3 -sigma value & 0.8445 & Date & 02/07/17 & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.5021 & CPM & 0.6167 & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    LB4100-C - Beta Daily BKG Check
    American Radiation Services
    Baton Rouge Laboratory

    \section*{LB4100-C - BETA BACKGROUND - DETECTOR B1}
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    \(\begin{array}{lllllll}01 / 06 & 01 / 11 & 01 / 16 & 01 / 21 & 01 / 26 & 01 / 31 & 02 / 05\end{array}\)
    Frequency 1
    
    空
    Statistical Process Control
    American Radiation Services
    LB4100-C - Beta Daily BKG Check
    Printed: 2/21/2017 10:49 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline pulation Size & & DER & 1.1529 & Most recent point outside of the 3-sigma values. & OK \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.7555 & Long B CPM & 0.7589 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0928 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 1.0339 & Date & 02/07/17 & 7 trending most recent points in a row. & OK \\
    \hline - 3-sigma value & 0.4770 & CPM & 0.6667 & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:49 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{\[
    29
    \]} & DER & 1.6264 & Most recent point outside of the 3-sigma values. & OK \\
    \hline & & Long B Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 1.2083 & Long B CPM & 1.2144 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.1236 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & OK \\
    \hline + 3-sigma value & 1.5792 & Date & 02/07/17 & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.8375 & CPM & 1.4000 & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:49 AM
    
    LB4100-C - BETA BACKGROUND - DETECTOR C2
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    LB4100-C - Beta Daily BKG Check
    American Radiation Services
    Baton Rouge Laboratory
    Page 1 of 1
    
    
    \begin{tabular}{|r|r|r|r|r}
    \hline \multicolumn{2}{|c|}{ Population Statistics } & DER Analysis & OK & \\
    \hline Population Size & 29 & DER & 1.3596 & Most recent point outside of the 3-sigma values. \\
    \hline Average & 0.9023 & Long B Date & \(02 / 04 / 17\) & 8 consecutive most recent points on one side of the mean. \\
    \hline Standard Deviation & 0.0897 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. \\
    \hline+3 -sigma value & 1.1714 & Date & \(02 / 07 / 17\) & 7 trending most recent points in a row. \\
    \hline-3 -sigma value & 0.6332 & CPM & 1.0000 & 15 most recent points inside 1 sigma. \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:49 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & DER Analysis & OK & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & DER & 1.5517 & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & & Long \(B\) Date & 02/04/17 & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.8399 & Long B CPM & 0.7967 & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0736 & Count Mins & 900.00 & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3 -sigma value & 1.0607 & Date & 02/07/17 & 7 trending most recent points in a row. & OK \\
    \hline -3-sigma value & 0.6192 & CPM & 0.9417 & 15 most recent points inside 1 sigma. & OK \\
    \hline & & Count Mins & 120.00 & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    

    \footnotetext{
    American Radiation Services
    Baton Rouge Laboratory
    }
    LB4100-C - Beta Daily BKG Check

    \section*{LB4100-C - Beta Daily BKG Check}
    Printed: 2/21/2017 10:49 AM
    \begin{tabular}{|c|c|c|c|}
    \hline DER Analysis & \multicolumn{1}{|c|}{ OK } & \multicolumn{2}{|c|}{ Trending Analysis } \\
    \hline DER & 1.0872 & Most recent point outside of the 3 -sigma values. & \(\mathbf{O K}\) \\
    \hline Long B Date & \(02 / 04 / 17\) & 8 consecutive most recent points on one side of the mean. & \(\mathbf{O K}\) \\
    \hline Long B CPM & 0.8556 & 2 of 3 most recent points above 2 sigma. & \(\mathbf{O K}\) \\
    \hline Count Mins & 900.00 & 4 of 5 most recents points beyond the 1 -sigma. & \(\mathbf{O K}\) \\
    \hline Date & \(02 / 07 / 17\) & 7 trending most recent points in a row. & \(\mathbf{O K}\) \\
    \hline CPM & 0.9583 & 15 most recent points inside 1 sigma. & \(\mathbf{O K}\) \\
    \hline Count Mins & 120.00 & 8 most recent points outside 1 sigma. & \(\mathbf{O K}\) \\
    \hline
    \end{tabular}
    LB4100-C - BETA BACKGROUND - DETECTOR C4
    Process Date Range: \(12 / 28 / 16-02 / 07 / 17\)
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{2}{*}{\[
    \begin{aligned}
    & 1.0000 \\
    & 0.8000
    \end{aligned}
    \]} & & ...--.-- & \(\cdots\) & \(\cdots\) & …--.... & --.-.-..... & \multicolumn{2}{|l|}{} \\
    \hline & \multicolumn{8}{|l|}{} \\
    \hline \multicolumn{9}{|l|}{\[
    0.5000
    \]} \\
    \hline \multicolumn{9}{|l|}{0.4000} \\
    \hline \multicolumn{9}{|l|}{0.2000} \\
    \hline \multicolumn{9}{|l|}{0.0000} \\
    \hline 12/27 & 01/01 & 01/06 & 01/11 & 01/16 & 01/21 & 01/26 & 01/31 & 02/05 \\
    \hline
    \end{tabular}
    

    American Radiation Services
    Baton Rouge Laboratory
    American Radiation Services
    Instrument Background Analysis
    Printed: 2/21/2017 10:42 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline lation Size & & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.9235 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0529 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 1.0820 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.7649 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:46 AM
    \begin{tabular}{|c|c|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\(\underline{0}\)}} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\(\underline{0}\)}} & \multirow[b]{3}{*}{\(\underset{0}{\square}\)} & \multirow[b]{3}{*}{\(\underline{0}\)} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\(\underline{0}\)}} \\
    \hline & & & & & & & \\
    \hline & & & & & & & \\
    \hline
    \end{tabular}
    LB4100-C - BETA LONG BACKGROUND - DETECTOR A2
    Process Date Range: \(07 / 24 / 16-02 / 11 / 17\) Process Date Range: \(07 / 24 / 16\) - 02/11/17
    Instrument Background Analysis
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. \\
    \hline & & & & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.9153 & & & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0411 & & & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3-sigma value & 1.0387 & & & 7 trending most recent points in a row. \\
    \hline - 3 -sigma value & 0.7920 & & & 15 most recent points inside 1 sigma. \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    
    
    Printed: 2/21/2017 10:42 AM
    
    BACKGROUND - DETECTOR A4
    ge: \(07 / 24 / 16-02 / 11 / 17\)

    \(10 / 31\)
    
    American Radiation Services
    Instrument Background Analysis
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & Trending Analysis \\
    \hline \multirow[t]{2}{*}{Population Size} & \multirow[t]{2}{*}{30} & & & Most recent point outside of the 3-sigma values. \\
    \hline & & & & 8 consecutive most recent points on one side of the mean. \\
    \hline Average & 0.8487 & & & 2 of 3 most recent points above 2 sigma. \\
    \hline Standard Deviation & 0.0367 & & & 4 of 5 most recents points beyond the 1-sigma. \\
    \hline + 3-sigma value & 0.9587 & & & 7 trending most recent points in a row. \\
    \hline - 3-sigma value & 0.7387 & & & 15 most recent points inside 1 sigma. \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. \\
    \hline
    \end{tabular}
    LB4100-C - BETA LONG BACKGROUND - DETECTOR A4
    
    Population Frequency Distribution (Histogram)
     Most recent point outside of the 3 -sigma values.
    8 consecutive most recent points on one side of the mean.
    2 of 3 most recent points above 2 sigma.
    4 of 5 most recents points beyond the 1 -sigma.
    7 trending most recent points in a row.
    15 most recent points inside 1 sigma.
    8 most recent points outside 1 sigma. Process Date Range: \(0 / 24 / 16\) - \(02 / 11 / 17\)
    Printed: 2/21/2017 10:42 AM
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline ze & & & & Most recent point outside of the 3 -sigma values. & OK \\
    \hline & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.7089 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0238 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.7804 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.6374 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{11}{*}{\begin{tabular}{l}
     \\
    Statistical Process Control
    \end{tabular}} & \multicolumn{7}{|l|}{Population Frequency Distribution (Histogram)} \\
    \hline & Bin & Frequency & \multirow[t]{9}{*}{} & \multirow[t]{7}{*}{4} & \multirow[t]{9}{*}{10} & \multirow[t]{9}{*}{} & \multirow[t]{9}{*}{4 4} \\
    \hline & 0.66 & 1 & & & & & \\
    \hline & 0.68 & 2 & & & & & \\
    \hline & 0.70 & 4 & & & & & \\
    \hline & 0.71 & 10 & & & & & \\
    \hline & 0.73
    More & 9 & & & & & \\
    \hline & & & & & & & \\
    \hline & & & &  & & & \\
    \hline & & & &  & & & \\
    \hline & & & \(n<0\) & \(n \rightarrow n\) & \(n 71\) & n70 & Manm \\
    \hline
    \end{tabular}
    Printed: 2/21/2017 10:42 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & & Most recent point outside of the 3 -sigma values. & OK \\
    \hline lation Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.7708 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0273 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.8526 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.6889 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    American Radiation Services
    Instrument Background Analysis
    Baton Rouge Laboratory
    Printed: 2/21/2017 10:42 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & 0 & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 1.1775 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0337 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 1.2788 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3-sigma value & 1.0763 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    Printed：2／21／2017 10：42 AM
    Page 1 of 1
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & & Most recent point outside of the 3－sigma values． & OK \\
    \hline Population Size & & & & 8 consecutive most recent points on one side of the mean． & OK \\
    \hline Average & 0.8899 & & & 2 of 3 most recent points above 2 sigma． & OK \\
    \hline Standard Deviation & 0.0368 & & & 4 of 5 most recents points beyond the 1 －sigma． & OK \\
    \hline +3 －sigma value & 1.0002 & & & 7 trending most recent points in a row． & OK \\
    \hline － 3 －sigma value & 0.7796 & & & 15 most recent points inside 1 sigma． & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma． & OK \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|}
    \hline \multicolumn{5}{|l|}{LB4100－C－BETA LONG BACKGROUND－DETECTOR C2} \\
    \hline \multicolumn{5}{|l|}{Process Date Range： \(07 / 24 / 16\)－02／11／17} \\
    \hline \multicolumn{5}{|l|}{1.20} \\
    \hline \multicolumn{5}{|l|}{\begin{tabular}{l}
    \(\square\) \\
    UCL（3 S） \\
    －ーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
    \end{tabular}} \\
    \hline 0.80 & & & & －－ \\
    \hline \multicolumn{5}{|l|}{\[
    0 . \frac{7}{5} 0
    \]} \\
    \hline \multicolumn{5}{|l|}{0.40} \\
    \hline \multicolumn{5}{|l|}{0.20} \\
    \hline \[
    \begin{gathered}
    0.00 \\
    07 / 2
    \end{gathered}
    \] & 09／11 & 10／31 & 12／20 & 02／08 \\
    \hline
    \end{tabular}
    
    Printed: 2/21/2017 10:42 AM
    
    Instrument Background Analysis
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|}
    \hline \multicolumn{2}{|l|}{Population Statistics} & & & \multicolumn{2}{|l|}{Trending Analysis} \\
    \hline Population Size & & & & Most recent point outside of the 3-sigma values. & OK \\
    \hline Population Size & & & & 8 consecutive most recent points on one side of the mean. & OK \\
    \hline Average & 0.8228 & & & 2 of 3 most recent points above 2 sigma. & OK \\
    \hline Standard Deviation & 0.0314 & & & 4 of 5 most recents points beyond the 1-sigma. & OK \\
    \hline + 3-sigma value & 0.9170 & & & 7 trending most recent points in a row. & OK \\
    \hline - 3 -sigma value & 0.7287 & & & 15 most recent points inside 1 sigma. & OK \\
    \hline & 30.0000 & & & 8 most recent points outside 1 sigma. & OK \\
    \hline
    \end{tabular}
    
    
    
    
    

    \section*{Tennelec LB41-PF4 Low Background \(\alpha / \beta\) Counter (Instrument C)}
    

    2609 North River Road, Port Allen, Louisiana 70767 1 (800) 401-4277 FAX (225) 381-2996

    \title{
    Volatile Organics Analysis SW 846 8260B
    }

    SDG\# ARS1-17-00215
    COC AQUEOUS SAMPLES
    
    
    
    
            古雪
    
    \(=\)
    01 - LCS
    \begin{tabular}{c|c|}
    \hline \(01-\) LCS & Trichloroethene \\
    \hline \(02-\) LCSD & Trichloroethene
    \end{tabular}
    ABatch INJERNATONCAL \begin{tabular}{|l|l|}
    \hline 03 - MBL & Trichloroethene \\
    \hline 04 -TRG & Trichloroethene \\
    \hline
    \end{tabular}
    

    \section*{Volatile Internal Standard Area and RT Summary}

    Lab Name:
    File Name (Std):
    Sample ID: Description:
    Inject Date/Time: Instrument: GC Method:
    Quantify Method:
    Calibration File:
    GC Column:

    Contract:
    C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 ccv6 ars16-122007.raw
    01-26-17 ccv6 ars16-122007
    01-26-17 ccv6 ars16-122007
    January 27, 2017 7:53:57 AM
    8260.mth

    8260b water 01-26-2017 B17-00152 Last Updated:
    8260B water IC 01-24-17cal2 Last Updated:
    Elite-VMS ID: 250 um

    Vial:
    Tune File:
    MS Method:

    Heated Purge:

    36
    010317.IPR 8260.EXP

    February 02, 2017 12:58:57 PM January 24, 2017 4:48:29 PM N
    \begin{tabular}{|c|c|c|c|c|c|c|c|}
    \hline & & IS1 ()
    Area & RT & \[
    \begin{aligned}
    & \text { IS2 (CBZ) } \\
    & \text { Area }
    \end{aligned}
    \] & RT & IS3
    Area & RT \\
    \hline & 12 HOUR STD & 1507867 & 4.10 & 1298681 & 7.37 & 753166 & 9.86 \\
    \hline & UPPER LIMIT & 3015734 & 4.60 & 2597361 & 7.87 & 1506331 & 10.36 \\
    \hline & LOWER LIMIT & 753933 & 3.60 & 649340 & 6.87 & 376583 & 9.36 \\
    \hline & File Name & Area \# & RT \# & Area \# & RT \# & Area \# & RT \# \\
    \hline 1 & \begin{tabular}{l} 
    01-26-17 B17- \\
    00152 ccv ars16- \\
    122001 \\
    \hline
    \end{tabular} & 2277814 & 4.10 & 1757654 & 7.37 & 966856 & 9.86 \\
    \hline 2 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & 00152 \text { LCS ars16- } \\
    & 122001
    \end{aligned}
    \] & 2061660 & 4.11 & 1625488 & 7.37 & 898981 & 9.86 \\
    \hline 3 & \[
    \begin{array}{|l|}
    \hline 01-26-17 \text { B17- } \\
    00152 \text { LCSD ars16- } \\
    122001 \\
    \hline
    \end{array}
    \] & 2016164 & 4.11 & 1587090 & 7.38 & 888041 & 9.87 \\
    \hline 4 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & 00152 \text { (001) }
    \end{aligned}
    \] & 2041166 & 4.11 & 1563942 & 7.37 & 847077 & 9.86 \\
    \hline 5 & \[
    \begin{array}{|l|}
    \hline 01-26-17 \mathrm{~B} 17- \\
    00152(002) \\
    \hline
    \end{array}
    \] & 1998331 & 4.11 & 1535095 & 7.38 & 823292 & 9.87 \\
    \hline 6 & \[
    \begin{array}{|l}
    \hline 01-26-17 \mathrm{~B} 17- \\
    00152(003) \\
    \hline
    \end{array}
    \] & 2051715 & 4.11 & 1562256 & 7.37 & 829630 & 9.86 \\
    \hline 7 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & \text { 00152 iblk2 }
    \end{aligned}
    \] & 1968884 & 4.11 & 1504561 & 7.37 & 820649 & 9.86 \\
    \hline 8 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & 00152 \text { ccv2 ars-16- } \\
    & 122001
    \end{aligned}
    \] & 1910416 & 4.11 & 1497453 & 7.37 & 848023 & 9.86 \\
    \hline
    \end{tabular}
    \begin{tabular}{ll} 
    IS1 0 & \(=\) Fluorobenzene \\
    IS2 (CBZ) & \(=\) Chlorobenzene-d5 \\
    IS3 0 & \(=1,4-\) Dichlorobenzene-D4
    \end{tabular}

    AREA UPPER LIMIT \(=+100 \%\) of internal standard area
    AREA LOWER LIMIT \(=-50 \%\) of internal standard area
    RT UPPER LIMIT \(=+0.50\) minutes of internal standard RT
    RT LOWER LIMIT \(=-0.50\) minutes of internal standard RT
    \# Column used to flag values outside QC limits with an asterisk
    * Values outside QC limits

    \section*{Volatile Organic Instrument Performance Check}

    Bromofluorobenzene (BFB)

    Lab Name
    Contract:
    File Name:
    Sample ID:
    Description:
    Inject Date/Time: Instrument:
    GC Method:
    GC Column:
    Scans:
    Test Name: 01-26-17 B17-00152 iblk1
    01-26-17 B17-00152 iblk1 January 26, 2017 6:01:21 PM
    8260.mth

    Elite-VMS ID: 250 um
    COMBINE(1671:1674)-(1655:1661,1695:1699)
    BFB 624/8260 TEST Result:

    C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 B17-00152 iblk1.raw

    Tune File: 010317.IPR
    MS Method: 8260.EXP

    PASS
    \begin{tabular}{|r|l|r|c|}
    \hline \multicolumn{1}{|c|}{\(\mathbf{m} / \mathbf{z}\)} & lon Abundance Criteria & \begin{tabular}{c} 
    \% Relative \\
    Abundance
    \end{tabular} & Result \\
    \hline 50 & \(15 \%-40 \%\) of mass 95 & 18.7 & Pass \\
    \hline 75 & \(30 \%-60 \%\) of mass 95 & 45.6 & Pass \\
    \hline 95 & Base Peak, 100\% relative abundance & 100.0 & Pass \\
    \hline 96 & \(5 \%-9 \%\) of mass 95 & 6.7 & Pass \\
    \hline 173 & Less than \(2 \%\) of mass 174 & 0.7 & Pass \\
    \hline 174 & Greater than \(50 \%\) of mass 95 & 64.6 & Pass \\
    \hline 175 & \(5 \%-9 \%\) of mass 174 & 7.6 & Pass \\
    \hline 176 & Greater than \(95 \%\) but less than \(101 \%\) of 174 & 96.9 & Pass \\
    \hline 177 & \(5 \%-9 \%\) of mass 176 & 6.5 & Pass \\
    \hline
    \end{tabular}

    This check applies to the following samples, MS, MSD, blanks and standards:
    \begin{tabular}{|c|c|c|c|c|}
    \hline & Lab Sample ID & Lab File ID & Date Analyzed & Time Analyzed \\
    \hline 1 & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 ccv } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 01-26-17 \text { B17-00152 ccv } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & January 26, 2017 & 05:36:51 PM \\
    \hline 2 & ARS1-B17-00152-02 & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 LCS } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & January 26, 2017 & 06:25:47 PM \\
    \hline 3 & ARS1-B17-00152-03 & 01-26-17 B17-00152 LCSD ars16-122001 & January 26, 2017 & 06:50:17 PM \\
    \hline 4 & ARS1-B17-00152-04 & 01-26-17 B17-00152 (001) & January 26, 2017 & 07:14:47 PM \\
    \hline 5 & ARS1-B17-00152-05 & 01-26-17 B17-00152 (002) & January 26, 2017 & 07:39:16 PM \\
    \hline 6 & ARS1-B17-00152-06 & 01-26-17 B17-00152 (003) & January 26, 2017 & 08:03:47 PM \\
    \hline 7 & 01-26-17 B17-00152 iblk2 & 01-26-17 B17-00152 iblk2 & January 26, 2017 & 08:28:18 PM \\
    \hline 8 & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 ccv2 } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 ccv2 } \\
    & \text { ars-16-122001 }
    \end{aligned}
    \] & January 26, 2017 & 08:52:43 PM \\
    \hline 9 & 01-26-17 ccv6 ars16-122007 & 01-26-17 ccv6 ars16-122007 & January 27, 2017 & 07:53:57 AM \\
    \hline
    \end{tabular}

    \section*{Schedule "8260 water 01-26-17 B17-00152, MDLs, new std cal" version 1}

    Instrument: PE CLARUS GCMS
    Last Save Time: Thursday, January 26, 2017 at 5:19:26 PM
    Creation Time: Thursday, January 26, 2017 at 5:19:26 PM
    Comments: None
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline Line & Use? & Vial & Method & Type & STD 1 & STD 2 & STD 3 & Dilution \\
    \hline 1 & Yes & 1 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 2 & Yes & 2 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 3 & Yes & 3 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 4 & Yes & 4 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 5 & Yes & 5 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 6 & Yes & 6 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 7 & Yes & 7 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 8 & Yes & 8 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 9 & Yes & 9 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 10 & Yes & 10 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 11 & Yes & 11 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 12 & Yes & 12 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 13 & Yes & 13 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 14 & Yes & 14 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 15 & Yes & 15 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 16 & Yes & 16 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 17 & Yes & 17 & 8260 Water hi heat & Water & 5 & 0 & 0 & \(1: 1\) \\
    \hline 18 & Yes & 18 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 19 & Yes & 19 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 20 & Yes & 20 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 21 & Yes & 21 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 22 & Yes & 22 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 23 & Yes & 23 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 24 & Yes & 24 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 25 & Yes & 25 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 26 & Yes & 26 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 27 & Yes & 27 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 28 & Yes & 28 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 29 & Yes & 29 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 30 & Yes & 30 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 31 & Yes & 31 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 32 & Yes & 32 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 33 & Yes & 33 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 34 & Yes & 34 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 35 & Yes & 35 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline 36 & Yes & 36 & 8260 Water hi heat & Water & 5 & 0 & 0 & 1:1 \\
    \hline
    \end{tabular}

    \title{
    Volatile Internal Standard Area and RT Summary
    }

    Lab Name
    File Name (Std):
    Sample ID:
    Description:
    Inject Date/Time
    Instrument:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:

    C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 ccv6 ars16-122007.raw 01-26-17 ccv6 ars16-122007 01-26-17 ccv6 ars16-122007 January 27, 2017 7:53:57 AM
    8260.mth

    8260b water 01-26-2017 B17-00152 Last Updated: 8260B water IC 01-24-17cal2 Last Updated: Elite-VMS ID: 250 um

    Vial:
    Tune File:
    MS Method:

    Heated Purge:

    Contract:

    \section*{36}
    010317.IPR 8260.EXP

    February 02, 2017 12:58:57 PM January 24, 2017 4:48:29 PM N
    \begin{tabular}{|c|c|c|c|c|c|c|c|}
    \hline & & \[
    \begin{array}{ll}
    \hline \text { IS1 } & \text { () } \\
    \text { Area }
    \end{array}
    \] & RT & \[
    \begin{aligned}
    & \text { IS2 (CBZ) } \\
    & \text { Area }
    \end{aligned}
    \] & RT & IS3
    Area & RT \\
    \hline & 12 HOUR STD & 1507867 & 4.10 & 1298681 & 7.37 & 753166 & 9.86 \\
    \hline & UPPER LIMIT & 3015734 & 4.60 & 2597361 & 7.87 & 1506331 & 10.36 \\
    \hline & LOWER LIMIT & 753933 & 3.60 & 649340 & 6.87 & 376583 & 9.36 \\
    \hline & File Name & Area \# & RT \# & Area \# & RT \# & Area \# & RT \# \\
    \hline 1 & \[
    \begin{array}{|l|}
    \hline 01-26-17 \text { B17- } \\
    00152 \text { ccv ars16- } \\
    122001 \\
    \hline
    \end{array}
    \] & 2277814 & 4.10 & 1757654 & 7.37 & 966856 & 9.86 \\
    \hline 2 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & 00152 \text { LCS ars16- } \\
    & 122001
    \end{aligned}
    \] & 2061660 & 4.11 & 1625488 & 7.37 & 898981 & 9.86 \\
    \hline 3 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & \text { 00152 LCSD ars16- } \\
    & \text { 122001 }
    \end{aligned}
    \] & 2016164 & 4.11 & 1587090 & 7.38 & 888041 & 9.87 \\
    \hline 4 & \[
    \begin{aligned}
    & \hline 01-26-17 \text { B17- } \\
    & 00152 \text { (001) }
    \end{aligned}
    \] & 2041166 & 4.11 & 1563942 & 7.37 & 847077 & 9.86 \\
    \hline 5 & \[
    \begin{array}{|l|}
    \hline 01-26-17 \text { B17- } \\
    00152(002) \\
    \hline
    \end{array}
    \] & 1998331 & 4.11 & 1535095 & 7.38 & 823292 & 9.87 \\
    \hline 6 & \[
    \begin{array}{|l|}
    \hline 01-26-17 \text { B17- } \\
    00152 \text { (003) } \\
    \hline
    \end{array}
    \] & 2051715 & 4.11 & 1562256 & 7.37 & 829630 & 9.86 \\
    \hline 7 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & 00152 \text { iblk2 }
    \end{aligned}
    \] & 1968884 & 4.11 & 1504561 & 7.37 & 820649 & 9.86 \\
    \hline 8 & \[
    \begin{aligned}
    & \text { 01-26-17 B17- } \\
    & 00152 \text { ccv2 ars-16- } \\
    & 122001
    \end{aligned}
    \] & 1910416 & 4.11 & 1497453 & 7.37 & 848023 & 9.86 \\
    \hline
    \end{tabular}
    \begin{tabular}{ll} 
    IS1 () & \(=\) Fluorobenzene \\
    IS2 (CBZ) & \(=\) Chlorobenzene-d5 \\
    IS3 () & \(=1,4\)-Dichlorobenzene-D4
    \end{tabular}

    AREA UPPER LIMIT \(=+100 \%\) of internal standard area
    AREA LOWER LIMIT \(=-50 \%\) of internal standard area
    RT UPPER LIMIT \(=+0.50\) minutes of internal standard RT
    RT LOWER LIMIT \(=-0.50\) minutes of internal standard \(R T\)
    \# Column used to flag values outside QC limits with an asterisk
    * Values outside QC limits

    \section*{Volatile Organic Instrument Performance Check}

    Bromofluorobenzene (BFB)

    Lab Name:
    File Name:
    Sample ID:
    Description:
    Inject Date/Time:
    Instrument:
    GC Method:
    GC Column:
    Scans:
    Test Name:

    C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 B17-00152 iblk1.raw 01-26-17 B17-00152 iblk1 01-26-17 B17-00152 iblk1 January 26, 2017 6:01:21 PM
    8260.mth

    Tune File: 010317.IPR
    MS Method: 8260.EXP
    \begin{tabular}{|r|l|c|c|}
    \hline \multicolumn{1}{|c|}{\(\mathbf{m} / \mathbf{z}\)} & Ion Abundance Criteria & \begin{tabular}{c} 
    \% Relative \\
    Abundance
    \end{tabular} & Result \\
    \hline 50 & \(15 \%-40 \%\) of mass 95 & 18.7 & Pass \\
    \hline 75 & \(30 \%-60 \%\) of mass 95 & 45.6 & Pass \\
    \hline 95 & Base Peak, 100\% relative abundance & 100.0 & Pass \\
    \hline 96 & \(5 \%-9 \%\) of mass 95 & 6.7 & Pass \\
    \hline 173 & Less than \(2 \%\) of mass 174 & 0.7 & Pass \\
    \hline 174 & Greater than \(50 \%\) of mass 95 & 64.6 & Pass \\
    \hline 175 & \(5 \%-9 \%\) of mass 174 & 7.6 & Pass \\
    \hline 176 & Greater than \(95 \%\) but less than \(101 \%\) of 174 & 96.9 & Pass \\
    \hline 177 & \(5 \%-9 \%\) of mass 176 & 6.5 & Pass \\
    \hline
    \end{tabular}

    This check applies to the following samples, MS, MSD, blanks and standards:
    \begin{tabular}{|c|c|c|c|c|}
    \hline & Lab Sample ID & Lab File ID & Date Analyzed & Time Analyzed \\
    \hline 1 & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 ccv } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 cCv } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & January 26, 2017 & 05:36:51 PM \\
    \hline 2 & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 LCS } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 LCS } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & January 26, 2017 & 06:25:47 PM \\
    \hline 3 & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 LCSD } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 LCSD } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & January 26, 2017 & 06:50:17 PM \\
    \hline 4 & 01-26-17 B17-00152 (001) & 01-26-17 B17-00152 (001) & January 26, 2017 & 07:14:47 PM \\
    \hline 5 & 01-26-17 B17-00152 (002) & 01-26-17 B17-00152 (002) & January 26, 2017 & 07:39:16 PM \\
    \hline 6 & 01-26-17 B17-00152 (003) & 01-26-17 B17-00152 (003) & January 26, 2017 & 08:03:47 PM \\
    \hline 7 & 01-26-17 B17-00152 iblk2 & 01-26-17 B17-00152 iblk2 & January 26, 2017 & 08:28:18 PM \\
    \hline 8 & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 ccv2 } \\
    & \text { ars16-122001 }
    \end{aligned}
    \] & \[
    \begin{aligned}
    & \text { 01-26-17 B17-00152 ccv2 } \\
    & \text { ars-16-122001 }
    \end{aligned}
    \] & January 26, 2017 & 08:52:43 PM \\
    \hline 9 & 01-26-17 ccv6 ars 16-122007 & 01-26-17 ccv6 ars16-122007 & January 27, 2017 & 07:53:57 AM \\
    \hline
    \end{tabular}

    Lab Name:
    Project Path:
    Instrument:
    GC Method
    Quantify Method:
    Calibration File:
    GC Column:

    Contract:
    C:ITurboMassiT020117 B1700152.PRO
    Tune File:
    MS Method:
    8260b water 01-26-2017 B17-00152 Last Updated: 8260B water IC 01-24-17cal2 Elite-VMS ID: 250 um
    010317.IPR
    8260.EXP

    February 01, 2017 1:23:36 PM January 24, 2017 4:48:29 PM
    \begin{tabular}{|c|l|c|c|c|c|c|}
    \hline & \multicolumn{1}{|c|}{ File Name } & \begin{tabular}{c} 
    SMC 1 \\
    (BFM) \#
    \end{tabular} & \begin{tabular}{c} 
    SMC 2 \\
    (TD8) \#
    \end{tabular} & \begin{tabular}{c} 
    SMC 3 3 \\
    (BFB) \#
    \end{tabular} & \begin{tabular}{c} 
    SMC 4 4 \\
    (dced \#
    \end{tabular} & \begin{tabular}{c} 
    Tot \\
    Out
    \end{tabular} \\
    \hline 1 & \(91-26-17\) B17- \\
    \begin{tabular}{l}
    00152 ccv ars16- \\
    122001
    \end{tabular} & 94 & 109 & 107 & 107 & 0 \\
    \hline 2 & \begin{tabular}{l}
    \(101-26-17\) B17- \\
    00152 LCS ars16- \\
    122001
    \end{tabular} & 94 & 107 & 106 & 106 & 0 \\
    \hline 3 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 LCSD ars16- \\
    122001
    \end{tabular} & 83 & 109 & 106 & 107 & 0 \\
    \hline 4 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 (001)
    \end{tabular} & 81 & 109 & 105 & 107 & 0 \\
    \hline 5 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 (002)
    \end{tabular} & 84 & 110 & 105 & 108 & 0 \\
    \hline 6 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 (003)
    \end{tabular} & 82 & 110 & 106 & 107 & 0 \\
    \hline 7 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 iblk2
    \end{tabular} & 94 & 108 & 106 & 105 & 0 \\
    \hline 8 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 ccv2 ars-16- \\
    122001
    \end{tabular} & & & & & \\
    \hline
    \end{tabular}

    QC LIMITS
    (80-119)
    (89 - 112)
    (85-114)
    (81 - 118)
    \# Column to be used to flag recovery values
    * Values outside of required QC limits
    \begin{tabular}{ll} 
    SMC1 & (BFM) \\
    SMC2 & Dibromofluoromethane \\
    (TD8) & \(=\) Toluene-d8 \\
    SMC3 & (BFB)
    \end{tabular}

    Lab Name:
    File Name (Std):
    Sample ID:
    Description:
    Inject Date/Time:
    Instrument:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:

    Contract
    C:ITurboMass\T020117 B1700152.PROIDatal01-26-17 ccv6 ars16-122007.raw 01-26-17 ccv6 ars16-122007 01-26-17 ccv6 ars16-122007 January 27, 2017 7:53:57 AM
    8260.mth

    8260b water 01-26-2017 B17-00152 Last Updated:
    8260B water IC 01-24-17cal2 Last Updated:
    Elite-VMS ID: 250 um

    Vial:
    Tune File:
    MS Method:

    Heated Purge

    36
    010317.IPR
    8260.EXP

    February 01, 2017 1:23:36 PM January 24, 2017 4:48:29 PM N
    \begin{tabular}{|l|c|c|c|c|c|c|}
    \hline & \begin{tabular}{l} 
    IS1 () \\
    Area
    \end{tabular} & RT & \begin{tabular}{c} 
    IS2 (CBZ) \\
    Area
    \end{tabular} & RT & \begin{tabular}{c} 
    IS3 () \\
    Area
    \end{tabular} & RT \\
    \hline 12 HOUR STD & 1507867 & 4.10 & 1298681 & 7.37 & 753166 & 9.86 \\
    \hline UPPER LIMIT & 3015734 & 4.60 & 2597361 & 7.87 & 1506331 & 10.36 \\
    \hline LOWER LIMIT & 753933 & 3.60 & 649340 & 6.87 & 376583 & 9.36 \\
    \hline
    \end{tabular}
    \begin{tabular}{|l|l|l|c|c|c|c|c|}
    \hline & File Name & Area \# & RT \# & Area \# & RT \# & Area \# & RT \\
    \hline 1 \begin{tabular}{l} 
    O1-26-17 B17- \\
    00152 ccv ars16- \\
    122001
    \end{tabular} & 2277814 & 4.10 & 1757654 & 7.37 & 966856 & 9.86 \\
    \hline 2 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 LCS ars16- \\
    122001
    \end{tabular} & 2061660 & 4.11 & 1625488 & 7.37 & 898981 & 9.86 \\
    \hline 3 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 LCSD ars16- \\
    122001
    \end{tabular} & 2016164 & 4.11 & 1587090 & 7.38 & 888041 & 9.87 \\
    \hline 4 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 (001)
    \end{tabular} & 2041166 & 4.11 & 1563942 & 7.37 & 847077 & 9.86 \\
    \hline 5 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 (002)
    \end{tabular} & 1998331 & 4.11 & 1535095 & 7.38 & 823292 & 9.87 \\
    \hline 6 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 (003)
    \end{tabular} & 2051715 & 4.11 & 1562256 & 7.37 & 829630 & 9.86 \\
    \hline 7 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 iblk2
    \end{tabular} & 1968884 & 4.11 & 1504561 & 7.37 & 820649 & 9.86 \\
    \hline 8 & \begin{tabular}{l}
    \(01-26-17\) B17- \\
    00152 ccv2 ars-16- \\
    122001
    \end{tabular} & 1910416 & 4.11 & 1497453 & 7.37 & 848023 & 9.86 \\
    \hline
    \end{tabular}
    \begin{tabular}{ll} 
    IS1 & \(=\) Fluorobenzene \\
    IS2 (CBZ) & \(=\) Chlorobenzene-d5 \\
    IS3 & \\
    \end{tabular}

    AREA UPPER LIMIT \(=+100 \%\) of internal standard area
    AREA LOWER LIMIT \(=-50 \%\) of internal standard area
    RT UPPER LIMIT \(=+0.50\) minutes of internal standard RT
    RT LOWER LIMIT \(=-0.50\) minutes of internal standard RT
    \# Column used to flag values outside QC limits with an asterisk
    * Values outside QC limits
    
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline Compound & Level 1 & Level 2 & Level 3 & Level 4 & Level 5 & Level 6 & Level 7 & Level 8 & Level 9 & Level & Level \\
    \hline Dichlorodifluoromethane & 0.138 & 0.084 & 0.052 & 0.127 & 0.161 & 0.103 & 0.141 & 0.162 & 0.173 & 0.167 & 0.158 \\
    \hline Chloromethane & 0.866 & 0.638 & 0.513 & 0.431 & 0.422 & 0.363 & 0.353 & 0.349 & 0.349 & 0.351 & 0.337 \\
    \hline Vinyl Chloride & 0.313 & 0.273 & 0.281 & 0.270 & 0.310 & 0.245 & 0.293 & 0.310 & 0.322 & 0.329 & 0.302 \\
    \hline Bromomethane & 0.334 & 0.293 & 0.249 & 0.221 & 0.225 & 0.194 & 0.178 & 0.171 & 0.169 & 0.169 & 0.159 \\
    \hline Chloroethane & 0.194 & 0.187 & 0.171 & 0.150 & 0.163 & 0.141 & 0.148 & 0.155 & 0.151 & 0.147 & 0.141 \\
    \hline Trichlorofluoromethane & 0.303 & 0.156 & 0.150 & 0.198 & 0.268 & 0.184 & 0.224 & 0.182 & 0.172 & 0.159 & 0.151 \\
    \hline 1,1-Dichloroethene & 0.156 & 0.139 & 0.155 & 0.153 & 0.177 & 0.139 & 0.160 & 0.167 & 0.170 & 0.166 & 0.155 \\
    \hline Carbon disulfide & 0.722 & 0.500 & 0.446 & 0.391 & 0.424 & 0.352 & 0.406 & 0.460 & 0.476 & 0.493 & 0.469 \\
    \hline lodomethane & 0.040 & 0.047 & 0.038 & 0.054 & 0.076 & 0.096 & 0.170 & 0.219 & 0.210 & 0.222 & 0.213 \\
    \hline Acrolein & & & & & & & & & & & \\
    \hline Allyl Chloride & 0.066 & 0.065 & 0.095 & 0.092 & 0.111 & 0.105 & 0.111 & 0.116 & 0.115 & 0.116 & 0.112 \\
    \hline Methyl Tert-butyl Ether & & & & & & & & & & & \\
    \hline Methylene Chloride & 0.486 & 0.392 & 0.262 & 0.239 & 0.251 & 0.240 & 0.225 & 0.227 & 0.219 & 0.220 & 0.208 \\
    \hline
    \end{tabular}

    February 02, 2017 9:06:36 AM
    Volatile Organics Initial Calibration Data
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline Compound & Level 1 & Level 2 & Level 3 & Level 4 & Level 5 & Level 6 & Level 7 & Level 8 & Level 9 & Level & Level \\
    \hline trans-1,2 Dichloroethene & 0.244 & 0.259 & 0.215 & 0.221 & 0.222 & 0.203 & 0.213 & 0.219 & 0.217 & 0.216 & 0.204 \\
    \hline Acetone & 0.290 & 0.178 & 0.114 & 0.077 & 0.060 & 0.054 & 0.045 & 0.042 & 0.039 & 0.039 & 0.037 \\
    \hline Acrylonitrile & 0.511 & 0.135 & 0.128 & 0.131 & 0.143 & 0.142 & 0.130 & 0.132 & 0.123 & 0.127 & 0.122 \\
    \hline 1,1,-Dichloroethane & 0.626 & 0.560 & 0.516 & 0.470 & 0.521 & 0.481 & 0.482 & 0.495 & 0.486 & 0.490 & 0.464 \\
    \hline Chloroprene & 0.511 & 0.401 & 0.406 & 0.382 & 0.421 & 0.349 & 0.396 & 0.419 & 0.425 & 0.422 & 0.399 \\
    \hline cis-1,2,-Dichloroethene & 0.295 & 0.275 & 0.257 & 0.260 & 0.285 & 0.272 & 0.262 & 0.270 & 0.260 & 0.261 & 0.248 \\
    \hline 2,2,-Dichloropropane & 0.271 & 0.219 & 0.223 & 0.209 & 0.236 & 0.203 & 0.224 & 0.244 & 0.250 & 0.252 & 0.241 \\
    \hline 2-Butanone & 0.016 & 0.016 & 0.018 & 0.020 & 0.036 & 0.041 & 0.040 & 0.043 & 0.039 & 0.038 & 0.039 \\
    \hline Propionitrile & 0.020 & 0.022 & 0.031 & 0.037 & 0.054 & 0.056 & 0.053 & 0.057 & 0.054 & 0.054 & 0.052 \\
    \hline Bromochloromethane & 0.053 & 0.066 & 0.085 & 0.103 & 0.119 & 0.119 & 0.118 & 0.122 & 0.116 & 0.119 & 0.116 \\
    \hline Chloroform & 0.544 & 0.504 & 0.425 & 0.402 & 0.436 & 0.420 & 0.412 & 0.425 & 0.412 & 0.413 & 0.396 \\
    \hline Carbon tetrachloride & 0.084 & 0.069 & 0.110 & 0.123 & 0.163 & 0.130 & 0.175 & 0.202 & 0.219 & 0.223 & 0.219 \\
    \hline Vinyl Acetate & & & & & & & & & & & \\
    \hline 1,1,1-Trichloroethane & 0.234 & 0.243 & 0.264 & 0.247 & 0.301 & 0.256 & 0.295 & 0.322 & 0.330 & 0.330 & 0.315 \\
    \hline 1,1-Dichloropropene & 0.436 & 0.331 & 0.310 & 0.312 & 0.353 & 0.289 & 0.325 & 0.347 & 0.352 & 0.350 & 0.333 \\
    \hline Benzene & 1.692 & 1.422 & 1.226 & 1.141 & 1.204 & 1.096 & 1.078 & 1.119 & 1.084 & 1.096 & 1.030 \\
    \hline Methacrylonitrile & 0.280 & 0.264 & 0.256 & 0.230 & 0.254 & 0.259 & 0.244 & 0.252 & 0.238 & 0.240 & 0.226 \\
    \hline 1,2-Dichloroethane & 0.527 & 0.468 & 0.415 & 0.392 & 0.434 & 0.411 & 0.394 & 0.414 & 0.389 & 0.391 & 0.378 \\
    \hline Trichloroethene & 0.390 & 0.277 & 0.277 & 0.256 & 0.273 & 0.240 & 0.245 & 0.250 & 0.245 & 0.243 & 0.228 \\
    \hline 1,2-Dichloropropane & 0.310 & 0.325 & 0.297 & 0.293 & 0.323 & 0.311 & 0.308 & 0.324 & 0.313 & 0.312 & 0.302 \\
    \hline Bromodichloromethane & 0.221 & 0.225 & 0.206 & 0.205 & 0.244 & 0.253 & 0.266 & 0.298 & 0.294 & 0.309 & 0.303 \\
    \hline Methyl methacrylate & 0.191 & 0.235 & 0.211 & 0.214 & 0.255 & 0.263 & 0.263 & 0.275 & 0.260 & 0.269 & 0.260 \\
    \hline Dibromomethane & 0.079 & 0.121 & 0.128 & 0.131 & 0.150 & 0.150 & 0.147 & 0.154 & 0.145 & 0.147 & 0.142 \\
    \hline 1,4-Dioxane & 0.003 & 0.000 & 0.000 & 0.001 & 0.001 & 0.002 & 0.003 & 0.003 & 0.004 & 0.004 & 0.003 \\
    \hline 2-Chloroethyl Vinyl Ether & 0.071 & 0.084 & 0.080 & 0.085 & 0.103 & 0.003 & 0.097 & 0.104 & 0.104 & 0.103 & 0.097 \\
    \hline cis-1,3-Dichloropropene & 0.319 & 0.382 & 0.286 & 0.277 & 0.328 & 0.338 & 0.354 & 0.402 & 0.392 & 0.414 & 0.409 \\
    \hline Toluene & 1.258 & 1.030 & 0.913 & 0.805 & 0.843 & 0.797 & 0.796 & 0.805 & 0.784 & 0.777 & 0.721 \\
    \hline trans-1,3-Dichloropropene & 0.324 & 0.293 & 0.271 & 0.266 & 0.330 & 0.355 & 0.381 & 0.445 & 0.437 & 0.458 & 0.448 \\
    \hline 1,1,2-Trichloroethane & 0.220 & 0.232 & 0.238 & 0.231 & 0.255 & 0.259 & 0.246 & 0.259 & 0.244 & 0.245 & 0.233 \\
    \hline Ethyl methacrylate & 0.495 & 0.462 & 0.476 & 0.456 & 0.525 & 0.542 & 0.542 & 0.589 & 0.558 & 0.570 & 0.540 \\
    \hline Tetrachloroethene & 0.373 & 0.307 & 0.317 & 0.286 & 0.308 & 0.263 & 0.262 & 0.264 & 0.259 & 0.247 & 0.234 \\
    \hline Chlorodibromomethane & 0.053 & 0.101 & 0.141 & 0.142 & 0.177 & 0.193 & 0.208 & 0.247 & 0.242 & 0.260 & 0.256 \\
    \hline 1,3-Dichloropropane & 0.751 & 0.710 & 0.624 & 0.581 & 0.640 & 0.628 & 0.600 & 0.629 & 0.595 & 0.592 & 0.563 \\
    \hline 1,2-Dibromoethane & 0.208 & 0.262 & 0.240 & 0.254 & 0.295 & 0.307 & 0.300 & 0.318 & 0.303 & 0.302 & 0.288 \\
    \hline Ethylbenzene & 2.093 & 1.610 & 1.576 & 1.410 & 1.549 & 1.429 & 1.452 & 1.505 & 1.481 & 1.464 & 1.378 \\
    \hline 1,1,1,2-Tetrachloroethane & 0.103 & 0.159 & 0.174 & 0.163 & 0.198 & 0.211 & 0.226 & 0.252 & 0.249 & 0.263 & 0.258 \\
    \hline Chlorobenzene & 1.443 & 1.207 & 1.044 & 0.956 & 1.013 & 0.961 & 0.920 & 0.942 & 0.914 & 0.906 & 0.860 \\
    \hline m,p-Xylene & 0.851 & 0.689 & 0.646 & 0.587 & 0.645 & 0.597 & 0.601 & 0.623 & 0.608 & 0.596 & 0.703 \\
    \hline o-Xylene & 0.739 & 0.661 & 0.616 & 0.578 & 0.629 & 0.597 & 0.597 & 0.621 & 0.603 & 0.599 & 0.565 \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|}
    \hline Compound & Level & Level & Level & Avg RRF & \[
    \begin{gathered}
    \% \\
    \text { RSD }
    \end{gathered}
    \] & \(\mathrm{r}^{2}\) \\
    \hline trans-1,2 Dichloroethene & 0.219 & 0.195 & 0.203 & 0.218 & 7.6 & \\
    \hline Acetone & 0.041 & 0.038 & 0.039 & & & 0.9979 \\
    \hline Acrylonitrile & 0.138 & 0.128 & 0.133 & & & 0.9976 \\
    \hline 1,1,-Dichloroethane & 0.500 & 0.458 & 0.471 & 0.501 & 8.9 & \\
    \hline Chloroprene & 0.432 & 0.364 & 0.401 & 0.409 & 9.2 & \\
    \hline cis-1,2,-Dichloroethene & 0.264 & 0.244 & 0.250 & 0.265 & 5.2 & \\
    \hline 2,2,-Dichloropropane & 0.265 & 0.235 & 0.250 & 0.237 & 8.4 & \\
    \hline 2-Butanone & 0.046 & 0.042 & 0.044 & & & 0.9956 \\
    \hline Propionitrile & 0.062 & 0.058 & 0.061 & & & 0.9952 \\
    \hline Bromochloromethane & 0.125 & 0.116 & 0.120 & & & 0.9989 \\
    \hline Chloroform & 0.434 & 0.401 & 0.413 & 0.431 & 9.7 & \\
    \hline Carbon tetrachloride & 0.250 & & & & & 0.9924 \\
    \hline Vinyl Acetate & & & & & & \\
    \hline 1,1,1-Trichloroethane & 0.346 & 0.301 & 0.328 & 0.294 & 12.9 & \\
    \hline 1,1-Dichloropropene & 0.367 & 0.312 & 0.351 & 0.341 & 10.3 & \\
    \hline Benzene & 1.120 & 1.038 & 1.083 & & & 0.9986 \\
    \hline Methacrylonitrile & 0.252 & 0.229 & 0.235 & 0.247 & 6.2 & \\
    \hline 1,2-Dichloroethane & 0.413 & 0.380 & 0.389 & & & 0.9985 \\
    \hline Trichloroethene & 0.249 & 0.223 & 0.233 & & & 0.9976 \\
    \hline 1,2-Dichloropropane & 0.325 & 0.298 & 0.308 & & & 0.9986 \\
    \hline Bromodichloromethane & 0.332 & 0.313 & 0.329 & & & 0.9981 \\
    \hline Methyl methacrylate & 0.296 & 0.278 & 0.293 & & & 0.9972 \\
    \hline Dibromomethane & 0.155 & 0.144 & 0.148 & & & 0.9988 \\
    \hline 1,4-Dioxane & 0.004 & 0.004 & 0.005 & & & 0.9954 \\
    \hline 2-Chloroethyl Vinyl Ether & 0.107 & 0.099 & 0.103 & & & 0.9970 \\
    \hline cis-1,3-Dichloropropene & 0.451 & 0.426 & 0.449 & & & 0.9977 \\
    \hline Toluene & 0.779 & 0.702 & 0.710 & & & 0.9970 \\
    \hline trans-1,3-Dichloropropene & 0.493 & 0.463 & 0.478 & & & 0.9985 \\
    \hline 1,1,2-Trichloroethane & 0.254 & 0.236 & 0.244 & & & 0.9987 \\
    \hline Ethyl methacrylate & 0.612 & 0.567 & 0.591 & & & 0.9979 \\
    \hline Tetrachloroethene & 0.251 & 0.213 & 0.226 & & & 0.9937 \\
    \hline Chlorodibromomethane & 0.286 & 0.271 & 0.284 & & & 0.9973 \\
    \hline 1,3-Dichloropropane & 0.613 & 0.570 & 0.584 & 0.620 & 8.5 & \\
    \hline 1,2-Dibromoethane & 0.314 & 0.288 & 0.292 & & & 0.9984 \\
    \hline Ethylbenzene & 1.493 & 1.369 & 1.407 & 1.515 & 12.0 & \\
    \hline 1,1,1,2-Tetrachloroethane & 0.282 & 0.268 & 0.280 & & & 0.9983 \\
    \hline Chlorobenzene & 0.924 & 0.850 & 0.868 & & & 0.9985 \\
    \hline m,p-Xylene & 0.722 & 0.547 & 0.560 & 0.641 & 12.4 & \\
    \hline o-Xylene & 0.603 & 0.556 & 0.564 & 0.609 & 7.7 & \\
    \hline
    \end{tabular}
    Volatile Organics Initial Calibration Data
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline Compound & Level 1 & Level 2 & Level 3 & Level 4 & Level 5 & Level 6 & Level 7 & Level 8 & Level 9 & Level & Level \\
    \hline Bromoform & 0.021 & 0.029 & 0.051 & 0.066 & 0.097 & 0.105 & 0.116 & 0.143 & 0.143 & 0.162 & 0.167 \\
    \hline 4-Methyl-2-pentanone & 0.015 & 0.019 & 0.030 & 0.040 & 0.059 & 0.064 & 0.063 & 0.066 & 0.064 & 0.064 & 0.061 \\
    \hline 2-Hexanone & 0.245 & 0.347 & 0.274 & 0.270 & 0.315 & 0.336 & 0.309 & 0.325 & 0.312 & 0.316 & 0.297 \\
    \hline Styrene & 1.211 & 0.991 & 0.950 & 0.905 & 1.025 & 1.010 & 1.005 & 1.051 & 1.012 & 1.012 & 0.974 \\
    \hline Isopropylbenzene & 1.963 & 1.530 & 1.530 & 1.385 & 1.546 & 1.410 & 1.471 & 1.536 & 1.522 & 1.500 & 1.426 \\
    \hline Bromobenzene & 0.895 & 0.796 & 0.775 & 0.712 & 0.760 & 0.749 & 0.700 & 0.725 & 0.699 & 0.686 & 0.646 \\
    \hline cis-1,4-dichloro-2-butene & 0.014 & 0.009 & 0.106 & 0.050 & 0.077 & 0.096 & 0.109 & 0.144 & 0.150 & 0.177 & 0.176 \\
    \hline trans-1,4-dichloro-2-butene & 0.114 & 0.161 & 0.123 & 0.183 & 0.230 & 0.255 & 0.234 & 0.284 & 0.257 & 0.284 & 0.278 \\
    \hline n-Propylbenzene & 5.270 & 3.832 & 3.713 & 3.286 & 3.562 & 3.203 & 3.333 & 3.484 & 3.415 & 3.323 & 3.098 \\
    \hline 1,1,2,2-Tetrachloroethane & 0.755 & 0.785 & 0.729 & 0.725 & 0.849 & 0.876 & 0.852 & 0.881 & 0.843 & 0.839 & 0.801 \\
    \hline 1,2,3-Trichloropropane & 0.117 & 0.207 & 0.124 & 0.132 & 0.148 & 0.144 & 0.140 & 0.130 & 0.130 & 0.123 & 0.112 \\
    \hline 1,3,5-trimethylbenzene & & 3.036 & 2.898 & 2.654 & 2.873 & 2.692 & 2.708 & 2.764 & 2.707 & 2.637 & 2.466 \\
    \hline 2-Chlorotoluene & 3.415 & 2.703 & 2.544 & 2.290 & 2.383 & 2.237 & 2.203 & 2.262 & 2.179 & 2.124 & 1.969 \\
    \hline 4-Chlorotoluene & 3.672 & 3.014 & 2.617 & 2.355 & 2.425 & 2.326 & 2.253 & 2.290 & 2.226 & 2.292 & 2.053 \\
    \hline tert-Butylbenzene & 3.347 & 2.496 & 2.557 & 2.297 & 2.570 & 2.297 & 2.427 & 2.565 & 2.561 & 2.509 & 2.380 \\
    \hline 1,2,4-Trimethyibenzene & 4.305 & 3.289 & 3.075 & 2.782 & 2.989 & 2.855 & 2.828 & 2.906 & 2.820 & 2.770 & 2.576 \\
    \hline sec-Butylbenzene & 4.748 & 3.391 & 3.476 & 3.046 & 3.438 & 2.939 & 3.190 & 3.339 & 3.304 & 3.190 & 2.964 \\
    \hline 4-Isopropyltoluene & 4.274 & 3.071 & 2.974 & 2.663 & 2.913 & 2.600 & 2.758 & 2.921 & 2.856 & 2.810 & 2.646 \\
    \hline 1,3-Dichlorobenzene & 2.875 & 2.126 & 1.722 & 1.504 & 1.535 & 1.464 & 1.390 & 1.447 & 1.387 & 1.404 & 1.339 \\
    \hline 1,4-Dichlorobenzene & 2.875 & 2.126 & 1.722 & 1.504 & 1.535 & 1.464 & 1.390 & 1.447 & 1.387 & 1.404 & 1.339 \\
    \hline n-Butylbenzene & 4.136 & 2.765 & 2.491 & 2.193 & 2.402 & 2.149 & 2.306 & 2.472 & 2.468 & 2.418 & 2.279 \\
    \hline 1,2-Dichlorobenzene & 1.989 & 1.678 & 1.508 & 1.412 & 1.450 & 1.415 & 1.359 & 1.414 & 1.358 & 1.360 & 1.306 \\
    \hline 1,2-Dibromo-3-chloropropane & 0.052 & 0.062 & 0.071 & 0.082 & 0.120 & 0.143 & 0.145 & 0.171 & 0.172 & 0.187 & 0.182 \\
    \hline 1,2,4-Trichlorobenzene & 2.019 & 1.441 & 1.137 & 1.028 & 1.075 & 1.030 & 1.000 & 1.074 & 1.024 & 1.046 & 1.015 \\
    \hline Hexachlorobutadiene & 0.447 & 0.326 & 0.383 & 0.301 & 0.354 & 0.314 & 0.354 & 0.382 & 0.381 & 0.378 & 0.362 \\
    \hline Naphthalene & 4.923 & 3.989 & 3.497 & 3.203 & 3.521 & 3.434 & 3.293 & 3.449 & 3.276 & 3.270 & 3.120 \\
    \hline 1,2,3-Trichlorobenzene & 1.557 & 1.370 & 1.142 & 1.071 & 1.124 & 1.078 & 1.045 & 1.094 & 1.040 & 1.050 & 1.024 \\
    \hline & & & & & & & & & & & \\
    \hline Compound & Level 1 & Level 2 & Level 3 & Level 4 & Level 5 & Level 6 & Level 7 & Level 8 & Level 9 & Level & Level \\
    \hline Dibromofluoromethane & 0.216 & 0.215 & 0.213 & 0.215 & 0.218 & 0.220 & 0.222 & 0.226 & 0.227 & 0.231 & 0.231 \\
    \hline Toluene-d8 & 1.238 & 1.224 & 1.249 & 1.246 & 1.249 & 1.248 & 1.249 & 1.256 & 1.266 & 1.253 & 1.225 \\
    \hline Bromoflurorobenzene & 0.518 & 0.522 & 0.521 & 0.524 & 0.532 & 0.532 & 0.539 & 0.544 & 0.540 & 0.539 & 0.543 \\
    \hline 1,2-Dichloroethane-d4 & 0.086 & 0.085 & 0.088 & 0.088 & 0.086 & 0.087 & 0.088 & 0.088 & 0.088 & 0.087 & 0.084 \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline 2 & \[
    \left.\begin{array}{|c|}
    \hline \infty \\
    8 \\
    0 \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \left.\begin{array}{|l|}
    \hline \\
    \mathbf{8} \\
    8 \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \left|\begin{array}{c}
    \substack{0 \\
    e \\
    0 \\
    0 \\
    0}
    \end{array}\right|
    \] & \[
    \begin{array}{|c|}
    \hline 9 \\
    \hline 8 \\
    \hline \\
    0 \\
    \hline
    \end{array}
    \] & & & \[
    \left|\begin{array}{l}
    \stackrel{\rightharpoonup}{0} \\
    \hline \\
    \hline
    \end{array}\right|
    \] & \[
    \begin{aligned}
    & N \\
    & \hline \\
    & 0 \\
    & 0 \\
    & 0
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 2 \\
    & \hline 8 \\
    & \hline \\
    & 0 \\
    & 0 \\
    & 0
    \end{aligned}
    \] & & \[
    \left|\begin{array}{c}
    9 \\
    \mathbf{N} \\
    \vdots \\
    0 \\
    0
    \end{array}\right|
    \] & \[
    \left|\begin{array}{c}
    \vec{N} \\
    \mathbf{8} \\
    \mathbf{N} \\
    0
    \end{array}\right|
    \] & \begin{tabular}{|c|c}
    \(\infty\) \\
    \hline \\
    \hline \\
    0 \\
    0 \\
    \hline
    \end{tabular} & \[
    \begin{array}{|c|}
    \hline \infty \\
    \hline \\
    \hline \\
    \hline \\
    0 \\
    \hline
    \end{array}
    \] & & \begin{tabular}{c} 
    ज \\
    \hline \\
    0 \\
    0 \\
    \hline
    \end{tabular} & \begin{tabular}{l|l}
    \hline 0 \\
    \hline \\
    \hline
    \end{tabular} &  & \begin{tabular}{l}
    0 \\
    \hline 0 \\
    \hline \\
    0
    \end{tabular} & \begin{tabular}{l|l}
    \hline 0 \\
    \hline \\
    \hline
    \end{tabular} & \[
    \left|\begin{array}{c}
    \infty \\
    \mathbf{~} \\
    \mathbf{S} \\
    0 \\
    0
    \end{array}\right|
    \] & & \begin{tabular}{l|l}
    \hline 8 \\
    \hline 8 \\
    \hline
    \end{tabular} & \[
    \begin{aligned}
    & \hline 0 \\
    & \hline ⿴ 囗 ⿰ ⿺ 乚 一 \\
    & \hline \\
    & 0 \\
    & \hline
    \end{aligned}
    \] & & & ［ \\
    \hline かo প & & & & & \(\stackrel{\rightharpoonup}{\circ}\) & N & & & & \(\stackrel{0}{6}\) & & & & & \(\stackrel{\square}{\circ}\) & & & & & & & \(\stackrel{N}{N}\) & & & \(\stackrel{\square}{\square}\) & \(\stackrel{\square}{\text { F }}\) & \\
    \hline  & & & & & \(\stackrel{\square}{\square}\) & \(\stackrel{N}{N}\) & & & & N & & & & & 通 & & & & & & & \(\stackrel{0}{\text { F }}\) & & & O & \(\stackrel{i}{5}\) & \\
    \hline \(\xrightarrow{\text { ¢ }}\) & \[
    \left.\begin{array}{|c}
    \underset{\sim}{v} \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \left.\begin{array}{|c|}
    \hline 0 \\
    0 \\
    0 \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \left. \right\rvert\,
    \] & \[
    \left.\begin{array}{|c|}
    \hline 0 \\
    0 \\
    0 \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \begin{array}{|c|}
    \hline \\
    寸 \\
    i
    \end{array}
    \] & \[
    \left.\begin{array}{|l|}
    \hline 9 \\
    8 \\
    6 \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \begin{gathered}
    \underset{N}{N} \\
    \underset{o}{2}
    \end{gathered}
    \] & |c| & \[
    \left\lvert\, \begin{gathered}
    8 \\
    \substack{8 \\
    \vdots \\
    i}
    \end{gathered}\right.
    \] & \[
    \left|\begin{array}{c}
    \infty \\
    \infty \\
    0 \\
    0
    \end{array}\right|
    \] & \[
    \begin{gathered}
    0 \\
    \underset{\sim}{0} \\
    \underset{O}{2}
    \end{gathered}
    \] & \[
    \begin{array}{|c|}
    \hline \stackrel{N}{N} \\
    \underset{N}{N}
    \end{array}
    \] & \[
    \begin{array}{|c}
    \stackrel{\rightharpoonup}{\infty} \\
    \stackrel{n}{r} \\
    \hline
    \end{array}
    \] & \[
    \begin{aligned}
    & \overline{\mathbf{j}} \\
    & \dot{N}
    \end{aligned}
    \] & \[
    \left\lvert\, \begin{gathered}
    \underset{\sim}{\sim} \\
    \underset{\sim}{2}
    \end{gathered}\right.
    \] & \[
    \begin{array}{|c|}
    \overline{\mathrm{O}} \\
    \underset{\sim}{\mathrm{~N}}
    \end{array}
    \] & \[
    \begin{array}{|c|}
    \hline \boldsymbol{N} \\
    \underset{N}{2}
    \end{array}
    \] &  & \[
    \begin{array}{|c}
    \stackrel{N}{e} \\
    \underset{\sim}{n}
    \end{array}
    \] & \[
    \stackrel{N}{M}
    \] & N & \[
    \begin{aligned}
    & \mathrm{N} \\
    & \mathrm{~N} \\
    & \stackrel{1}{2}
    \end{aligned}
    \] & \[
    \frac{8}{8}
    \] & \[
    \begin{aligned}
    & \hline 8 \\
    & \hline \\
    & 0 \\
    & 0
    \end{aligned}
    \] & ch & － & N \\
    \hline ভِ & \[
    \left|\begin{array}{l}
    \tilde{\gamma} \\
    \dot{0} \\
    \dot{0}
    \end{array}\right|
    \] & \[
    \left|\begin{array}{l}
    8 \\
    8 \\
    0
    \end{array}\right|
    \] & \[
    \left|\begin{array}{c}
    \infty \\
    \mathbf{N} \\
    0
    \end{array}\right|
    \] & \[
    \begin{array}{|l|}
    \hline N \\
    \hat{N} \\
    0 \\
    0
    \end{array}
    \] & \[
    \left.\begin{array}{|c|}
    \hline 8 \\
    0 \\
    \vdots
    \end{array} \right\rvert\,
    \] & \[
    \begin{array}{|c|}
    \hline 9 \\
    \vdots \\
    0 \\
    \hline
    \end{array}
    \] & \[
    \stackrel{\underset{N}{N}}{\substack{2}}
    \] & \[
    \left\lvert\, \begin{gathered}
    8 \\
    \underset{N}{2} \\
    \hline
    \end{gathered}\right.
    \] &  & \[
    \left.\begin{gathered}
    \infty \\
    \hline \\
    \infty \\
    0
    \end{gathered} \right\rvert\,
    \] & \[
    \left\lvert\, \begin{aligned}
    & \frac{\sigma}{2} \\
    & \overline{0}
    \end{aligned}\right.
    \] & \[
    \left.\begin{aligned}
    & \hline 8 \\
    & \underset{\sim}{2} \\
    & \mathrm{~N}
    \end{aligned} \right\rvert\,
    \] & \[
    \begin{aligned}
    & \hline \\
    & 0 \\
    & 0 \\
    & -
    \end{aligned}
    \] & \[
    \begin{array}{|l|}
    \hline 0 \\
    0 \\
    \mathrm{~N}
    \end{array}
    \] & \[
    \left|\begin{array}{l}
    \stackrel{\sim}{\sim} \\
    \underset{\sim}{j}
    \end{array}\right|
    \] & \[
    \begin{aligned}
    & \mathrm{N} \\
    & \underset{\sim}{\mathrm{~N}}
    \end{aligned}
    \] & \begin{tabular}{l}
    0 \\
    0 \\
    \multirow{2}{*}{} \\
    \multirow{2}{*}{}
    \end{tabular} &  & \[
    \frac{m}{m}
    \] & \[
    \frac{m}{m}
    \] & \[
    \begin{array}{|c|}
    \hline \infty \\
    \infty \\
    0 \\
    \text { Ni }
    \end{array}
    \] & \[
    \begin{aligned}
    & \underset{\sim}{2} \\
    & \underset{r}{ }
    \end{aligned}
    \] & \[
    \overline{9}
    \] & 8 & －0 & N & － \\
    \hline ভ &  & \[
    \left.\begin{array}{|l|}
    \hline 8 \\
    8 \\
    0 \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \left.\begin{array}{|c|}
    \hline 0 \\
    \underset{\sim}{0} \\
    0
    \end{array} \right\rvert\,
    \] & \[
    \begin{array}{|c|}
    \hline \dot{\partial} \\
    \hline
    \end{array}
    \] & \[
    \begin{array}{|c}
    \mathbf{N} \\
    \mathbf{y} \\
    \mathbf{N}
    \end{array}
    \] & \[
    \left|\begin{array}{l}
    \infty \\
    0 \\
    0 \\
    0 \\
    0
    \end{array}\right|
    \] & \[
    \begin{aligned}
    & 0 \\
    & \\
    & \hline
    \end{aligned}
    \] & \[
    \begin{array}{|c|}
    \hline 0 \\
    m \\
    0 \\
    \hline
    \end{array}
    \] &  & \[
    \begin{aligned}
    & n \\
    & \infty \\
    & 0 \\
    & 0
    \end{aligned}
    \] & \[
    \underset{o}{\tilde{o}}
    \] & \[
    \left|\begin{array}{c}
    \mathbf{U} \\
    0 \\
    \mathbf{~}
    \end{array}\right|
    \] & \[
    \left\lvert\, \begin{aligned}
    & \bar{\infty} \\
    & 0 \\
    & \text { 人 }
    \end{aligned}\right.
    \] & \[
    \begin{gathered}
    N \\
    \stackrel{N}{N}
    \end{gathered}
    \] & \[
    \begin{gathered}
    \mathbb{N} \\
    \stackrel{0}{\mathrm{~N}}
    \end{gathered}
    \] & \[
    \begin{array}{|c}
    \vec{\rightharpoonup} \\
    \underset{N}{N}
    \end{array}
    \] & \[
    \begin{aligned}
    & \stackrel{\rightharpoonup}{\mathrm{C}} \\
    & \mathrm{~N} \\
    & \mathrm{~m}
    \end{aligned}
    \] &  & \[
    \stackrel{\sim}{\sim}
    \] & \[
    \left.\begin{array}{|c}
    \stackrel{\sim}{N} \\
    \underset{\sim}{2}
    \end{array} \right\rvert\,
    \] & \[
    \begin{aligned}
    & \hat{N} \\
    & \underset{N}{\mathrm{~N}}
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 8 \\
    & \stackrel{8}{4}
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 0 \\
    & \cdots \\
    & 0
    \end{aligned}
    \] & \(\stackrel{\infty}{\circ}\) & O & \(\stackrel{-}{\infty}\) & － \\
    \hline 0
    0
    0
    0
    0
    0
    0
    0 &  &  &  &  & 0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0 & Bromobenzene &  &  &  &  &  &  &  &  &  &  & 0
    \(\stackrel{0}{0}\)
    0
    0
    0
    2
    \(\vdots\)
    0
    0
    0
    0
    0
    0 &  &  &  &  & \begin{tabular}{c}
    0 \\
    0 \\
    0 \\
    0 \\
    0 \\
    0 \\
    0 \\
    0 \\
    0 \\
    \hline 1 \\
    \hline 0 \\
    \hline \\
    \hline
    \end{tabular} &  &  &  & \[
    \begin{gathered}
    \frac{0}{\frac{0}{0}} \\
    \frac{0}{\pi} \\
    \frac{c}{2} \\
    \frac{2}{2} \\
    \frac{\pi}{2}
    \end{gathered}
    \] &  \\
    \hline
    \end{tabular}
    

    Quantify Sample Summary Report
    Sample List: C: \TurboMass \(\backslash\) T020117 B1700152.PRO\SampleDB\8260 water 01-26-17 B17-00152 Last modified: Wed Feb 01 13:31:42 2017 Last modified: Wed Feb 01 13:23:36 2017 Job Code:

    Printed: Thu Feb 02 07:54:45 2017

    Sample ID: 01-26-17 B17-00152 ccv ars16-122001
    
    
    

    M
    \(\underset{N}{N}\)
    \(\underset{N}{N}\)
    \(N\)
    
    
    
    \(\underset{\sim}{18}\)
    
    
    
    
    
    Name
    Chlorobenzene-d
    1,4-Dichlorobenzene-
    Dibromofluoromethane
    Toluene-d8
    Bromoflurorobenzene
    1,2-Dichloroethane-d
    Chloromethane
    Vinyl Chloride
    Bromomethane
    Trichlorofluorometha
    1,1-Dichloroethene
    әртғ七nsṭ uoqxep
    Acrolein
    
    Methyl Tert-butyl Et
    Methylene Chloride
    trans-1, 2 Dichloroet
    Acrylonitrile
    Acrylonitrile
    1,1 , -Dichloroethane
    chloroprene
    2,2,-Dichloropropane
    2-Butanone
    Propionitrile
    Bromochloromethane
    Chloroform
    Carbon tetrachloride
    1,1,1-Trichloroethan
    1,1-Dichloropropene
    Methacrylonitrile
    1,2-Dichloroethane
    1,2-Dichloroprop
    Bromodichloromethane Dibromomethane
    
    Quantify Sample Summary Report
    Sample List: C: \TurboMass \(\backslash\) T020117 B1700152. PRO\SampleDB \(\backslash 8260\) water 01-26-17 B17-00152
    Last modified: Wed Feb 01 13:31:42 2017
    Method: \(\quad\) C: \TurboMass \T020117 B1700152.PRO\MethDB\8260b water 01-26-2017 B17-00152 Last modified: Wed Feb 01 13:23:36 2017
    Job Code:
    Printed: Thu Feb 02 07:54:45 2017
    Sample Name: 01-26-17 B17-00152 ccv ars16-122001 Sample ID: 01-26-17 B17-00152 ccv ars16-122001
    
    
    
    
     に
    2-Chloroethyl Vinyl
    cis-1,3-Dichloroprop
    trans-1,3-Dichloropr 1,1,2-Trichloroethan
    Chlorodibromomethane
    1,3-Dichloropropane
    Ethylbenzene Chiorobenzene
    m, p-Xylene
    Bromoform
    4 -Methyl-2-pentanone
    4-Methyl-2
    2 -Hexanone
    Styrene
    Isopropylbene
    cis-1,4-dichloro-2-b
    trans-1,4-dichloro-2
    n-Propylbenzene
    1, 1,2,2-Tetrachloropa
    1,3,5-trimethylbenze
    2-Chlorotoluene
    2-Chlorotoluene
    tert-Butylbenzene
    1,2,4-Trimethylbenze
    sec-Butylbenzene
    4-Isopropyltoluene
    1,3-Dichlorobenzene
    n-Butylbenzene
    1,2-Dichlorobenzene
    1,2-Dibromo-3-chloro
    1,2,4-Trichlorobenze
    Hexachlorobutadiene
    Naphthalene
    206 of 292
    Quantify Sample Summary Report
    Sample List：C：\Turbomass \(\backslash\) T020117 B1700152．PRO\SampleDB \(\backslash 8260\) water 01－26－17 B17－00152
    Method：C：\TurboMass \T020117 B1700152．PRO\MethDB\8260b water 01－26－2017 B17－00152 Last modified：Wed Feb 01 13：23：36 2017
    Job Code：
    Printed：Thu Feb 02 07：54：45 2017
    Sample Name：01－26－17 B17－00152 ib1kl Sample ID：01－26－17 B17－00152 iblkl
    \begin{tabular}{|c|c|c|}
    \hline \begin{tabular}{l}
     \\
    
    \end{tabular} &  ○OOOOOOOMNOON &  －000000 írí \\
    \hline \begin{tabular}{l}
     \\
     \\
     \\
    
    \end{tabular} &  & \begin{tabular}{l}
     \\
    
    \end{tabular} \\
    \hline \begin{tabular}{l}
     \\
     \\
     त○ \\
    
    \end{tabular} &  &  \\
    \hline  － & \begin{tabular}{l}
    のみのみのののみののにレのかの \\
     \\
    
    \end{tabular} & \begin{tabular}{l}
    onoonoonoon \\
     mmにNのNrmo60
    \end{tabular} \\
    \hline ＋romin \(\infty\) mooonnतrnr & HNHNNNNNNmmmmmm &  \\
    \hline
    \end{tabular}

    \footnotetext{
    Name
    Fluor
    Chlorobenzene－d5
    Dibromofluoromethane
    Toluene－d8
    Bromoflurorobenzene 1，2－Dichloroethane－d
    Dichlorodifluorometh

    Chloromethane
    Vinyl Chloride
    Bromomethane
    Trichlorofluorometha
    1，1－Dichloroethene
    Carbon disulfide
    Iodomethane
    Allyl Chloride
    Methyl Tert－butyl Et
    Methylene Chloride
    trans－1，2 Dichloroet
    Acetone
    1，1，－Dichloroethane
    cis－1， －Dichloroeth Cis－1， 2, －Dichloroeth
    \(2,2,-\) Dichloropropane

    Bu
    Propionitrile
    Carbon tetrachloride
    Vinyl Acetate
    1，1－Dichloropropene
    Methacrylonitrile
    Trichloroethene
    1，2－Dichloropropane
    ，Bromodichloromethane
    
    Dibromomethane
    1，4－Dioxane
    } Last modif
    Printed: Thu Feb 02 07:54:45 2017
    Sample ID: 01-26-17 B17-00152 ib1kl
    Thu Feb 02 07:54:45 2017

    \footnotetext{
    
     Name
    2-Chloroethyl Vinyl
    cis-1,3-Dichloroprop
    Toluene
    trans-1,3-Dichloropr
    1,1,2-Trichloroethan
    Ethyl methacrylate
    Tetrachloroethene
    Chlorodibromomethane
    1,3-Dichloropropane
    1,2-Dibromoethane
    Ethylbenzene
    1,1,1,2-Tetrachloroe
    Chlorobenzene
    m, p-Xylene
    o-Xylene
    Bromoform
    4-Methyl-2-pentanone
    \(2-H e x a n o n e\)
    Styrene
    Isopropylbenzene
    Bromobenzene
    cis-1,4-dichloro-2-b
    trans-1,4-dichloro-2
    n-Propylbenzene
    \(1,1,2,2-T e t r a c h l o r o e ~\)
    \(1,2,3-T r i c h l o r o p r o p a ~\)
    \(1,3,5-t r i m e t h y l b e n z e ~\) 2-Chlorotoluene
    }

    Quantify Sample Summary Report
    Sample List：C：\TurboMass \T020117 B1700152．PRO\SampleDB\8260 water 01－26－17 B17－00152 \(\begin{array}{lll}\text { Last modified：Wed Feb 01 13：31：42 } 2017 \\ \text { Method：} & \text { C：\TurboMass } \backslash \text { T020117 B1700152．PRO\MethDB } \backslash 8260 b \text { water 01－26－2017 B17－00152 }\end{array}\) Last modified：Wed Feb 01 13：23：36 2017
    Job Code：

    Printed：Thu Feb 02 07：54：45 2017

    Sample ID：01－26－17 B17－00152 LCS ars16－122001
    
    

    Height
    61244636
    49612604
    46
    0
    \(y^{2}\)
    1
    1
    0
    o
    子
    34074076
    
    
    4419760
    10006612
    10006612
    16671139
    
    
    \(\infty\)
    \(N_{0}\)
    \(\infty\)
    0
    \(\sim\)
    \(\sim\)
    0
    \(\cdots\)
    \(\cdots\)
    
    
    
    
    
    
    \(\circ\)
    8
    0
    0
    0
    0
    0
    \(\sim\)
    7304257
    
    
    
    
    66
    \(\gamma_{1}\)
    0
    -1
    -1
    \(\infty\)
    \(\infty\)
    0
    0
    N
    N
    

    16754649
    16754649
    18914656
    60429584 60429584
    12328551 12328551
    20780500
    
    
    
    
    
    우N
    432162
    
    
    
    のनmफだ
    のの
    
    

    \section*{范}

    Fluorobenzene
    1，4－Dichlorobenzene－
    Toluene－d8
    Bromoflurorobenzene
    1，2－Dichloroethane－d
    Chloromethane
    Vinyl Chloride
    Bromomethane
    Chloroethane
    Trichlorofluorometha
    l，1－Dichloroethene
    1，1－Dichloroethene
    Carbon disulfide
    Iodomethane
    Acrolein
    Allyl Chloride
    Methyl Tert－butyl Et
    Methylene Chloride
    trans－1，2 Dichloroet
    Acetone
    Acetone
    1，1，－Dichloroethane
    Chloroprene
    Chloroprene
    2，2，－Dichloropropane
    2－Butanone
    Propionitrile
    Bromochloromethane
    Chloroform
    Carbon tetrachloride
    Vinyl Acetate
    1，1，1－Trichloroethan
    1，1，1－Dichloropropene
    Methacrylonitrile
    \(\mathrm{O}_{1}\) ，2－Dichloroethane
    \({ }^{0}\) Trichloroethene
    OBromodichloromethane
    1，4－Dioxane
     Method:
    Last modified: Wed Feb 01 13:23:36 2017

    Printed: Thu Feb 02 07:54:45 2017

    Sample ID: 01-26-17 B17-00152 LCS ars16-122001

    Sample Name: 01-26-17 B17-00152 LCS ars16-122001
    
    
    
    
    的
    
    Name
    2-Chloroethyl Vinyl
    cis-1,3-Dichloroprop
    trans-1,3-Dichloropr 1,1,2-Trichloroethan
    Ethyl methacrylate Tetrachloroethene Chlorodibromomethane 1,3-Dichloropropane
    1,1,1,2-Tetrachloroe Chlorobenzene
    o-xylene
    4-Methyl-2-pentanone 2-Hexanone
    Isopropylbenzene
    Bromobenzene
    cis-1,4-dichloro-2-b
    trans-1, \(n\)-Propylbenzene
    1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa
    2-Chlorotoluene
    1,2,4-Trimethylbenze
    sec-Butylbenzene
    1,3-Dichlorobenzene
    1,3-Dichlorobenzene
    n-Butylbenzene
     ,2,4-Trichlorobenze daphthalene
    4,2,3-Trichlorobenze
    Quantify Sample Summary Report
    Sample List：C：\TurboMass \T020117 B1700152．PRO\Samp1eDB\8260 water 01－26－17 B17－00152 Last modified：Wed Feb 01 13：31：42 2017
    \(\begin{array}{ll}\text { Method：} & \text { C：\TurboMass } \backslash \text { T020117 B1700152．PRO\MethDB } \backslash 8260 \mathrm{~b} \text { water 01－26－2017 B17－00152 } \\ \text { Last modified：Wed Feb 01 13：23：36 } 2017\end{array}\) Job Code：
    Printed：Thu Feb 02 07：54：45 2017
    Sample Name：01－26－17 B17－00152 LCSD ars16－122001 Sample ID：01－26－17 B17－00152 LCSD ars16－122001
    
    
    
    
    
    \begin{tabular}{|c|c|c|}
    \hline \begin{tabular}{l}
     \\
     \\
     \\
    
    \end{tabular} & \begin{tabular}{l}
     \\
     M mन \\
    
    \end{tabular} & \begin{tabular}{l}
     にた内人 \\
     \\
     \\
     \\
    
    \end{tabular} \\
    \hline \begin{tabular}{l}
     \\
    名 － \\
    은
    \end{tabular} & \begin{tabular}{l}
     \\
     \\
     \\
    
    \end{tabular} & \begin{tabular}{l}
     \\
     \\
     \\
    
    \end{tabular} \\
    \hline
    \end{tabular}
    
    
    
    Name Fluorobenzene
    1，4－Dichlorobenzene－ Dibromoflu
    Bromoflurorobenzene
    1，2－Dichloroethane－d
    Chloromethane
    Vinyl Chloride
    Cromomethane
    Trichlorofluorometha
    1，1－Dichloroethene
    Carbon disulfide
    Iodomethane
    
    Allyl Chloride
    Methyl Tert－but
    Methyl Tert－butyl Et
    Methylene Chloride
    trans－1，2 Dichloroet
    Acrylonitrile
    1，1，－Dichloroethane
    
    cis－1，2，－Dichloroeth
    \(2,2,-\) Dichloropropane
    2－Butanone
    Bromochloromethane
    Chloroform
    Carbon tetrachloride
    Vinyl Acetate
    1，1，1－Trichloroethan
    1，1－Dichloropropene
    Benzene
    Methacrylonitrile
    Trichloroethene
     Methyl methacrylate
    1，4－Dioxane
    11 of 292
    Quantify Sample Summary Report
    Sample List: C: \TurboMass \T020117 B1700152. PRO\SampleDB\8260 water 01-26-17 B17-00152 Method:
    Job Code:
    Printed:
    Sample ID: 01-26-17 B17-00152 LCSD ars16-122001
    
    
    
    
    
    

    \footnotetext{
    Name 2 -Chloroethyl Vinyl
    cis-1,3-Dichloroprop
    Toluene 3 -Dichloropr 1,1,2-Trichloroethan
    Ethyl methacrylate

    Ethyl methacrylate
    Chlorodibromomethane
    1,3-Dichloropropane
    1,2-Dibromoethane
    1,1,1,2-Tetrachloroe
    Chlorobenzene
    
    Bromoform
    4 -Methyl-2-pentanone 2 -Mexanone

    Styrene
    Bromobenzene - -b
    cis-1,4-dichloro-2-b
    trans-1, 4-dichloro-2
    n-Propylbenzene
    1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa

    1,3,5-trimethyl
    -Chlorotoluene
    tert-Butylbenzene
    1,2,4-Trimethylbe
    sec-Butylbenzene
    4-Isopropyltoluene
    
    

    1,2-Dichlorobenzene
    A, 1,4-Trichlorobenze
    
    
    }

    Quantify Sample Summary Report
    Sample List: C:\TurboMass \T020117 B1700152.PRO\SampleDB\8260 water 01-26-17 B17-00152
    Last modified: Wed Feb 01 13:31:42 2017 , P Last modified: Wed Feb 01 13:23:36 2017
    Job Code:

    Printed: Thu Feb 02 07:54:45 2017
    Printed:
    \begin{tabular}{|c|c|c|}
    \hline Area & Height & ug/L! \\
    \hline 2041166 & 61084036 & 50.00 \\
    \hline 1563942 & 47616844 & 50.00 \\
    \hline 847077 & 31494920 & 50.00 \\
    \hline 377641 & 11015986 & 41.28 \\
    \hline 2114857 & 64419268 & 54.72 \\
    \hline 894753 & 29534808 & 53.12 \\
    \hline 143834 & 4319896 & 53.57 \\
    \hline 705 & 27048 & 1.69 \\
    \hline 1986 & 66454 & 0.34 \\
    \hline 626 & 24450 & 0.05 \\
    \hline 1076 & 38459 & 0.00 \\
    \hline 96 & 3874 & 0.02 \\
    \hline 672 & 25766 & 0.00 \\
    \hline 268 & 10677 & 0.04 \\
    \hline 9764 & 335052 & 0.92 \\
    \hline 341 & 12294 & 1.41 \\
    \hline 8 & 320 & 0.00 \\
    \hline 28 & 1114 & 0.00 \\
    \hline 717 & 28571 & 0.00 \\
    \hline 1493 & 55618 & 0.17 \\
    \hline 20935 & 619442 & 10.96 \\
    \hline 56 & 2159 & 0.43 \\
    \hline 177 & 5845 & 0.01 \\
    \hline 955 & 32860 & 0.06 \\
    \hline 373 & 14149 & 0.03 \\
    \hline 20 & 889 & 0.00 \\
    \hline 13 & 817 & 1.70 \\
    \hline 1 & 268 & 2.00 \\
    \hline 0 & 0 & 0.14 \\
    \hline 100 & 3211 & 0.01 \\
    \hline 11 & 641 & 2.55 \\
    \hline 47 & 1957 & 0.00 \\
    \hline 1749 & 58296 & 0.13 \\
    \hline 1585 & 54710 & 0.00 \\
    \hline 119 & 2742 & 0.01 \\
    \hline 65 & 2487 & 0.00 \\
    \hline 1143 & 39932 & 0.00 \\
    \hline 27 & 1203 & 0.00 \\
    \hline 14 & 629 & 1.98 \\
    \hline 74 & 2488 & 1.59 \\
    \hline 3 & 0 & 0.00 \\
    \hline 13 & 535 & 1.84 \\
    \hline
    \end{tabular}
    
    
    
     1,1,1-Trichloroethan
    1,1-Dichloropropene
    Benzene Methacrylonitrile N1,2-Dichloroethane

    N1,2-Dichloropropane Promodichloromethane
    Methyl methacrylate

    Dibromomethane
    1,4-Dioxane
    Sample List: C: \(\backslash\) TurboMass \(\backslash\) T020117 B1700152.PRO\Samp1eDB \(\backslash 8260\) water 01-26-17 B17-00152
    Last modified: Wed Feb 01 13:31:42 2017 \(\begin{array}{lll}\text { Method: } & \text { C: } \backslash \text { TurboMass } \backslash \text { T020117 } & \text { B17 } \\ \text { Last modified: }\end{array}\) Job Code:
    Printed: Thu Feb 02 07:54:45 2017
    Samp1e ID: 01-26-17 B17-00152 (001)
    
    
    
    
    
    Name
    2-Chloroethyl Vinyl
    cis-1,3-Dichloroprop
    Toluene
    trans-1,3-Dichloropr
    \(1,1,2-T r i c h l o r o e t h a n ~\)
    Ethyl metharylate
    Tetrachloroethene
    Chlorodibromomethane
    1,3-Dichloropropane
    1,2-Dibromoethane
    Ethylbenzene
    \(1,1,1,2-T e t r a c h l o r o e ~\)
    Chlorobenzene
    m,p-Xylene
    o-Xylene
    Bromoform
    \(4-\) Methyl-2-pentanone
    2-Hexanone
    Styrene
    Isopropylbenzene
    Bromobenzene
    cis-1,4-dichloro-2-b
    trans-1,4-dichloro-2
    n-Propylbenzene
    \(1,1,2,2-T e t r a c h l o r o e ~\)
    \(1,2,3-T r i c h l o r o p r o p a ~\)
    \(1,3,5-t r i m e t h y l b e n z e ~\)
    Quantify Sample Summary Report
    Sample List: C: \TurboMass \(\backslash\) T020117 B1700152. PRO\SampleDB\8260 water 01-26-17 B17-00152
    Last modified: Wed Feb 01 13:31:42 2017 Last modified: Wed Feb \(C\) C: TurboMass\T020117 B17 Last modified: Wed Feb 01 13:23:36 2017
    Job Code:
    Printed: Thu Feb 02 07:54:45 2017
    Sample Name: 01-26-17 B17-00152 (002)
    Name
    Fluor
    Fluorobenzene
    1,4-Dichlorobenzene-
    Dibromofluoromethane
    Tolvene-d8
    Bromof lurorobenzene Dichlorodifluorometh Chloromethane
    Bromomethane
    Chloroethane
    Trichlorofluorometha
    1,1-Dichloroethene
    Carbon disulfide
    Iodomethane
    Acrolein
    Allyl Chloride
    Methyl Tert-butyl Et
    Methyl Tert-butyl Et
    Methylene Chloride
    trans-1,2 Dichloroet 2.109
    Acetone
    Acrylonitrile
    1, 1 , -Dichloroethane
    Chloroprene
    cis-1,2,-Dichloroeth 2,2,-Dichloropropane
    2-Butanone
    Propionitril
    Bromochloromethane
    Chloroform
    Vinyl Acetate
    1,1,1-Trichloroethan
    1,1-Dichloropropene
    Benzene
    NMethacrylonitrile
    ज 1,2 -Dichloroethane
    OTrichloroethene OBromodichloromethane Mromodichloromethane
    Methyl methacrylate Dibromomethane
    1,4-Dioxane

    Quantify Sample Summary Report
    Sample List: C:\TurboMass\T020117 B1700152.PRO\SampleDB\8260 water 01-26-17 B17-00152
    Last modified: Wed Feb 01 13:31:42 2017 Last modified: Wed Feb 01 13:31:42 2017 Last modified: Wed Feb 01 13:23:36 2017 Job Code:

    Printed:

    Sample Name: 01-26-17 B17-00152 (002) Sample ID: 01-26-17 B17-00152 (002)
    Name
    2 -Chloroethyl Vinyl
    
    
    cis-1,3-Dichloroprop
    Toluene
    trans-1,3-Dichloropr
    1,1,2-Trichloroethan
    Ethyl methacrylate
    Tetrachloroethene 1,3-Dichloropropane

    1,2-Dibromoethane
    1,1,1,2-Tetrachloroe chlorobenzene m, p-Xylene

    4-Methyl-2-pentanone 4-Methyl

    Isopropylbenzene
    Bromobenzene
    trans-1,4-dichlo
    1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa

    Chlorotoluene
    4-Chlorotoluene
    tert-Butylbenzene
    sec-Butylbenzene
    4-Isopropyltoluene
    1,3-Dichlorobenzene
    1,3-Dichlorobenzene
    n-Butylbenzene
    \(\mathrm{N}^{1}, 2\)-Dichlorobenzene
    \(\mathrm{m}^{1,2-D i b r o m o-3-c h l o r o ~}\) \(\mathrm{A}^{1,2} 2\)-Dibromo-3-chioro
    1,2,4-Trichlorobenze Hexachlorobutadiene Naphthalene
    Quantify Sample Summary Report
    Sample List: C: \(\backslash\) TurboMass \(\backslash\) T020117
    Last modified: Wed Feb 01 13:31:42 2017
    Method: C: \TurboMass \(\backslash\) T020117 B1700152.PRO\MethDB\8260b water 01-26-2017 B17-00152 Last modified: Wed Feb 01 13:23:36 2017
    Job Code:
    Printed: Thu Feb 02 07:54:45 2017
    Sample Name: 01-26-17 B17-00152 (003) Sample ID: 01-26-17 B17-00152 (003)
    
    
    
    
    \begin{tabular}{|c|c|}
    \hline Name & RT \\
    \hline Fluorobenzene & 4.105 \\
    \hline Chlorobenzene-d5 & 7.371 \\
    \hline 1,4-Dichlorobenzene- & 9.862 \\
    \hline Dibromofluoromethane & 3.405 \\
    \hline Toluene-d8 & 5.670 \\
    \hline Bromoflurorobenzene & 8.867 \\
    \hline 1,2-Dichloroethane-d & 3.845 \\
    \hline Dichlorodifluorometh & 0.849 \\
    \hline Chloromethane & 0.959 \\
    \hline Vinyl Chloride & 0.989 \\
    \hline Bromomethane & 1.164 \\
    \hline Chloroethane & 1.234 \\
    \hline Trichlorofluorometh & 1.299 \\
    \hline 1,1-Dichloroethene & 1.569 \\
    \hline Carbon disulfide & 1.604 \\
    \hline Iodomethane & 1.684 \\
    \hline \multicolumn{2}{|l|}{Acrolein} \\
    \hline Allyl Chloride & 1.914 \\
    \hline Methyl Tert-butyl Et & 2.249 \\
    \hline Methylene Chloride & 1.989 \\
    \hline trans-1.2 Dichloroet & 2.104 \\
    \hline Acetone & 2.069 \\
    \hline Acrylonitrile & 2.639 \\
    \hline 1,1,-Dichloroethane & 2.569 \\
    \hline Chloroprene & 2.559 \\
    \hline cis-1,2,-Dichloroeth & 3.009 \\
    \hline 2,2,-Dichloropropane & 3.074 \\
    \hline 2-Butanone & 3.565 \\
    \hline Propionitrile & 3.740 \\
    \hline Bromochloromethane & 3.134 \\
    \hline Chloroform & 3.254 \\
    \hline Carbon tetrachloride & 3.279 \\
    \hline \multicolumn{2}{|l|}{Vinyl Acetate} \\
    \hline 1,1,1-Trichloroethan & 3.400 \\
    \hline 1,1-Dichloropropene & 3.390 \\
    \hline Benzene & 3.715 \\
    \hline Methacrylonitrile & 3.810 \\
    \hline N1, 2-Dichloroethane & 3.855 \\
    \hline \(\checkmark\) Trichloroethene & 4.255 \\
    \hline O1,2-Dichloropropane & 4.740 \\
    \hline NBromodichloromethane & 4.840 \\
    \hline NMethyl methacrylate & 5.065 \\
    \hline Dibromomethane & 4.650 \\
    \hline 1.4-Dioxane & 5.065 \\
    \hline
    \end{tabular}
    Quantify Sample Summary Report
    Sample List: C: \TurboMass \T020117 B1700152.PRO\SampleDB\8260 water 01-26-17 B17-00152 Method: C: \Turbomass \T020117 B1700152.PRO\MethDB\8260b water 01-26-2017 B17-00152 Last modified: Wed Feb 01 13:23:36 2017
    Job Code:
    Printed: Thu Feb 02 07:54:45 2017
    Sample Name: 01-26-17 B17-00152 (003) Sample ID: 01-26-17 B17-00152 (003)
    
    
    
    
    
    
    Name
    2-Chloroethyl Vinyl
    cis-1,3-Dichloroprop
    Toluene
    trans-1,3-Dichloropr
    1,1,2-Trichloroethan
    Ethyl methacrylate
    Tetrachloroethene
    Chlorodibromomethane
    1,3-Dichloropropane
    1,2-Dibromoethane
    Ethylbenzene
    1,1,1,2-Tetrachloroe
    Chlorobenzene
    m,p-Xylene
    o-Xylene
    Bromoform
    4-Methyl-2-pentanone
    2-Hexanone
    Styrene
    Isopropylbenzene
    Bromobenzene
    cis-1, 4-dichloro-2-b
    trans-1,4-dichloro-2
    n-Propylbenzene
    \(1,1,2,2\)-Tetrachloroe
    \(1,2,3-T r i c h l o r o p r o p a ~\)
    \(1,3,5-t r i m e t h y l b e n z e ~\)Quantify Sample Summary Report
    Sample List: C:\TurboMass\T020117 B1700152.PRO\Samp1eDB\8260 water 01-26-17 B17-00152
     Last modified: Wed Feb 01 13:23:36 2017
    Job Code:
    Printed: Thu Feb 02 07:54:45 2017
    Sample Name: 01-26-17 B17-00152 iblk2 Sample ID: 01-26-17 B17-00152 ib1k2
    
    
    
    
     Methyl Tert-butyl Et Methylene Chloride
    trans-1,2 Dichloroet trans-1,
    Acrylonitrile Chloroprene cis-1,2,-Dichoropane
    -Butanone
    Bromochloromethane
    Chloroform
    Carbon tetrachloride
    Vinyl Acetate
    Vinyl Acetate
    1,1,1-Trichloroethan
    1,l-Dichloropropene
    Methacrylonitrile
    N1,2-Dichloroethane
    
    
    әтетКх๖ечұәш โКч7әผ
    Dibromomethane
    1,4-Dioxane

    Sample ID: 01-26-17 B17-00152 ib1k2
    Printed: Thu Feb 02 07:54:45 2017
    Sample Name: 01-26-17 B17-00152 iblk2

    Sample List: C:\TurboMass\T020117 B1700152.PRO\SampleDB\8260 water 01-26-17 B17-00152
    Method: \(\quad\) C: \TurboMass \(\backslash\) T020117 B1700152.PRO\MethDB \(\backslash 8260\) b water 01-26-2017 B17-00152
    Last modi

    \section*{先}
    
    
    2-Chloroethyl Vinyl
    cis-1,3-Dichloroprop
    trans-1,3-Dichloropr 1, 1,2-Trichloroethan

    Ethyl methacrylate Chlorodibromomethane 1,3-Dichloropropane
    1,2-Dibromoethane

    1,2-Dibromoethane
    1, 1, 1,2-Tetrachloroe Chlorobenzene m, p-Xylene
    o-xylene
    o-Xylene
    Bromoform
    4-Methyl-2-pentanone 2-Hexanone

    Isopropylbenzene
    Bromobenzene cis-1,4-dichloro-2-b
    trans-1,4-dichloro-2
    n-Propylbenzene
    1,1,2,2-retrachloroe
    1,3,5-trimethylbenze
    -Chlorotoluene
    tert-Butylbenzene
    
    4-Isopropyltoluene
    1,3-Dichlorobenzene
    
    N1,2-Dichlorobenzene 1,2,4-Trichlorobenze \({ }_{0}\) Hexachlorobutadiene

    \footnotetext{
    1,2,3-Trichlorobenze
    }
    SB\8260b water 01-26-2017 B17-00152
    
    Printed: Thu Feb 02 07:54:45 2017
    \(\begin{array}{ll}\text { Sample List: } & \text { C: \TurboMass } \backslash \text { T020117 } \\ \text { Last modified: } & \text { Wed Feb 01 13:31:42 } 2017 \\ \text { Method: } & \text { C: \TurboMass } \backslash \text { T020117 } \\ \text { B170 } \\ \text { Last modified: } & \text { Wed Feb 01 } 13: 23: 362017 \\ \text { Job Code: } & \end{array}\)
    Printed: Thu Feb 02 07:54:45 2017
    
    Sample ID: 01-26-17 B17-00152 ccv2 ars16-122001
    

    \footnotetext{
    
    
    }
    Sample Name: 01-26-17 B17-00152 ccv2 ars-16-122001
    
    
    
    
    Quantify Sample Summary Report
    \(\begin{array}{ll}\text { Sample List: C:\TurboMass } \backslash \text { T020117 B1700152. PRO\SampleDB } \backslash 8260 \text { water 01-26-17 B17-00152 } \\ \text { Last modified: Wed Feb 01 13:31:42 } 2017 \\ \text { Method: } & \text { C: \TurboMass } \backslash \text { T020117 B1700152.PRO } \backslash \text { MethDB } \backslash 8260 b \text { water 01-26-2017 B17-00152 }\end{array}\)
    Method: C:
    Last modified: Wed Feb 01 13:23:36 2017 Job Code:
    Printed: Thu Feb 02 07:54:45 2017 Job Code:
    Sample Name: 01-26-17 ccv6 ars16-122007
    
    
    \(\stackrel{N}{N}\)
    \(\xrightarrow{-}\)
    
    
    
    er
    0
    0
    \(0_{1}\)
    -1
    
    
    
    \(\stackrel{\circ}{\infty}\)
    
    윽응 n
    n
     ONOOOOOOONANH
    
    \[
    \begin{aligned}
    & \text { e- } \\
    & \text { ne } \\
    & \text { e } \\
    & \text { th } \\
    & \text { th } \\
    & \text { ha } \\
    & \text { Et } \\
    & \text { et } \\
    & \text { ethe } \\
    & \text { ne }
    \end{aligned}
    \]
    Fluorobenzene
    1,4-Dichlorobenzene-
    Toluene-d8
    Bromoflurorobenzene
    1,2-Dichloroethane-d
    Chloromethane
    Vinyl Chloride
    Bromomethane
    hloroethane
    1,1-Dichloroethene
    Carbon disulfide
    Iodomethane
    Acrolein
    Allyl Chloride
    Methyl Tert-butyl Et
    Methylene Chloride
    trans-1,2 Dichloroe
    Acetone
    Acrylonitrile
    
    Chloroprene 2,2,-Dichloropropane
    2-Butanone
    Bromochloromethane
    Chloroform
    Carbon tetrachloride
    Vinyl Acetate
    1,1-Dichloropropene
    Benzene
    Benzene
    Methacrylonitrile
    
    
    Dibromomethane
    1,4-Dioxane
    Quantify Sample Summary Report
    
    Printed: Thu Feb 02 07:54:45 2017
    Sample Name: 01-26-17 ccv6 arsl6-122007 Sample ID: 01-26-17 ccv6 ars16-122007
    
    
    
    
    

    \section*{Quantitation Report}

    File Name: \(\quad\) C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 B17-00152 ccv ars16-
    Sample ID: 01-26-17 B17-00152 ccv ars16-122 Operator: ap
    Description: 01-26-17 B17-00152 ccv ars16-122001
    Inject Date/Time:
    GC Method:
    Quantify Method:
    January 26, 2017 5:36:51 PM
    8260.mth

    8260b water 01-26-2017 B17-00152
    Calibration File:
    GC Column:
    Dilution:
    8260B water IC 01-24-17cal2
    Elite-VMS
    1.000

    Soil Extract Vol:
    Soil Aliquot Vol:
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & Internal Standards & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & RT Dv & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.100 & 96 & \(2,278,000\) & 50.00 & -0.01 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,758,000\) & 50.00 & 0.00 & \\
    \hline 3 & 1,4-Dichlorobenzene-D4 & \(3855-82-1\) & 9.862 & 152 & 966,900 & 50.00 & 0.01 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & ug/L & \(\%\) Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.395 & 113 & 468,600 & 50.00 & 45.89 & 91.79 & -0.01 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.660 & 98 & \(2,371,000\) & 50.00 & 54.59 & 109.2 & 0.00 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.867 & 95 & \(1,015,000\) & 50.00 & 53.63 & 107.3 & 0.01 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.840 & 102 & 161,700 & 50.00 & 53.60 & 107.2 & -0.01 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 8 & Dichlorodifluoromethane & 75-71-8 & 0.859 & 85 & 320,000 & 0.00 & 41.94 & 1.00 & \\
    \hline 9 & Chloromethane & 74-87-3 & 0.954 & 50 & 703,900 & 0.00 & 43.83 & 1.00 & \\
    \hline 10 & Vinyl Chloride & 75-01-4 & 0.994 & 62 & 660,700 & 0.00 & 48.84 & 1.00 & \\
    \hline 11 & Bromomethane & 74-83-9 & 1.159 & 94 & 413,100 & 0.00 & 53.56 & 1.00 & \\
    \hline 12 & Chloroethane & 75-00-3 & 1.224 & 64 & 324,300 & 0.00 & 45.74 & 1.00 & \\
    \hline 13 & Trichlorofluoromethane & 75-69-4 & 1.294 & 101 & 348,000 & 0.00 & 45.63 & 1.00 & \\
    \hline 14 & 1,1-Dichloroethene & 75-35-4 & 1.589 & 96 & 402,800 & 0.00 & 56.56 & 1.00 & \\
    \hline 15 & Carbon disulfide & 75-15-10 & 1.589 & 76 & 1,008,000 & 0.00 & 47.12 & 1.00 & \\
    \hline 16 & lodomethane & 74-88-4 & 1.669 & 142 & 477,400 & 0.00 & 50.06 & 1.00 & \\
    \hline 18 & Allyl Chloride & 107-05-1 & 1.909 & 76 & 235,800 & 0.00 & 45.41 & 1.00 & \\
    \hline 19 & Methyl Tert-butyl Ether & 1634-04-4 & 2.219 & 73 & 18.52 & 0.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & 75-09-2 & 1.984 & 84 & 505,900 & 0.00 & 52.41 & 1.00 & \\
    \hline 21 & trans-1,2 Dichloroethene & 156-60-5 & 2.099 & 96 & 504,600 & 0.00 & 50.84 & 1.00 & \\
    \hline 22 & Acetone & 67-64-1 & 2.054 & 58 & 89,280 & 0.00 & 48.75 & 5.00 & \\
    \hline 23 & Acrylonitrile & 75-34-3 & 2.629 & 53 & 237,500 & 0.00 & 40.15 & 1.00 & \\
    \hline 24 & 1,1,-Dichloroethane & 75-34-3 & 2.564 & 63 & 974,600 & 0.00 & 42.66 & 1.00 & \\
    \hline 25 & Chloroprene & 107-13-1 & 2.549 & 53 & 872,200 & 0.00 & 46.79 & 1.00 & \\
    \hline 26 & cis-1,2,-Dichloroethene & 156-59-2 & 2.999 & 96 & 605,000 & 0.00 & 50.20 & 1.00 & \\
    \hline 27 & 2,2,-Dichloropropane & 594-20-7 & 3.079 & 77 & 452,800 & 0.00 & 41.87 & 1.00 & \\
    \hline 28 & 2-Butanone & 78-93-3 & 3.540 & 72 & 73,380 & 0.00 & 38.95 & 5.00 & \\
    \hline 29 & Propionitrile & 107-02-8 & 3.775 & 54 & 99,660 & 0.00 & 38.70 & 1.00 & \\
    \hline 30 & Bromochloromethane & 74-97-5 & 3.154 & 128 & 248,900 & 0.00 & 46.01 & 1.00 & \\
    \hline 31 & Chloroform & 67-66-3 & 3.245 & 83 & 862,300 & 0.00 & 43.90 & 1.00 & \\
    \hline 32 & Carbon tetrachloride & 56-23-5 & 3.320 & 117 & 440,400 & 0.00 & 43.12 & 1.00 & \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.385 & 97 & 664,400 & 0.00 & 49.65 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.495 & 75 & 710,600 & 0.00 & 45.80 & 1.00 & \\
    \hline 36 & Benzene & 71-43-2 & 3.710 & 78 & 2,236,000 & 0.00 & 45.47 & 1.00 & \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.785 & 41 & 459,000 & 0.00 & 40.79 & 1.00 & \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.900 & 62 & 765,000 & 0.00 & 42.73 & 1.00 & \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.250 & 95 & 555,300 & 0.00 & 51.50 & 1.00 & \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.740 & 63 & 619,400 & 0.00 & 43.86 & 1.00 & \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.835 & 83 & 624,200 & 0.00 & 44.14 & 1.00 & \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.065 & 69 & 457,200 & 0.00 & 36.56 & 1.00 & \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.635 & 93 & 318,400 & 0.00 & 47.43 & 1.00 & \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.070 & 88 & 5,708 & 0.00 & 37.41 & 1.00 & \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.715 & 63 & 201,700 & 0.00 & 44.28 & 1.00 & \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.475 & 75 & 748,900 & 0.00 & 39.41 & 1.00 & \\
    \hline 47 & Toluene & 108-88-3 & 5.715 & 92 & 1,489,000 & 0.00 & 57.17 & 1.00 & \\
    \hline 48 & trans-1,3- & 10061- & 6.196 & 75 & 673,500 & 0.00 & 42.03 & 1.00 & \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.356 & 83 & 423,200 & 0.00 & 49.38 & 1.00 & \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.461 & 69 & 835,900 & 0.00 & 41.53 & 1.00 & \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.101 & 164 & 512,400 & 0.00 & 61.87 & 1.00 & \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.526 & 129 & 445,200 & 0.00 & 47.96 & 1.00 & \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.641 & 76 & 969,200 & 0.00 & 44.48 & 1.00 & \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.746 & 107 & 511,600 & 0.00 & 48.86 & 1.00 & \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.476 & 91 & 2,779,000 & 0.00 & 52.16 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.491 & 131 & 450,900 & 0.00 & 48.41 & 1.00 & \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.386 & 112 & 1,599,000 & 0.00 & 51.18 & 1.00 & \\
    \hline 58 & m,p-Xylene & 106-42- & 7.661 & 106 & 2,232,000 & 0.00 & 99.04 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.171 & 106 & 1,071,000 & 0.00 & 49.99 & 1.00 & \\
    \hline 60 & Bromoform & 75-25-2 & 8.216 & 173 & 255,700 & 0.00 & 48.53 & 1.00 & \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.191 & 100 & 99,920 & 0.00 & 43.72 & 5.00 & \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.156 & 43 & 446,400 & 0.00 & 39.14 & 5.00 & \\
    \hline 63 & Styrene & 100-42-5 & 8.247 & 104 & 1,838,000 & 0.00 & 52.24 & 1.00 & \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.592 & 105 & 2,729,000 & 0.00 & 51.29 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.937 & 156 & 642,400 & 0.00 & 46.31 & 1.00 & \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.987 & 75 & 107,300 & 0.00 & 31.90 & 1.00 & \\
    \hline 67. & trans-1,4-dichloro-2- & 110-57-6 & 9.297 & 53 & 232,500 & 0.00 & 42.22 & 1.00 & \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.047 & 91 & 3,243,000 & 0.00 & 54.81 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.137 & 83 & 689,000 & 0.00 & 43.36 & 1.00 & \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.222 & 77 & 92,660 & 0.00 & 37.67 & 1.00 & \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.262 & 105 & 2,438,000 & 0.00 & 50.79 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.152 & 91 & 2,034,000 & 0.00 & 52.78 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.312 & 91 & 2,081,000 & 0.00 & 50.37 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.517 & 119 & 2,170,000 & 0.00 & 44.81 & 1.00 & \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.587 & 105 & 2,510,000 & 0.00 & 49.80 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.672 & 105 & 2,974,000 & 0.00 & 51.67 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.802 & 119 & 2,542,000 & 0.00 & 49.62 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.872 & 146 & 1,341,000 & 0.00 & 50.60 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.872 & 146 & 1,341,000 & 0.00 & 50.60 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.122 & 91 & 2,365,000 & 0.00 & 53.52 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.177 & 146 & 1,284,000 & 0.00 & 45.86 & 1.00 & \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.742 & 75 & 120,000 & 0.00 & 33.70 & 1.00 & \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.173 & 180 & 915,900 & 0.00 & 46.68 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.173 & 225 & 367,100 & 0.00 & 52.38 & 1.00 & \\
    \hline 85 & Naphthalene & 91-20-3 & 11.368 & 128 & 2,652,000 & 0.00 & 39.68 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.478 & 180 & 896,100 & 0.00 & 45.13 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name: \(\quad\) C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 B17-00152 iblk1.raw
    Sample ID:
    01-26-17 B17-00152 iblk1
    01-26-17 B17-00152 iblk1
    January 26, 2017 6:01:21 PM
    8260.mth

    8260b water 01-26-2017 B17-00152
    8260B water IC 01-24-17cal2
    Elite-VMS
    1.000

    Operator:
    ap
    Description:
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    Soil Extract Vol:
    Soil Aliquot Vol:
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & \multicolumn{1}{|c|}{ Internal Standards } & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & RT Dv & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(2,115,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,603,000\) & 50.00 & 0.00 & \\
    \hline 3 & 1,4-Dichlorobenzene-D4 & \(3855-82-1\) & 9.857 & 152 & 865,300 & 50.00 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & \(\%\) Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.400 & 113 & 397,400 & 50.00 & 41.93 & 83.87 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.665 & 98 & \(2,175,000\) & 50.00 & 54.91 & 109.8 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.862 & 95 & 915,700 & 50.00 & 53.05 & 106.1 & 0.00 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.845 & 102 & 147,800 & 50.00 & 53.72 & 107.4 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 8 & Dichlorodifluoromethane & 75-71-8 & 0.859 & 85 & 187.8 & 0.00 & 1.62 & 1.00 & X \\
    \hline 9 & Chloromethane & 74-87-3 & 0.959 & 50 & 2,414 & 0.00 & 0.36 & 1.00 & \\
    \hline 10 & Vinyl Chloride & 75-01-4 & 0.994 & 62 & 339.8 & 0.00 & 0.03 & 1.00 & X \\
    \hline 11 & Bromomethane & 74-83-9 & 1.169 & 94 & 1,158 & 0.00 & 0.00 & 1.00 & \\
    \hline 12 & Chloroethane & 75-00-3 & 1.229 & 64 & 82.75 & 0.00 & 0.01 & 1.00 & X \\
    \hline 13 & Trichlorofluoromethane & 75-69-4 & 1.299 & 101 & 210.2 & 0.00 & 0.00 & 1.00 & X \\
    \hline 14 & 1,1-Dichloroethene & 75-35-4 & 1.594 & 96 & 164.4 & 0.00 & 0.02 & 1.00 & X \\
    \hline 15 & Carbon disulfide & 75-15-10 & 1.604 & 76 & 6,779 & 0.00 & 0.76 & 1.00 & \\
    \hline 16 & lodomethane & 74-88-4 & 1.684 & 142 & 196.4 & 0.00 & 1.39 & 1.00 & X \\
    \hline 18 & Alyl Chloride & 107-05-1 & 1.919 & 76 & 20.03 & 0.00 & 0.00 & 1.00 & X \\
    \hline 19 & Methyl Tert-butyl Ether & 1634-04-4 & 2.254 & 73 & 19.22 & 0.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & 75-09-2 & 1.989 & 84 & 661.2 & 0.00 & 0.00 & 1.00 & X \\
    \hline 21 & trans-1,2 Dichloroethene & 156-60-5 & 2.104 & 96 & 835.1 & 0.00 & 0.09 & 1.00 & X \\
    \hline 22 & Acetone & 67-64-1 & 2.059 & 58 & 688.8 & 0.00 & 0.00 & 5.00 & X \\
    \hline 23 & Acrylonitrile & 75-34-3 & 2.649 & 53 & 55.37 & 0.00 & 0.43 & 1.00 & X \\
    \hline 24 & 1,1,-Dichloroethane & 75-34-3 & 2.569 & 63 & 123.2 & 0.00 & 0.01 & 1.00 & X \\
    \hline 25 & Chloroprene & 107-13-1 & 2.554 & 53 & 537.9 & 0.00 & 0.03 & 1.00 & X \\
    \hline 26 & cis-1,2,-Dichloroethene & 156-59-2 & 2.999 & 96 & 246.4 & 0.00 & 0.02 & 1.00 & X \\
    \hline 27 & 2,2,-Dichloropropane & 594-20-7 & 3.089 & 77 & 10.46 & 0.00 & 0.00 & 1.00 & X \\
    \hline 28 & 2-Butanone & 78-93-3 & 3.575 & 72 & 20.72 & 0.00 & 1.70 & 5.00 & X \\
    \hline 29 & Propionitrile & 107-02-8 & 3.785 & 54 & 46.39 & 0.00 & 2.02 & 1.00 & X \\
    \hline 30 & Bromochloromethane & 74-97-5 & 3.169 & 128 & 33.85 & 0.00 & 0.15 & 1.00 & X \\
    \hline 31 & Chloroform & 67-66-3 & 3.244 & 83 & 50.43 & 0.00 & 0.00 & 1.00 & X \\
    \hline 32 & Carbon tetrachloride & 56-23-5 & 3.349 & 117 & 18.69 & 0.00 & 2.55 & 1.00 & X \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.380 & 97 & 16.09 & 0.00 & 0.00 & 1.00 & X \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & \(\mathrm{ug} / \mathrm{L}\) & Report Limit & Man \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.345 & 75 & 1,545 & 0.00 & 0.11 & 1.00 & \\
    \hline 36 & Benzene & 71-43-2 & 3.710 & 78 & 787.9 & 0.00 & 0.00 & 1.00 & X \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.790 & 41 & 59.83 & 0.00 & 0.01 & 1.00 & X \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.905 & 62 & 160.7 & 0.00 & 0.00 & 1.00 & X \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.250 & 95 & 272.7 & 0.00 & 0.00 & 1.00 & X \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.760 & 63 & 27.03 & 0.00 & 0.00 & 1.00 & X \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.825 & 83 & 45.18 & 0.00 & 1.98 & 1.00 & X \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.080 & 69 & 28.47 & 0.00 & 1.59 & 1.00 & X \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.640 & 93 & 42.38 & 0.00 & 0.00 & 1.00 & X \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.045 & 88 & 8.133 & 0.00 & 1.80 & 1.00 & X \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.715 & 63 & 41.65 & 0.00 & 1.14 & 1.00 & X \\
    \hline 46 & cis-1,3-Dichloropropene & 10061 - & 5.490 & 75 & 45.98 & 0.00 & 2.24 & 1.00 & X \\
    \hline 47 & Toluene & 108-88-3 & 5.715 & 92 & 1,592 & 0.00 & 0.00 & 1.00 & \\
    \hline 48 & trans-1,3- & 10061- & 6.206 & 75 & 61.26 & 0.00 & 1.86 & 1.00 & X \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.306 & 83 & 51.15 & 0.00 & 0.00 & 1.00 & X \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.486 & 69 & 14.85 & 0.00 & 0.81 & 1.00 & X \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.101 & 164 & 348.4 & 0.00 & 0.00 & 1.00 & X \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.516 & 129 & 1.652 & 0.00 & 2.85 & 1.00 & X \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.631 & 76 & 19.32 & 0.00 & 0.00 & 1.00 & X \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.761 & 107 & 40.85 & 0.00 & 0.00 & 1.00 & X \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.481 & 91 & 2,086 & 0.00 & 0.04 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.506 & 131 & 6.652 & 0.00 & 2.10 & 1.00 & X \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.386 & 112 & 1,768 & 0.00 & 0.00 & 1.00 & \\
    \hline 58 & m,p-Xylene & 106-42- & 7.666 & 106 & 1,795 & 0.00 & 0.09 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.166 & 106 & 218.6 & 0.00 & 0.01 & 1.00 & X \\
    \hline 60 & Bromoform & 75-25-2 & 8.241 & 173 & 1.689 & 0.00 & 1.63 & 1.00 & X \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.186 & 100 & 6.241 & 0.00 & 1.08 & 5.00 & X \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.146 & 43 & 93.76 & 0.00 & 1.44 & 5.00 & X \\
    \hline 63 & Styrene & 100-42-5 & 8.256 & 104 & 863.0 & 0.00 & 0.00 & 1.00 & X \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.592 & 105 & 2,177 & 0.00 & 0.04 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.932 & 156 & 309.2 & 0.00 & 0.02 & 1.00 & X \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.862 & 75 & 415,500 & 0.00 & 117.97 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.272 & 53 & 12.74 & 0.00 & 1.71 & 1.00 & X \\
    \hline 68 & n-Propyibenzene & 103-65-1 & 9.047 & 91 & 5,662 & 0.00 & 0.00 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.132 & 83 & 38.08 & 0.00 & 0.00 & 1.00 & \(X\) \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.237 & 77 & -8.326 & 0.00 & 0.00 & 1.00 & X \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.262 & 105 & 3,138 & 0.00 & 0.00 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.152 & 91 & 2,743 & 0.00 & 0.00 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.317 & 91 & 4,387 & 0.00 & 0.00 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.517 & 119 & 1,887 & 0.00 & 0.04 & 1.00 & \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.587 & 105 & 3,320 & 0.00 & 0.00 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.667 & 105 & 4,969 & 0.00 & 0.00 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.802 & 119 & 5,638 & 0.00 & 0.00 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.867 & 146 & 5,350 & 0.00 & 0.00 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.867 & 146 & 5,350 & 0.00 & 0.00 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.122 & 91 & 7,214 & 0.00 & 0.00 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.177 & 146 & 1,675 & 0.00 & 0.07 & 1.00 & \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.732 & 75 & 16.15 & 0.00 & 2.86 & 1.00 & X \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.168 & 180 & 4,192 & 0.00 & 0.00 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.168 & 225 & 1,008 & 0.00 & 0.16 & 1.00 & \\
    \hline 85 & Naphthalene & 91-20-3 & 11.368 & 128 & 9,226 & 0.00 & 0.15 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.473 & 180 & 3,254 & 0.00 & 0.00 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name:
    Sample ID:
    Description:
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    Soil Extract Vol:
    Soil Aliquot Vol:

    C:ITurboMassIT020117 B1700152.PROIData101-26-17 B17-00152 LCS ars16-
    01-26-17 B17-00152 LCS ars16-12 Operator: ap
    01-26-17 B17-00152 LCS ars16-122001
    January 26, 2017 6:25:47 PM
    8260.mth

    Tune File:
    MS Method: 8260.EXP
    8260b water 01-26-2017 B17-00152
    8260B water IC 01-24-17 cal2
    Elite-VMS
    1.000

    Last Updated: Last Updated: Level:
    Sample Wt: \(\quad 1.000\)
    Purge Vol: \(\quad 5.000\)
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & \multicolumn{1}{|c|}{ Internal Standards } & \multicolumn{1}{c|}{ CAS } & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & RT DV & Man \\
    \hline \(\mathbf{1}\) & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(2,062,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,625,000\) & 50.00 & 0.00 & \\
    \hline 3 & 1,4 -Dichlorobenzene-D4 & \(3855-82-1\) & 9.862 & 152 & 899,000 & 50.00 & 0.01 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & \multicolumn{1}{c|}{ CAS } & RT & \multicolumn{1}{c|}{\(\mathrm{m} / \mathrm{z}\)} & \multicolumn{1}{c|}{ Area } & Spk Amt & ug/L & \% Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.400 & 113 & 432,200 & 50.00 & 46.77 & 93.54 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.665 & 98 & \(2,163,000\) & 50.00 & 53.83 & 107.7 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.867 & 95 & 933,400 & 50.00 & 53.31 & 106.6 & 0.01 & \\
    \hline 7 & \(1,2-\) Dichloroethane-d4 & \(17060-\) & 3.845 & 102 & 147,100 & 50.00 & 52.72 & 105.4 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|l|l|l|l|l|l|l|l|}
    \hline\(\#\) & \multicolumn{1}{|c|}{ Target Compounds } & \multicolumn{1}{|c|}{ CAS } & RT & \(\mathrm{m} / \mathrm{z}\) & \multicolumn{1}{|c|}{ Area } & Spk Amt & ug/L & \begin{tabular}{l} 
    Report \\
    Limit
    \end{tabular} & Man \\
    \hline 8 & Dichlorodifluoromethane & \(75-71-8\) & 0.859 & 85 & 317,300 & 50.00 & 45.80 & 1.00 & \\
    \hline 9 & Chloromethane & \(74-87-3\) & 0.959 & 50 & 635,700 & 50.00 & 43.73 & 1.00 & \\
    \hline 10 & Vinyl Chloride & \(75-01-4\) & 0.999 & 62 & 614,600 & 50.00 & 50.19 & 1.00 & \\
    \hline 11 & Bromomethane & \(74-83-9\) & 1.164 & 94 & 371,400 & 50.00 & 53.20 & 1.00 & \\
    \hline 12 & Chloroethane & \(75-00-3\) & 1.229 & 64 & 300,700 & 50.00 & 46.87 & 1.00 & \\
    \hline 13 & Trichlorofluoromethane & \(75-69-4\) & 1.294 & 101 & 314,900 & 50.00 & 45.61 & 1.00 & \\
    \hline 14 & 1,1 -Dichloroethene & \(75-35-4\) & 1.594 & 96 & 373,400 & 50.00 & 57.93 & 1.00 & \\
    \hline 15 & Carbon disulfide & \(75-15-10\) & 1.599 & 76 & 898,900 & 50.00 & 46.43 & 1.00 & \\
    \hline 16 & lodomethane & \(74-88-4\) & 1.679 & 142 & 460,300 & 50.00 & 53.24 & 1.00 & \\
    \hline 17 & Acrolein & \(107-05-1\) & 1.919 & 56 & 1,020 & 50.00 & 104.08 & 1.00 & \\
    \hline 18 & Allyl Chloride & \(107-05-1\) & 1.914 & 76 & 205,300 & 50.00 & 43.69 & 1.00 & \\
    \hline 19 & Methyl Tert-butyl Ether & \(1634-04-4\) & 2.239 & 73 & 40.74 & 50.00 & 0.00 & 1.00 & \(\times\) \\
    \hline 20 & Methylene Chloride & \(75-09-2\) & 1.994 & 84 & 469,800 & 50.00 & 53.83 & 1.00 & \\
    \hline 21 & trans-1,2 Dichloroethene & \(156-60-5\) & 2.104 & 96 & 454,700 & 50.00 & 50.61 & 1.00 & \\
    \hline 22 & Acetone & \(67-64-1\) & 2.069 & 58 & 96,850 & 50.00 & 58.91 & 5.00 & \\
    \hline 23 & Acrylonitrile & \(75-34-3\) & 2.639 & 53 & 235,700 & 50.00 & 43.98 & 1.00 & \\
    \hline 24 & \(1,1,-\) Dichloroethane & \(75-34-3\) & 2.574 & 63 & 879,500 & 50.00 & 42.53 & 1.00 & \\
    \hline 25 & Chloroprene & \(107-13-1\) & 2.554 & 53 & 789,600 & 50.00 & 46.80 & 1.00 & \\
    \hline 26 & cis-1,2,-Dichloroethene & \(156-59-2\) & 3.004 & 96 & 539,600 & 50.00 & 49.47 & 1.00 & \\
    \hline 27 & \(2,2,-\) Dichloropropane & \(594-20-7\) & 3.089 & 77 & 407,400 & 50.00 & 41.62 & 1.00 & \\
    \hline 28 & \(2-\) Butanone & \(78-93-3\) & 3.545 & 72 & 77,120 & 50.00 & 44.95 & 5.00 & \\
    \hline 29 & Propionitrile & \(107-02-8\) & 3.780 & 54 & 97,640 & 50.00 & 41.73 & 1.00 & \\
    \hline 30 & Bromochloromethane & \(74-97-5\) & 3.164 & 128 & 229,900 & 50.00 & 46.95 & 1.00 & \\
    \hline 31 & Chloroform & \(67-66-3\) & 3.249 & 83 & 781,000 & 50.00 & 43.93 & 1.00 & \\
    \hline 32 & Carbon tetrachloride & \(56-23-5\) & 3.325 & 117 & 412,400 & 50.00 & 44.52 & 1.00 & \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L. & Report Limit & Man \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.390 & 97 & 613,100 & 50.00 & 50.62 & 1.00 & \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.500 & 75 & 649,200 & 50.00 & 46.23 & 1.00 & \\
    \hline 36 & Benzene & 71-43-2 & 3.715 & 78 & 2,038,000 & 50.00 & 45.79 & 1.00 & \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.790 & 41 & 429,400 & 50.00 & 42.17 & 1.00 & \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.905 & 62 & 695,800 & 50.00 & 42.94 & 1.00 & \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.255 & 95 & 501,800 & 50.00 & 51.41 & 1.00 & \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.745 & 63 & 561,400 & 50.00 & 43.91 & 1.00 & \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.835 & 83 & 556,800 & 50.00 & 43.54 & 1.00 & \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.065 & 69 & 449,200 & 50.00 & 39.54 & 1.00 & \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.640 & 93 & 290,200 & 50.00 & 47.76 & 1.00 & \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.075 & 88 & 6,856 & 50.00 & 48.09 & 1.00 & \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.715 & 63 & 180,900 & 50.00 & 43.88 & 1.00 & \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.480 & 75 & 682,400 & 50.00 & 39.66 & 1.00 & \\
    \hline 47 & Toluene & 108-88-3 & 5.715 & 92 & 1,350,000 & 50.00 & 56.01 & 1.00 & \\
    \hline 48 & trans-1,3- & 10061- & 6.201 & 75 & 615,300 & 50.00 & 41.54 & 1.00 & \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.361 & 83 & 397,700 & 50.00 & 50.19 & 1.00 & \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.461 & 69 & 792,800 & 50.00 & 42.57 & 1.00 & \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.101 & 164 & 494,000 & 50.00 & 64.62 & 1.00 & \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.531 & 129 & 408,500 & 50.00 & 47.60 & 1.00 & \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.646 & 76 & 903,800 & 50.00 & 44.85 & 1.00 & \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.746 & 107 & 480,700 & 50.00 & 49.65 & 1.00 & \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.476 & 91 & 2,503,000 & 50.00 & 50.80 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.491 & 131 & 409,800 & 50.00 & 47.60 & 1.00 & \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.386 & 112 & 1,443,000 & 50.00 & 49.90 & 1.00 & \\
    \hline 58 & m,p-Xylene & 106-42- & 7.661 & 106 & 1,972,000 & 50.00 & 94.65 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.171 & 106 & 968,100 & 50.00 & 48.87 & 1.00 & \\
    \hline 60 & Bromoform & 75-25-2 & 8.216 & 173 & 241,500 & 50.00 & 49.42 & 1.00 & \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.196 & 100 & 100,600 & 50.00 & 47.49 & 5.00 & \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.161 & 43 & 472,800 & 50.00 & 44.61 & 5.00 & \\
    \hline 63 & Styrene & 100-42-5 & 8.247 & 104 & 1,659,000 & 50.00 & 50.97 & 1.00 & \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.592 & 105 & 2,470,000 & 50.00 & 50.18 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.937 & 156 & 594,900 & 50.00 & 46.13 & 1.00 & \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.987 & 75 & 103,900 & 50.00 & 32.97 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.297 & 53 & 220,700 & 50.00 & 43.06 & 1.00 & \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.047 & 91 & 2,900,000 & 50.00 & 52.57 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.137 & 83 & 663,200 & 50.00 & 44.88 & 1.00 & \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.222 & 77 & 86,570 & 50.00 & 37.86 & 1.00 & \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.262 & 105 & 2,194,000 & 50.00 & 49.01 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.152 & 91 & 1,821,000 & 50.00 & 50.68 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.312 & 91 & 1,871,000 & 50.00 & 48.65 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.517 & 119 & 1,958,000 & 50.00 & 43.49 & 1.00 & \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.587 & 105 & 2,266,000 & 50.00 & 48.28 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.672 & 105 & 2,707,000 & 50.00 & 50.52 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.802 & 119 & 2,299,000 & 50.00 & 48.19 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.872 & 146 & 1,221,000 & 50.00 & 49.50 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.872 & 146 & 1,221,000 & 50.00 & 49.50 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.117 & 91 & 2,120,000 & 50.00 & 51.52 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.177 & 146 & 1,195,000 & 50.00 & 45.92 & 1.00 & \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.738 & 75 & 121,700 & 50.00 & 36.50 & 1.00 & \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.168 & 180 & 847,000 & 50.00 & 46.41 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.168 & 225 & 338,000 & 50.00 & 51.87 & 1.00 & \\
    \hline 85 & Naphthalene & 91-20-3 & 11.368 & 128 & 2,638,000 & 50.00 & 42.44 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.478 & 180 & 847,800 & 50.00 & 45.95 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name:

    Sample ID:
    Description:
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    Soil Extract Vol:
    Soil Aliquot Vol:

    C:ITurboMassIT020117 B1700152.PRO\Datal01-26-17 B17-00152 LCSD ars16-
    01-26-17 B17-00152 LCSD ars16-1 Operator: ap
    01-26-17 B17-00152 LCSD ars16-122001
    January 26, 2017 6:50:17 PM
    8260.mth

    8260b water 01-26-2017 B17-00152
    8260B water IC 01-24-17cal2
    Elite-VMS
    1.000

    Tune File:
    MS Method:
    Last Updated:
    Last Updated:
    Level:
    Sample Wt: \(\quad 1.000\)
    Purge Vol: \(\quad 5.000\)
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & Internal Standards & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & RT Dv & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(2,016,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.376 & 117 & \(1,587,000\) & 50.00 & 0.01 & \\
    \hline 3 & 1,4-Dichlorobenzene-D4 & \(3855-82-1\) & 9.867 & 152 & 888,000 & 50.00 & 0.01 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & \(\%\) Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.405 & 113 & 424,300 & 50.00 & 46.95 & 93.90 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.670 & 98 & \(2,105,000\) & 50.00 & 53.67 & 107.3 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.872 & 95 & 907,800 & 50.00 & 53.10 & 106.2 & 0.01 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.850 & 102 & 144,000 & 50.00 & 52.87 & 105.7 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 8 & Dichlorodifluoromethane & 75-71-8 & 0.859 & 85 & 312,500 & 50.00 & 46.11 & 1.00 & \\
    \hline 9 & Chloromethane & 74-87-3 & 0.959 & 50 & 632,000 & 50.00 & 44.45 & 1.00 & \\
    \hline 10 & Vinyl Chloride & 75-01-4 & 0.999 & 62 & 614,900 & 50.00 & 51.35 & 1.00 & \\
    \hline 11 & Bromomethane & 74-83-9 & 1.164 & 94 & 378,100 & 50.00 & 55.42 & 1.00 & \\
    \hline 12 & Chloroethane & 75-00-3 & 1.229 & 64 & 303,700 & 50.00 & 48.39 & 1.00 & \\
    \hline 13 & Trichlorofluoromethane & 75-69-4 & 1.294 & 101 & 308,900 & 50.00 & 45.77 & 1.00 & \\
    \hline 14 & 1,1-Dichloroethene & 75-35-4 & 1.594 & 96 & 374,300 & 50.00 & 59.38 & 1.00 & \\
    \hline 15 & Carbon disulfide & 75-15-10 & 1.599 & 76 & 924,800 & 50.00 & 48.82 & 1.00 & \\
    \hline 16 & lodomethane & 74-88-4 & 1.674 & 142 & 492,100 & 50.00 & 58.08 & 1.00 & \\
    \hline 18 & Allyl Chloride & 107-05-1 & 1.914 & 76 & 215,000 & 50.00 & 46.79 & 1.00 & \\
    \hline 19 & Methyl Tert-butyl Ether & 1634-04-4 & 2.224 & 73 & 42.52 & 50.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & 75-09-2 & 1.994 & 84 & 473,100 & 50.00 & 55.48 & 1.00 & \\
    \hline 21 & trans-1,2 Dichloroethene & 156-60-5 & 2.104 & 96 & 462,000 & 50.00 & 52.59 & 1.00 & \\
    \hline 22 & Acetone & 67-64-1 & 2.069 & 58 & 83,550 & 50.00 & 51.68 & 5.00 & \\
    \hline 23 & Acrylonitrile & 75-34-3 & 2.639 & 53 & 234,800 & 50.00 & 44.78 & 1.00 & \\
    \hline 24 & 1,1,-Dichloroethane & 75-34-3 & 2.574 & 63 & 896,800 & 50.00 & 44.35 & 1.00 & \\
    \hline 25 & Chloroprene & 107-13-1 & 2.559 & 53 & 799,700 & 50.00 & 48.46 & 1.00 & \\
    \hline 26 & cis-1,2,-Dichloroethene & 156-59-2 & 3.009 & 96 & 548,700 & 50.00 & 51.44 & 1.00 & \\
    \hline 27 & 2,2,-Dichloropropane & 594-20-7 & 3.089 & 77 & 420,300 & 50.00 & 43.91 & 1.00 & \\
    \hline 28 & 2-Butanone & 78-93-3 & 3.545 & 72 & 70,200 & 50.00 & 41.96 & 5.00 & \\
    \hline 29 & Propionitrile & 107-02-8 & 3.785 & 54 & 99,860 & 50.00 & 43.55 & 1.00 & \\
    \hline 30 & Bromochloromethane & 74-97-5 & 3.164 & 128 & 234,300 & 50.00 & 48.93 & 1.00 & \\
    \hline 31 & Chloroform & 67-66-3 & 3.254 & 83 & 800,500 & 50.00 & 46.05 & 1.00 & \\
    \hline 32 & Carbon tetrachloride & 56-23-5 & 3.329 & 117 & 423,400 & 50.00 & 46.62 & 1.00 & \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.395 & 97 & 623,000 & 50.00 & 52.60 & 1.00 & \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.505 & 75 & 654,200 & 50.00 & 47.64 & 1.00 & \\
    \hline 36 & Benzene & 71-43-2 & 3.720 & 78 & 2,054,000 & 50.00 & 47.21 & 1.00 & \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.795 & 41 & 434,800 & 50.00 & 43.66 & 1.00 & \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.910 & 62 & 703,800 & 50.00 & 44.43 & 1.00 & \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.260 & 95 & 504,700 & 50.00 & 52.91 & 1.00 & \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.750 & 63 & 574,200 & 50.00 & 45.95 & 1.00 & \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.840 & 83 & 572,700 & 50.00 & 45.69 & 1.00 & \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.070 & 69 & 453,500 & 50.00 & 40.78 & 1.00 & \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.645 & 93 & 293,800 & 50.00 & 49.44 & 1.00 & \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.080 & 88 & 6,198 & 50.00 & 44.86 & 1.00 & \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.720 & 63 & 185,600 & 50.00 & 45.98 & 1.00 & \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.485 & 75 & 702,400 & 50.00 & 41.63 & 1.00 & \\
    \hline 47 & Toluene & 108-88-3 & 5.720 & 92 & 1,379,000 & 50.00 & 58.68 & 1.00 & \\
    \hline 48 & trans-1,3- & 10061- & 6.206 & 75 & 632,400 & 50.00 & 43.63 & 1.00 & \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.366 & 83 & 400,000 & 50.00 & 51.71 & 1.00 & \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.471 & 69 & 812,900 & 50.00 & 44.67 & 1.00 & \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.111 & 164 & 476,200 & 50.00 & 63.77 & 1.00 & \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.536 & 129 & 421,100 & 50.00 & 50.09 & 1.00 & \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.651 & 76 & 911,800 & 50.00 & 46.34 & 1.00 & \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.751 & 107 & 486,500 & 50.00 & 51.49 & 1.00 & \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.481 & 91 & 2,556,000 & 50.00 & 53.14 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.501 & 131 & 424,600 & 50.00 & 50.39 & 1.00 & \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.396 & 112 & 1,485,000 & 50.00 & 52.70 & 1.00 & \\
    \hline 58 & m,p-Xylene & 106-42- & 7.671 & 106 & 2,016,000 & 50.00 & 99.07 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.176 & 106 & 990,100 & 50.00 & 51.19 & 1.00 & \\
    \hline 60 & Bromoform & 75-25-2 & 8.221 & 173 & 248,400 & 50.00 & 51.70 & 1.00 & \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.201 & 100 & 100,100 & 50.00 & 48.37 & 5.00 & \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.166 & 43 & 449,900 & 50.00 & 43.52 & 5.00 & \\
    \hline 63 & Styrene & 100-42-5 & 8.251 & 104 & 1,713,000 & 50.00 & 53.93 & 1.00 & \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.597 & 105 & 2,507,000 & 50.00 & 52.17 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.942 & 156 & 605,800 & 50.00 & 47.55 & 1.00 & \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.992 & 75 & 112,100 & 50.00 & 35.45 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.302 & 53 & 221,400 & 50.00 & 43.72 & 1.00 & \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.052 & 91 & 2,931,000 & 50.00 & 53.87 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.142 & 83 & 676,400 & 50.00 & 46.34 & 1.00 & \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.227 & 77 & 90,480 & 50.00 & 40.10 & 1.00 & \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.267 & 105 & 2,240,000 & 50.00 & 50.80 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.157 & 91 & 1,868,000 & 50.00 & 52.77 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.317 & 91 & 1,898,000 & 50.00 & 49.99 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.522 & 119 & 2,043,000 & 50.00 & 45.93 & 1.00 & \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.592 & 105 & 2,321,000 & 50.00 & 50.17 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.677 & 105 & 2,745,000 & 50.00 & 51.93 & 1.00 & \\
    \hline 77 & 4-\sopropyltoluene & 99-87-6 & 9.807 & 119 & 2,332,000 & 50.00 & 49.54 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.877 & 146 & 1,247,000 & 50.00 & 51.25 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.877 & 146 & 1,247,000 & 50.00 & 51.25 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.122 & 91 & 2,144,000 & 50.00 & 52.80 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.182 & 146 & 1,205,000 & 50.00 & 46.86 & 1.00 & \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.742 & 75 & 121,900 & 50.00 & 36.97 & 1.00 & \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.173 & 180 & 859,500 & 50.00 & 47.72 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.173 & 225 & 339,100 & 50.00 & 52.68 & 1.00 & \\
    \hline 85 & Naphthalene & 91-20-3 & 11.373 & 128 & 2,634,000 & 50.00 & 42.90 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.478 & 180 & 855,800 & 50.00 & 47.00 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name
    File Name:
    Sample ID:
    Description:
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    C:ITurboMass|T020117 B1700152.PROIDatal01-26-17 B17-00152 (001).raw
    01-26-17 B17-00152 (001)
    01-26-17 B17-00152 (001)
    January 26, 2017 7:14:47 PM
    8260.mth

    8260b water 01-26-2017 B17-00152
    8260B water IC 01-24-17cal2
    Elite-VMS
    Operator: ap
    1.000

    Soil Extract Vol:
    Tune File: \(\quad 010317 . I P R\)
    MS Method: 8260.EXP
    Last Updated: February 02, 2017 12:58:57 PM
    Last Updated: January 24, 2017 4:48:29 PM
    Level:
    Sample Wt: \(\quad 1.000\)
    Purge Vol: \(\quad 5.000\)
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline \# & Internal Standards & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & RT Dv & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(2,041,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,564,000\) & 50.00 & 0.00 & \\
    \hline 3 & 1,4 -Dichlorobenzene-D4 & \(3855-82-1\) & 9.857 & 152 & 847,100 & 50.00 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline \# & Surrogate Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & \% Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.405 & 113 & 377,600 & 50.00 & 41.28 & 82.56 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.665 & 98 & \(2,115,000\) & 50.00 & 54.72 & 109.4 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.862 & 95 & 894,800 & 50.00 & 53.12 & 106.2 & 0.00 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.845 & 102 & 143,800 & 50.00 & 53.57 & 107.1 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 8 & Dichlorodifluoromethane & 75-71-8 & 0.859 & 85 & 705.2 & 0.00 & 1.69 & 1.00 & X \\
    \hline 9 & Chloromethane & 74-87-3 & 0.964 & 50 & 1,986 & 0.00 & 0.34 & 1.00 & \\
    \hline 10 & Vinyl Chloride & 75-01-4 & 0.994 & 62 & 626.4 & 0.00 & 0.05 & 1.00 & X \\
    \hline 11 & Bromomethane & 74-83-9 & 1.169 & 94 & 1,076 & 0.00 & 0.00 & 1.00 & \\
    \hline 12 & Chloroethane & 75-00-3 & 1.229 & 64 & 96.04 & 0.00 & 0.02 & 1.00 & X \\
    \hline 13 & Trichlorofluoromethane & 75-69-4 & 1.304 & 101 & 671.9 & 0.00 & 0.00 & 1.00 & X \\
    \hline 14 & 1,1-Dichloroethene & 75-35-4 & 1.589 & 96 & 267.8 & 0.00 & 0.04 & 1.00 & X \\
    \hline 15 & Carbon disulfide & 75-15-10 & 1.604 & 76 & 9,764 & 0.00 & 0.92 & 1.00 & \\
    \hline 16 & lodomethane & 74-88-4 & 1.684 & 142 & 341.0 & 0.00 & 1.41 & 1.00 & X \\
    \hline 18 & Allyl Chloride & 107-05-1 & 1.904 & 76 & 8.298 & 0.00 & 0.00 & 1.00 & X \\
    \hline 19 & Methyl Tert-butyl Ether & 1634-04-4 & 2.224 & 73 & 28.34 & 0.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & 75-09-2 & 1.989 & 84 & 717.3 & 0.00 & 0.00 & 1.00 & X \\
    \hline 21 & trans-1,2 Dichloroethene & 156-60-5 & 2.114 & 96 & 1,493 & 0.00 & 0.17 & 1.00 & \\
    \hline 22 & Acetone & 67-64-1 & 2.069 & 58 & 20,940 & 0.00 & 10.96 & 5.00 & \\
    \hline 23 & Acrylonitrile & 75-34-3 & 2.639 & 53 & 56.27 & 0.00 & 0.43 & 1.00 & X \\
    \hline 24 & 1,1,-Dichloroethane & 75-34-3 & 2.569 & 63 & 177.1 & 0.00 & 0.01 & 1.00 & X \\
    \hline 25 & Chloroprene & 107-13-1 & 2.559 & 53 & 955.3 & 0.00 & 0.06 & 1.00 & X \\
    \hline 26 & cis-1,2,-Dichloroethene & 156-59-2 & 3.009 & 96 & 373.1 & 0.00 & 0.03 & 1.00 & X \\
    \hline 27 & 2,2,-Dichloropropane & 594-20-7 & 3.094 & 77 & 20.37 & 0.00 & 0.00 & 1.00 & X \\
    \hline 28 & 2-Butanone & 78-93-3 & 3.565 & 72 & 12.63 & 0.00 & 1.70 & 5.00 & X \\
    \hline 29 & Propionitrile & 107-02-8 & 3.780 & 54 & 1.336 & 0.00 & 2.00 & 1.00 & X \\
    \hline 30 & Bromochloromethane & 74-97-5 & 3.149 & 128 & 0.00 & 0.00 & 0.14 & 1.00 & X \\
    \hline 31 & Chloroform & 67-66-3 & 3.244 & 83 & 99.81 & 0.00 & 0.01 & 1.00 & \(x\) \\
    \hline 32 & Carbon tetrachloride & 56-23-5 & 3.324 & 117 & 10.58 & 0.00 & 2.55 & 1.00 & X \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.389 & 97 & 47.46 & 0.00 & 0.00 & 1.00 & X \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.505 & 75 & 1,749 & 0.00 & 0.13 & 1.00 & \\
    \hline 36 & Benzene & 71-43-2 & 3.720 & 78 & 1,585 & 0.00 & 0.00 & 1.00 & \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.820 & 41 & 118.7 & 0.00 & 0.01 & 1.00 & \(X\) \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.905 & 62 & 64.70 & 0.00 & 0.00 & 1.00 & X \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.260 & 95 & 1,143 & 0.00 & 0.00 & 1.00 & \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.755 & 63 & 27.48 & 0.00 & 0.00 & 1.00 & X \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.835 & 83 & 13.87 & 0.00 & 1.98 & 1.00 & X \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.090 & 69 & 73.50 & 0.00 & 1.59 & 1.00 & X \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.610 & 93 & 3.152 & 0.00 & 0.00 & 1.00 & X \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.065 & 88 & 13.38 & 0.00 & 1.84 & 1.00 & X \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.720 & 63 & 88.19 & 0.00 & 1.15 & 1.00 & X \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.490 & 75 & 99.94 & 0.00 & 2.24 & 1.00 & X \\
    \hline 47 & Toluene & 108-88-3 & 5.720 & 92 & 2,897 & 0.00 & 0.00 & 1.00 & \\
    \hline 48 & trans-1,3- & 10061- & 6.206 & 75 & 174.2 & 0.00 & 1.87 & 1.00 & X \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.376 & 83 & 15.31 & 0.00 & 0.00 & 1.00 & X \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.496 & 69 & 29.53 & 0.00 & 0.81 & 1.00 & X \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.106 & 164 & 1,338 & 0.00 & 0.00 & 1.00 & \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.521 & 129 & 11.51 & 0.00 & 2.85 & 1.00 & X \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.651 & 76 & 136.5 & 0.00 & 0.01 & 1.00 & X \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.761 & 107 & 93.05 & 0.00 & 0.00 & 1.00 & X \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.481 & 91 & 5,130 & 0.00 & 0.11 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.481 & 131 & 17.39 & 0.00 & 2.10 & 1.00 & X \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.391 & 112 & 3,668 & 0.00 & 0.00 & 1.00 & \\
    \hline 58 & m, p -Xylene & 106-42- & 7.671 & 106 & 4,648 & 0.00 & 0.23 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.176 & 106 & 627.0 & 0.00 & 0.03 & 1.00 & X \\
    \hline 60 & Bromoform & 75-25-2 & 8.191 & 173 & 2.622 & 0.00 & 1.63 & 1.00 & X \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.191 & 100 & 8.798 & 0.00 & 1.08 & 5.00 & X \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.201 & 43 & 62.40 & 0.00 & 1.44 & 5.00 & X \\
    \hline 63 & Styrene & 100-42-5 & 8.256 & 104 & 1,954 & 0.00 & 0.00 & 1.00 & \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.592 & 105 & 4,849 & 0.00 & 0.10 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.932 & 156 & 774.2 & 0.00 & 0.06 & 1.00 & X \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.867 & 75 & 404,800 & 0.00 & 117.44 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.307 & 53 & 37.02 & 0.00 & 1.71 & 1.00 & X \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.047 & 91 & 10,670 & 0.00 & 0.00 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.122 & 83 & 56.36 & 0.00 & 0.00 & 1.00 & X \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.242 & 77 & -39.89 & 0.00 & 0.00 & 1.00 & X \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.262 & 105 & 5,838 & 0.00 & 0.00 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.152 & 91 & 5,615 & 0.00 & 0.00 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.317 & 91 & 9,059 & 0.00 & 0.00 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.517 & 119 & 4,033 & 0.00 & 0.10 & 1.00 & \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.587 & 105 & 6,652 & 0.00 & 0.00 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.667 & 105 & 9,393 & 0.00 & 0.00 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.802 & 119 & 9,446 & 0.00 & 0.00 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.872 & 146 & 9,288 & 0.00 & 0.00 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.872 & 146 & 9,288 & 0.00 & 0.00 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.122 & 91 & 12,770 & 0.00 & 0.00 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.177 & 146 & 3,712 & 0.00 & 0.15 & 1.00 & \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.712 & 75 & 35.93 & 0.00 & 2.87 & 1.00 & X \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.168 & 180 & 7,095 & 0.00 & 0.00 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.168 & 225 & 2,274 & 0.00 & 0.37 & 1.00 & \\
    \hline 85 & Naphthalene & 91-20-3 & 11.368 & 128 & 12,920 & 0.00 & 0.22 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.473 & 180 & 5,782 & 0.00 & 0.00 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name:
    Sample ID:
    Description:
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:

    C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 B17-00152 (002).raw
    01-26-17 B17-00152 (002)
    Operator:
    ap
    01-26-17 B17-00152 (002)
    January 26, 2017 7:39:16 PM
    8260.mth

    8260b water 01-26-2017 B17-00152
    8260B water IC 01-24-17cal2
    Elite-VMS
    1.000

    Tune File:
    MS Method:
    Last Updated:
    Last Updated:
    Level:
    Sample Wt: \(\quad 1.000\)
    Purge Vol: 5.000

    Soil Extract Vol:
    Soil Aliquot Vol:
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline \# & Internal Standards & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & RT DV & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(1,998,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.376 & 117 & \(1,535,000\) & 50.00 & 0.01 & \\
    \hline 3 & 1,4 -Dichlorobenzene-D4 & \(3855-82-1\) & 9.867 & 152 & 823,300 & 50.00 & 0.01 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline \# & Surrogate Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & \% Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.405 & 113 & 364,100 & 50.00 & 40.65 & 81.30 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.670 & 98 & \(2,073,000\) & 50.00 & 54.64 & 109.3 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.867 & 95 & 869,200 & 50.00 & 52.57 & 105.1 & 0.01 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.850 & 102 & 140,600 & 50.00 & 53.34 & 106.7 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 8 & Dichlorodifluoromethane & 75-71-8 & 0.859 & 85 & 67.40 & 0.00 & 1.60 & 1.00 & \(X\) \\
    \hline 9 & Chloromethane & 74-87-3 & 0.964 & 50 & 1,551 & 0.00 & 0.31 & 1.00 & \\
    \hline 10 & Vinyl Chioride & 75-01-4 & 0.999 & 62 & 113.0 & 0.00 & 0.01 & 1.00 & X \\
    \hline 11 & Bromomethane & 74-83-9 & 1.164 & 94 & 674.1 & 0.00 & 0.00 & 1.00 & X \\
    \hline 12 & Chloroethane & 75-00-3 & 1.229 & 64 & 91.40 & 0.00 & 0.01 & 1.00 & X \\
    \hline 13 & Trichlorofluoromethane & 75-69-4 & 1.299 & 101 & 112.7 & 0.00 & 0.00 & 1.00 & X \\
    \hline 14 & 1,1-Dichloroethene & 75-35-4 & 1.604 & 96 & 123.3 & 0.00 & 0.02 & 1.00 & X \\
    \hline 15 & Carbon disulfide & 75-15-10 & 1.604 & 76 & 4,290 & 0.00 & 0.64 & 1.00 & \\
    \hline 16 & lodomethane & 74-88-4 & 1.694 & 142 & 103.5 & 0.00 & 1.38 & 1.00 & X \\
    \hline 18 & Allyl Chloride & 107-05-1 & 1.904 & 76 & 12.55 & 0.00 & 0.00 & 1.00 & X \\
    \hline 19 & Methyl Tert-butyl Ether & 1634-04-4 & 2.244 & 73 & 20.00 & 0.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & 75-09-2 & 1.989 & 84 & 140.1 & 0.00 & 0.00 & 1.00 & \(X\) \\
    \hline 21 & trans-1,2 Dichloroethene & 156-60-5 & 2.109 & 96 & 353.6 & 0.00 & 0.04 & 1.00 & X \\
    \hline 22 & Acetone & 67-64-1 & 2.069 & 58 & 3,812 & 0.00 & 0.06 & 5.00 & \\
    \hline 23. & Acrylonitrile & 75-34-3 & 2.629 & 53 & 25.20 & 0.00 & 0.42 & 1.00 & \(x\) \\
    \hline 24 & 1,1,-Dichloroethane & 75-34-3 & 2.569 & 63 & 46.93 & 0.00 & 0.00 & 1.00 & X \\
    \hline 25 & Chloroprene & 107-13-1 & 2.554 & 53 & 381.6 & 0.00 & 0.02 & 1.00 & X \\
    \hline 26 & cis-1,2,-Dichloroethene & 156-59-2 & 2.999 & 96 & 155.1 & 0.00 & 0.01 & 1.00 & X \\
    \hline 27 & 2,2,-Dichloropropane & 594-20-7 & 3.049 & 77 & 25.94 & 0.00 & 0.00 & 1.00 & X \\
    \hline 28 & 2-Butanone & 78-93-3 & 3.580 & 72 & 6.275 & 0.00 & 1.70 & 5.00 & X \\
    \hline 29 & Propionitrile & 107-02-8 & 3.790 & 54 & 6.422 & 0.00 & 2.01 & 1.00 & X \\
    \hline 30 & Bromochloromethane & 74-97-5 & 3.164 & 128 & 8.964 & 0.00 & 0.15 & 1.00 & X \\
    \hline 31 & Chloroform & 67-66-3 & 3.249 & 83 & 25.98 & 0.00 & 0.00 & 1.00 & X \\
    \hline 32 & Carbon tetrachloride & 56-23-5 & 3.284 & 117 & 6.413 & 0.00 & 2.55 & 1.00 & X \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.390 & 97 & 54.45 & 0.00 & 0.00 & 1.00 & X \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.349 & 75 & 2,748 & 0.00 & 0.20 & 1.00 & \\
    \hline 36 & Benzene & 71-43-2 & 3.715 & 78 & 521.4 & 0.00 & 0.00 & 1.00 & X \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.810 & 41 & 10.28 & 0.00 & 0.00 & 1.00 & \(x\) \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.915 & 62 & 26.91 & 0.00 & 0.00 & 1.00 & X \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.260 & 95 & 213.3 & 0.00 & 0.00 & 1.00 & X \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.765 & 63 & 15.20 & 0.00 & 0.00 & 1.00 & X \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.850 & 83 & 37.87 & 0.00 & 1.98 & 1.00 & X \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.100 & 69 & 39.12 & 0.00 & 1.59 & 1.00 & X \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.595 & 93 & 8.071 & 0.00 & 0.00 & 1.00 & X \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.120 & 88 & 13.19 & 0.00 & 1.84 & 1.00 & X \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.705 & 63 & 111.0 & 0.00 & 1.16 & 1.00 & X \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.475 & 75 & 2.905 & 0.00 & 2.23 & 1.00 & X \\
    \hline 47 & Toluene & 108-88-3 & 5.720 & 92 & 1,252 & 0.00 & 0.00 & 1.00 & \\
    \hline 48 & trans-1,3- & 10061- & 6.231 & 75 & 45.90 & 0.00 & 1.86 & 1.00 & X \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.401 & 83 & 36.81 & 0.00 & 0.00 & 1.00 & X \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.501 & 69 & 35.18 & 0.00 & 0.81 & 1.00 & \(x\) \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.106 & 164 & 327.4 & 0.00 & 0.00 & 1.00 & X \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.546 & 129 & 23.92 & 0.00 & 2.85 & 1.00 & X \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.656 & 76 & 20.56 & 0.00 & 0.00 & 1.00 & X \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.741 & 107 & 12.39 & 0.00 & 0.00 & 1.00 & X \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.486 & 91 & 2,657 & 0.00 & 0.06 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.471 & 131 & 15.63 & 0.00 & 2.10 & 1.00 & X \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.396 & 112 & 1,365 & 0.00 & 0.00 & 1.00 & \\
    \hline 58 & m,p-Xylene & 106-42- & 7.676 & 106 & 2,072 & 0.00 & 0.11 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.186 & 106 & 224.5 & 0.00 & 0.01 & 1.00 & \(X\) \\
    \hline 60 & Bromoform & 75-25-2 & 8.186 & 173 & 4.480 & 0.00 & 1.63 & 1.00 & X \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.191 & 100 & 6.551 & 0.00 & 1.08 & 5.00 & X \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.171 & 43 & 16.19 & 0.00 & 1.43 & 5.00 & X \\
    \hline 63 & Styrene & 100-42-5 & 8.256 & 104 & 591.5 & 0.00 & 0.00 & 1.00 & X \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.597 & 105 & 1,845 & 0.00 & 0.04 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.937 & 156 & 142.8 & 0.00 & 0.01 & 1.00 & X \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.867 & 75 & 396,600 & 0.00 & 118.32 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.292 & 53 & 32.95 & 0.00 & 1.71 & 1.00 & X \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.052 & 91 & 5,411 & 0.00 & 0.00 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.162 & 83 & 4.485 & 0.00 & 0.00 & 1.00 & X \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.242 & 77 & -5.125 & 0.00 & 0.00 & 1.00 & X \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.267 & 105 & 2,834 & 0.00 & 0.00 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.157 & 91 & 2,686 & 0.00 & 0.00 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.322 & 91 & 4,103 & 0.00 & 0.00 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.527 & 119 & 1,193 & 0.00 & 0.03 & 1.00 & \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.592 & 105 & 3,247 & 0.00 & 0.00 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.677 & 105 & 4,533 & 0.00 & 0.00 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.807 & 119 & 4,062 & 0.00 & 0.00 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.877 & 146 & 4,992 & 0.00 & 0.00 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.877 & 146 & 4,992 & 0.00 & 0.00 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.127 & 91 & 6,590 & 0.00 & 0.00 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.187 & 146 & 1,294 & 0.00 & 0.05 & 1.00 & \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.717 & 75 & 19.65 & 0.00 & 2.87 & 1.00 & X \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.178 & 180 & 3,550 & 0.00 & 0.00 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.168 & 225 & 643.6 & 0.00 & 0.11 & 1.00 & X \\
    \hline 85 & Naphthalene & 91-20-3 & 11.378 & 128 & 3,695 & 0.00 & 0.06 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.483 & 180 & 1,826 & 0.00 & 0.00 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name
    C:ITurboMass|T020117 B1700152.PROIDatal01-26-17 B17-00152 (003).raw
    Sample ID:
    Description:
    01-26-17 B17-00152 (003)
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    Soil Extract Vol:
    Soil Aliquot Vol:

    01-26-17 B17-00152 (003)
    January 26, 2017 8:03:47 PM 8260.mth

    8260b water 01-26-2017 B17-00152 8260B water IC 01-24-17cal2 Elite-VMS
    1.000

    Operator: ap
    Tune File: 010317.IPR
    MS Method: 8260.EXP
    Last Updated: February 02, 2017 12:58:57 PM
    Last Updated: January 24, 2017 4:48:29 PM
    Level:
    Sample Wt: \(\quad 1.000\)
    Purge Vol: \(\quad 5.000\)
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline \# & Internal Standards & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & RT Dv & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(2,052,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,562,000\) & 50.00 & 0.00 & \\
    \hline 3 & 1,4 -Dichlorobenzene-D4 & \(3855-82-1\) & 9.862 & 152 & 829,600 & 50.00 & 0.01 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & \(\%\) Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.405 & 113 & 384,200 & 50.00 & 41.78 & 83.56 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.670 & 98 & \(2,130,000\) & 50.00 & 55.17 & 110.3 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.867 & 95 & 887,300 & 50.00 & 52.73 & 105.5 & 0.01 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.845 & 102 & 144,400 & 50.00 & 53.83 & 107.7 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & \multicolumn{1}{|c|}{ Target Compounds } & \multicolumn{1}{|c|}{ CAS } & RT & \(\mathrm{m} / \mathrm{z}\) & \multicolumn{1}{c|}{ Area } & Spk Amt & ug/L & \begin{tabular}{c} 
    Report \\
    Limit
    \end{tabular} & Man \\
    \hline 8 & Dichlorodifluoromethane & \(75-71-8\) & 0.849 & 85 & 46.37 & 0.00 & 1.60 & 1.00 & X \\
    \hline 9 & Chloromethane & \(74-87-3\) & 0.959 & 50 & 1,647 & 0.00 & 0.31 & 1.00 & \\
    \hline 10 & Vinyl Chloride & \(75-01-4\) & 0.989 & 62 & 81.02 & 0.00 & 0.01 & 1.00 & X \\
    \hline 11 & Bromomethane & \(74-83-9\) & 1.164 & 94 & 642.5 & 0.00 & 0.00 & 1.00 & X \\
    \hline 12 & Chloroethane & \(75-00-3\) & 1.234 & 64 & 94.79 & 0.00 & 0.01 & 1.00 & X \\
    \hline 13 & Trichlorofluoromethane & \(75-69-4\) & 1.299 & 101 & 104.9 & 0.00 & 0.00 & 1.00 & X \\
    \hline 14 & 1,1 -Dichloroethene & \(75-35-4\) & 1.569 & 96 & 5.520 & 0.00 & 0.00 & 1.00 & X \\
    \hline 15 & Carbon disulfide & \(75-15-10\) & 1.604 & 76 & 2,909 & 0.00 & 0.57 & 1.00 & \\
    \hline 16 & lodomethane & \(74-88-4\) & 1.684 & 142 & 277.8 & 0.00 & 1.40 & 1.00 & X \\
    \hline 18 & Allyl Chloride & \(107-05-1\) & 1.914 & 76 & 4.003 & 0.00 & 0.00 & 1.00 & X \\
    \hline 19 & Methyl Tert-butyl Ether & \(1634-04-4\) & 2.249 & 73 & 9.562 & 0.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & \(75-09-2\) & 1.989 & 84 & 258.2 & 0.00 & 0.00 & 1.00 & X \\
    \hline 21 & trans-1,2 Dichloroethene & \(156-60-5\) & 2.104 & 96 & 154.4 & 0.00 & 0.02 & 1.00 & X \\
    \hline 22 & Acetone & \(67-64-1\) & 2.069 & 58 & 2,734 & 0.00 & 0.00 & 5.00 & \\
    \hline 23 & Acrylonitrile & \(75-34-3\) & 2.639 & 53 & 11.52 & 0.00 & 0.42 & 1.00 & X \\
    \hline 24 & \(1,1,-\) Dichloroethane & \(75-34-3\) & 2.569 & 63 & 6.570 & 0.00 & 0.00 & 1.00 & X \\
    \hline 25 & Chloroprene & \(107-13-1\) & 2.559 & 53 & 114.4 & 0.00 & 0.01 & 1.00 & X \\
    \hline 26 & Cis-1,2,-Dichloroethene & \(156-59-2\) & 3.009 & 96 & 47.38 & 0.00 & 0.00 & 1.00 & X \\
    \hline 27 & \(2,2,-\) Dichloropropane & \(594-20-7\) & 3.074 & 77 & 27.93 & 0.00 & 0.00 & 1.00 & X \\
    \hline 28 & 2 -Butanone & \(78-93-3\) & 3.565 & 72 & 42.07 & 0.00 & 1.72 & 5.00 & X \\
    \hline 29 & Propionitrile & \(107-02-8\) & 3.740 & 54 & 25.65 & 0.00 & 2.01 & 1.00 & X \\
    \hline 30 & Bromochloromethane & \(74-97-5\) & 3.134 & 128 & 4.446 & 0.00 & 0.15 & 1.00 & X \\
    \hline 31 & Chloroform & \(67-66-3\) & 3.254 & 83 & 29,940 & 0.00 & 1.69 & 1.00 & \\
    \hline 32 & Carbon tetrachloride & \(56-23-5\) & 3.279 & 117 & 1.656 & 0.00 & 2.55 & 1.00 & X \\
    \hline 34 & \(1,1,1-T r i c h l o r o e t h a n e\) & \(71-55-6\) & 3.400 & 97 & 8.450 & 0.00 & 0.00 & 1.00 & X \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.390 & 75 & 12.14 & 0.00 & 0.00 & 1.00 & \(X\) \\
    \hline 36 & Benzene & 71-43-2 & 3.715 & 78 & 247.8 & 0.00 & 0.00 & 1.00 & X \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.810 & 41 & 7.782 & 0.00 & 0.00 & 1.00 & X \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.855 & 62 & 28.80 & 0.00 & 0.00 & 1.00 & X \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.255 & 95 & 81.97 & 0.00 & 0.00 & 1.00 & X \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.740 & 63 & 10.83 & 0.00 & 0.00 & 1.00 & X \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.840 & 83 & 28,970 & 0.00 & 4.15 & 1.00 & \\
    \hline 42 & Methy! methacrylate & 80-62-6 & 5.065 & 69 & 33.08 & 0.00 & 1.59 & 1.00 & X \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.650 & 93 & 14.38 & 0.00 & 0.00 & 1.00 & X \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.065 & 88 & 1.333 & 0.00 & 1.75 & 1.00 & X \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.725 & 63 & 76.64 & 0.00 & 1.15 & 1.00 & X \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.460 & 75 & 57.45 & 0.00 & 2.24 & 1.00 & X \\
    \hline 47 & Toluene & 108-88-3 & 5.720 & 92 & 860.1 & 0.00 & 0.00 & 1.00 & X \\
    \hline 48 & trans-1,3- & 10061- & 6.221 & 75 & 16.16 & 0.00 & 1.86 & 1.00 & X \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.361 & 83 & 20.31 & 0.00 & 0.00 & 1.00 & X \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.446 & 69 & 26.49 & 0.00 & 0.81 & 1.00 & X \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.106 & 164 & 190.0 & 0.00 & 0.00 & 1.00 & X \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.536 & 129 & 48,540 & 0.00 & 8.38 & 1.00 & \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.656 & 76 & 35.00 & 0.00 & 0.00 & 1.00 & \(X\) \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.756 & 107 & 18.09 & 0.00 & 0.00 & 1.00 & X \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.486 & 91 & 1,449 & 0.00 & 0.03 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.456 & 131 & 8.659 & 0.00 & 2.10 & 1.00 & X \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.386 & 112 & 735.5 & 0.00 & 0.00 & 1.00 & X \\
    \hline 58 & m,p-Xylene & 106-42- & 7.671 & 106 & 1,196 & 0.00 & 0.06 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.181 & 106 & 60.32 & 0.00 & 0.00 & 1.00 & X \\
    \hline 60 & Bromoform & 75-25-2 & 8.216 & 173 & 43,500 & 0.00 & 11.51 & 1.00 & \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.201 & 100 & 22.36 & 0.00 & 1.09 & 5.00 & X \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.176 & 43 & 23.89 & 0.00 & 1.43 & 5.00 & X \\
    \hline 63 & Styrene & 100-42-5 & 8.251 & 104 & 240.7 & 0.00 & 0.00 & 1.00 & X \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.597 & 105 & 1,093 & 0.00 & 0.02 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.937 & 156 & 130.9 & 0.00 & 0.01 & 1.00 & X \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.867 & 75 & 401,400 & 0.00 & 118.82 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.302 & 53 & 106.6 & 0.00 & 1.73 & 1.00 & X \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.052 & 91 & 3,883 & 0.00 & 0.00 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.197 & 83 & 16.84 & 0.00 & 0.00 & 1.00 & X \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.222 & 77 & 1.297 & 0.00 & 0.00 & 1.00 & X \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.262 & 105 & 1,781 & 0.00 & 0.00 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.157 & 91 & 1,640 & 0.00 & 0.00 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.317 & 91 & 2,567 & 0.00 & 0.00 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.517 & 119 & 452.3 & 0.00 & 0.01 & 1.00 & X \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.592 & 105 & 2,238 & 0.00 & 0.00 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.672 & 105 & 3,211 & 0.00 & 0.00 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.807 & 119 & 3,244 & 0.00 & 0.00 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.872 & 146 & 4,072 & 0.00 & 0.00 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.872 & 146 & 4,072 & 0.00 & 0.00 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.122 & 91 & 4,437 & 0.00 & 0.00 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.177 & 146 & 626.8 & 0.00 & 0.03 & 1.00 & X \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.702 & 75 & 42.07 & 0.00 & 2.87 & 1.00 & X \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.173 & 180 & 2,336 & 0.00 & 0.00 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.163 & 225 & 364.5 & 0.00 & 0.06 & 1.00 & X \\
    \hline 85 & Naphthalene & 91-20-3 & 11.373 & 128 & 2,017 & 0.00 & 0.04 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.483 & 180 & 1,075 & 0.00 & 0.00 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name:
    Sample ID:
    C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 B17-00152 iblk2.raw
    Description
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    Soil Extract Vol: Soil Aliquot Vol:

    Operator: ap

    Tune File: \(\quad\) 010317.IPR
    MS Method: 8260.EXP
    Last Updated: February 02, 2017 12:58:57 PM
    Last Updated: January 24, 2017 4:48:29 PM
    Level:
    Sample Wt: \(\quad 1.000\)
    Purge Vol: \(\quad 5.000\)
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & Internal Standards & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & RT DV & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(1,969,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,505,000\) & 50.00 & 0.00 & \\
    \hline 3 & 1,4 -Dichlorobenzene-D4 & \(3855-82-1\) & 9.862 & 152 & 820,600 & 50.00 & 0.01 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & ug/L & \% Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.400 & 113 & 362,200 & 50.00 & 41.05 & 82.09 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.665 & 98 & \(2,036,000\) & 50.00 & 54.75 & 109.5 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.867 & 95 & 860,100 & 50.00 & 53.07 & 106.1 & 0.01 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.845 & 102 & 137,800 & 50.00 & 53.35 & 106.7 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & \multicolumn{1}{|c|}{ Target Compounds } & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & ug/L & \begin{tabular}{c} 
    Report \\
    Limit
    \end{tabular} & Man \\
    \hline 8 & Dichlorodifluoromethane & \(75-71-8\) & 0.864 & 85 & 109.5 & 0.00 & 1.61 & 1.00 & X \\
    \hline 9 & Chloromethane & \(74-87-3\) & 0.964 & 50 & 1,492 & 0.00 & 0.31 & 1.00 & \\
    \hline 10 & Vinyl Chloride & \(75-01-4\) & 0.984 & 62 & 13.68 & 0.00 & 0.00 & 1.00 & X \\
    \hline 11 & Bromomethane & \(74-83-9\) & 1.164 & 94 & 496.6 & 0.00 & 0.00 & 1.00 & X \\
    \hline 12 & Chloroethane & \(75-00-3\) & 1.219 & 64 & 64.11 & 0.00 & 0.01 & 1.00 & X \\
    \hline 13 & Trichlorofluoromethane & \(75-69-4\) & 1.304 & 101 & 67.14 & 0.00 & 0.00 & 1.00 & X \\
    \hline 14 & 1,1 Dichloroethene & \(75-35-4\) & 1.594 & 96 & 10.83 & 0.00 & 0.00 & 1.00 & X \\
    \hline 15 & Carbon disulfide & \(75-15-10\) & 1.604 & 76 & 2,453 & 0.00 & 0.55 & 1.00 & \\
    \hline 16 & lodomethane & \(74-88-4\) & 1.684 & 142 & 60.40 & 0.00 & 1.38 & 1.00 & X \\
    \hline 18 & Allyl Chloride & \(107-05-1\) & 1.924 & 76 & 3.966 & 0.00 & 0.00 & 1.00 & X \\
    \hline 19 & Methyl Tert-butyl Ether & \(1634-04-4\) & 2.229 & 73 & 22.21 & 0.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & \(75-09-2\) & 1.994 & 84 & 103.2 & 0.00 & 0.00 & 1.00 & X \\
    \hline 21 & trans-1,2 Dichloroethene & \(156-60-5\) & 2.109 & 96 & 89.48 & 0.00 & 0.01 & 1.00 & X \\
    \hline 22 & Acetone & \(67-64-1\) & 2.064 & 58 & 444.3 & 0.00 & 0.00 & 5.00 & X \\
    \hline 23 & Acrylonitrile & \(75-34-3\) & 2.624 & 53 & 16.84 & 0.00 & 0.42 & 1.00 & X \\
    \hline 24 & \(1,1,-\) Dichloroethane & \(75-34-3\) & 2.554 & 63 & 28.93 & 0.00 & 0.00 & 1.00 & X \\
    \hline 25 & Chloroprene & \(107-13-1\) & 2.559 & 53 & 124.2 & 0.00 & 0.01 & 1.00 & X \\
    \hline 26 & cis-1,2,-Dichloroethene & \(156-59-2\) & 3.034 & 96 & 1.323 & 0.00 & 0.00 & 1.00 & X \\
    \hline 27 & 2,2, -Dichloropropane & \(594-20-7\) & 3.074 & 77 & 12.22 & 0.00 & 0.00 & 1.00 & X \\
    \hline 28 & \(2-B 4 t a n o n e\) & \(78-93-3\) & 3.530 & 72 & 3.267 & 0.00 & 1.70 & 5.00 & X \\
    \hline 29 & Propionitrile & \(107-02-8\) & 3.790 & 54 & 31.09 & 0.00 & 2.02 & 1.00 & X \\
    \hline 30 & Bromochloromethane & \(74-97-5\) & 3.149 & 128 & 23.10 & 0.00 & 0.15 & 1.00 & X \\
    \hline 31 & Chloroform & \(67-66-3\) & 3.249 & 83 & 48.31 & 0.00 & 0.00 & 1.00 & X \\
    \hline 32 & Carbon tetrachloride & \(56-23-5\) & 3.284 & 117 & 1.738 & 0.00 & 2.55 & 1.00 & X \\
    \hline 34 & \(1,1,1-\) Trichloroethane & \(71-55-6\) & 3.420 & 97 & 17.51 & 0.00 & 0.00 & 1.00 & X \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / 2\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.345 & 75 & 328.4 & 0.00 & 0.02 & 1.00 & X \\
    \hline 36 & Benzene & 71-43-2 & 3.715 & 78 & 185.0 & 0.00 & 0.00 & 1.00 & X \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.845 & 41 & 9.255 & 0.00 & 0.00 & 1.00 & X \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.905 & 62 & 38.96 & 0.00 & 0.00 & 1.00 & X \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.260 & 95 & 64.94 & 0.00 & 0.00 & 1.00 & X \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.770 & 63 & 37.02 & 0.00 & 0.00 & 1.00 & X \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.815 & 83 & 27.77 & 0.00 & 1.98 & 1.00 & X \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.080 & 69 & 11.01 & 0.00 & 1.59 & 1.00 & X \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.650 & 93 & 10.84 & 0.00 & 0.00 & 1.00 & X \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.075 & 88 & 3.524 & 0.00 & 1.76 & 1.00 & X \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.720 & 63 & 71.01 & 0.00 & 1.15 & 1.00 & X \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.465 & 75 & 12.78 & 0.00 & 2.23 & 1.00 & \(X\) \\
    \hline 47 & Toluene & 108-88-3 & 5.720 & 92 & 810.5 & 0.00 & 0.00 & 1.00 & X \\
    \hline 48 & trans-1,3- & 10061. & 6.216 & 75 & 18.69 & 0.00 & 1.86 & 1.00 & X \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.301 & 83 & 36.49 & 0.00 & 0.00 & 1.00 & X \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.451 & 69 & 3.495 & 0.00 & 0.81 & 1.00 & X \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.101 & 164 & 69.98 & 0.00 & 0.00 & 1.00 & X \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.496 & 129 & 33.41 & 0.00 & 2.85 & 1.00 & X \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.636 & 76 & 18.47 & 0.00 & 0.00 & 1.00 & X \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.726 & 107 & 6.547 & 0.00 & 0.00 & 1.00 & X \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.481 & 91 & 1,102 & 0.00 & 0.02 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.466 & 131 & 11.92 & 0.00 & 2.10 & 1.00 & X \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.386 & 112 & 542.1 & 0.00 & 0.00 & 1.00 & X \\
    \hline 58 & m, p -Xylene & 106-42- & 7.661 & 106 & 736.7 & 0.00 & 0.04 & 2.00 & X \\
    \hline 59 & o-Xylene & 95-47-6 & 8.166 & 106 & 93.27 & 0.00 & 0.01 & 1.00 & X \\
    \hline 60 & Bromoform & 75-25-2 & 8.201 & 173 & 4.406 & 0.00 & 1.63 & 1.00 & X \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.206 & 100 & 4.985 & 0.00 & 1.08 & 5.00 & X \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.126 & 43 & 17.29 & 0.00 & 1.43 & 5.00 & X \\
    \hline 63 & Styrene & 100-42-5 & 8.256 & 104 & 149.3 & 0.00 & 0.00 & 1.00 & X \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.592 & 105 & 875.3 & 0.00 & 0.02 & 1.00 & X \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.927 & 156 & 24.07 & 0.00 & 0.00 & 1.00 & X \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.867 & 75 & 386,700 & 0.00 & 115.89 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.287 & 53 & 11.30 & 0.00 & 1.71 & 1.00 & X \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.052 & 91 & 3,410 & 0.00 & 0.00 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.167 & 83 & 1.256 & 0.00 & 0.00 & 1.00 & X \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.222 & 77 & 0.00 & 0.00 & 0.00 & 1.00 & X \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.262 & 105 & 1,728 & 0.00 & 0.00 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.152 & 91 & 1,016 & 0.00 & 0.00 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.317 & 91 & 2,067 & 0.00 & 0.00 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.517 & 119 & 466.8 & 0.00 & 0.01 & 1.00 & X \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.587 & 105 & 2,023 & 0.00 & 0.00 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.672 & 105 & 2,693 & 0.00 & 0.00 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.807 & 119 & 2,998 & 0.00 & 0.00 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.872 & 146 & 2,946 & 0.00 & 0.00 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.872 & 146 & 2,946 & 0.00 & 0.00 & 1.00 & \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.122 & 91 & 4,112 & 0.00 & 0.00 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.172 & 146 & 411.9 & 0.00 & 0.02 & 1.00 & \(X\) \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.697 & 75 & 16.66 & 0.00 & 2.87 & 1.00 & X \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.173 & 180 & 1,611 & 0.00 & 0.00 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.158 & 225 & 272.1 & 0.00 & 0.05 & 1.00 & X \\
    \hline 85 & Naphthalene & 91-20-3 & 11.373 & 128 & 2,123 & 0.00 & 0.04 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.478 & 180 & 1,013 & 0.00 & 0.00 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name:
    Sample ID:
    Description:
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    Soil Extract Vol:
    Soil Aliquot Vol:
    C:ITurboMassIT020117 B1700152.PROIDatal01-26-17 B17-00152 ccv2 ars-16-
    01-26-17 B17-00152 ccv2 ars16-12 Operator: ap 01-26-17 B17-00152 ccv2 ars16-122001

    January 26, 2017 8:52:43 PM
    8260.mth

    8260b water 01-26-2017 B17-00152
    8260B water IC 01-24-17cal2
    Elite-VMS
    1.000

    Tune File:
    MS Method:
    Last Updated:
    Last Updated:
    Level:
    Sample Wt: \(\quad 1.000\)
    Purge Vol: \(\quad 5.000\)
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & \multicolumn{1}{|c|}{ Internal Standards } & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & RT Dv & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.105 & 96 & \(1,910,000\) & 50.00 & 0.00 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,497,000\) & 50.00 & 0.00 & \\
    \hline 3 & 1,4 -Dichlorobenzene-D4 & \(3855-82-1\) & 9.857 & 152 & 848,000 & 50.00 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & CAS & RT & \(\mathrm{m} / \mathbf{z}\) & Area & Spk Amt & ug/L & \(\%\) Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.400 & 113 & 400,600 & 50.00 & 46.79 & 93.58 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.665 & 98 & \(1,995,000\) & 50.00 & 53.92 & 107.8 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.862 & 95 & 854,100 & 50.00 & 52.96 & 105.9 & 0.00 & \\
    \hline 7 & 1,2 -Dichloroethane-d4 & \(17060-\) & 3.845 & 102 & 135,500 & 50.00 & 52.72 & 105.4 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 8 & Dichlorodifluoromethane & 75-71-8 & 0.859 & 85 & 278,200 & 0.00 & 43.42 & 1.00 & \\
    \hline 9 & Chloromethane & 74-87-3 & 0.959 & 50 & 613,500 & 0.00 & 45.53 & 1.00 & \\
    \hline 10 & Vinyl Chloride & 75-01-4 & 0.999 & 62 & 577,900 & 0.00 & 50.93 & 1.00 & \\
    \hline 11 & Bromomethane & 74-83-9 & 1.164 & 94 & 376,200 & 0.00 & 58.22 & 1.00 & \\
    \hline 12 & Chioroethane & 75-00-3 & 1.229 & 64 & 290,800 & 0.00 & 48.91 & 1.00 & \\
    \hline 13 & Trichlorofluoromethane & 75-69-4 & 1.299 & 101 & 288,400 & 0.00 & 45.06 & 1.00 & \\
    \hline 14 & 1,1-Dichloroethene & 75-35-4 & 1.599 & 96 & 356,400 & 0.00 & 59.67 & 1.00 & \\
    \hline 15 & Carbon disulfide & 75-15-10 & 1.599 & 76 & 836,700 & 0.00 & 46.63 & 1.00 & \\
    \hline 16 & lodomethane & 74-88-4 & 1.679 & 142 & 450,700 & 0.00 & 56.17 & 1.00 & \\
    \hline 17 & Acrolein & 107-05-1 & 1.924 & 56 & 1,381 & 0.00 & 152.04 & 1.00 & \\
    \hline 18 & Allyl Chloride & 107-05-1 & 1.919 & 76 & 200,500 & 0.00 & 46.05 & 1.00 & \\
    \hline 19 & Methyl Tert-butyl Ether & 1634-04-4 & 2.254 & 73 & 9.316 & 0.00 & 0.00 & 1.00 & X \\
    \hline 20 & Methylene Chloride & 75-09-2 & 1.994 & 84 & 462,900 & 0.00 & 57.34 & 1.00 & \\
    \hline 21 & trans-1,2 Dichloroethene & 156-60-5 & 2.109 & 96 & 442,700 & 0.00 & 53.17 & 1.00 & \\
    \hline 22 & Acetone & 67-64-1 & 2.069 & 58 & 83,600 & 0.00 & 54.71 & 5.00 & \\
    \hline 23 & Acrylonitrile & 75-34-3 & 2.639 & 53 & 227,900 & 0.00 & 45.87 & 1.00 & \\
    \hline 24 & 1,1,-Dichloroethane & 75-34-3 & 2.574 & 63 & 845,400 & 0.00 & 44.12 & 1.00 & \\
    \hline 25 & Chloroprene & 107-13-1 & 2.559 & 53 & 748,200 & 0.00 & 47.86 & 1.00 & \\
    \hline 26 & cis-1,2,-Dichloroethene & 156-59-2 & 3.009 & 96 & 532,500 & 0.00 & 52.68 & 1.00 & \\
    \hline 27 & 2,2,-Dichloropropane & 594-20-7 & 3.089 & 77 & 359,100 & 0.00 & 39.59 & 1.00 & \\
    \hline 28 & 2-Butanone & 78-93-3 & 3.545 & 72 & 64,660 & 0.00 & 40.83 & 5.00 & \\
    \hline 29 & Propionitrile & 107-02-8 & 3.780 & 54 & 95,520 & 0.00 & 43.94 & 1.00 & \\
    \hline 30 & Bromochloromethane & 74-97-5 & 3.164 & 128 & 226,700 & 0.00 & 49.95 & 1.00 & \\
    \hline 31 & Chloroform & 67-66-3 & 3.254 & 83 & 765,900 & 0.00 & 46.49 & 1.00 & \\
    \hline 32 & Carbon tetrachloride & 56-23-5 & 3.329 & 117 & 380,600 & 0.00 & 44.36 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.390 & 97 & 582,100 & 0.00 & 51.87 & 1.00 & \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.505 & 75 & 612,500 & 0.00 & 47.07 & 1.00 & \\
    \hline 36 & Benzene & 71-43-2 & 3.715 & 78 & 1,973,000 & 0.00 & 47.87 & 1.00 & \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.790 & 41 & 413,600 & 0.00 & 43.83 & 1.00 & \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.905 & 62 & 668,700 & 0.00 & 44.56 & 1.00 & \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.255 & 95 & 491,700 & 0.00 & 54.43 & 1.00 & \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.745 & 63 & 549,500 & 0.00 & 46.42 & 1.00 & \\
    \hline 41 & Bromodichioromethane & 75-27-4 & 4.835 & 83 & 541,900 & 0.00 & 45.62 & 1.00 & \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.065 & 69 & 433,400 & 0.00 & 41.11 & 1.00 & \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.640 & 93 & 286,100 & 0.00 & 50.82 & 1.00 & \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.075 & 88 & 6,094 & 0.00 & 46.35 & 1.00 & \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.715 & 63 & 176,600 & 0.00 & 46.18 & 1.00 & \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.480 & 75 & 654,900 & 0.00 & 41.00 & 1.00 & \\
    \hline 47 & Toluene & 108-88-3 & 5.715 & 92 & 1,330,000 & 0.00 & 60.04 & 1.00 & \\
    \hline 48 & trans-1,3- & 10061- & 6.201 & 75 & 579,900 & 0.00 & 42.46 & 1.00 & \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.361 & 83 & 390,000 & 0.00 & 53.45 & 1.00 & \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.466 & 69 & 772,000 & 0.00 & 44.96 & 1.00 & \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.106 & 164 & 488,500 & 0.00 & 69.58 & 1.00 & \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.531 & 129 & 398,500 & 0.00 & 50.23 & 1.00 & \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.646 & 76 & 873,500 & 0.00 & 47.05 & 1.00 & \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.746 & 107 & 468,600 & 0.00 & 52.59 & 1.00 & \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.476 & 91 & 2,451,000 & 0.00 & 54.00 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.491 & 131 & 402,900 & 0.00 & 50.67 & 1.00 & \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.386 & 112 & 1,418,000 & 0.00 & 53.33 & 1.00 & \\
    \hline 58 & m,p-Xylene & 106-42- & 7.661 & 106 & 1,928,000 & 0.00 & 100.45 & 2.00 & \\
    \hline 59 & o-Xylene & 95-47-6 & 8.171 & 106 & 943,600 & 0.00 & 51.71 & 1.00 & \\
    \hline 60 & Bromoform & 75-25-2 & 8.216 & 173 & 230,700 & 0.00 & 50.99 & 1.00 & \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.196 & 100 & 96,350 & 0.00 & 49.34 & 5.00 & \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.161 & 43 & 434,100 & 0.00 & 44.47 & 5.00 & \\
    \hline 63 & Styrene & 100-42-5 & 8.246 & 104 & 1,636,000 & 0.00 & 54.59 & 1.00 & \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.587 & 105 & 2,381,000 & 0.00 & 52.51 & 1.00 & \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.937 & 156 & 584,100 & 0.00 & 48.01 & 1.00 & \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.982 & 75 & 91,610 & 0.00 & 31.22 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.292 & 53 & 189,000 & 0.00 & 39.25 & 1.00 & \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.042 & 91 & 2,826,000 & 0.00 & 54.44 & 1.00 & \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.137 & 83 & 642,700 & 0.00 & 46.11 & 1.00 & \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.217 & 77 & 95,460 & 0.00 & 44.39 & 1.00 & \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.257 & 105 & 2,148,000 & 0.00 & 51.04 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.147 & 91 & 1,779,000 & 0.00 & 52.62 & 1.00 & \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.307 & 91 & 1,839,000 & 0.00 & 50.75 & 1.00 & \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.517 & 119 & 1,897,000 & 0.00 & 44.66 & 1.00 & \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.582 & 105 & 2,243,000 & 0.00 & 50.81 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.667 & 105 & 2,601,000 & 0.00 & 51.50 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.802 & 119 & 2,217,000 & 0.00 & 49.32 & 1.00 & \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.867 & 146 & 1,209,000 & 0.00 & 52.03 & 1.00 & \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.867 & 146 & 1,209,000 & 0.00 & 52.03 & 1.00 & \\
    \hline 80 & n-Butyibenzene & 104-51-8 & 10.117 & 91 & 2,037,000 & 0.00 & 52.51 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.172 & 146 & 1,176,000 & 0.00 & 47.91 & 1.00 & \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.732 & 75 & 116,800 & 0.00 & 37.08 & 1.00 & \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.163 & 180 & 833,300 & 0.00 & 48.47 & 1.00 & \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.153 & 225 & 319,800 & 0.00 & 52.03 & 1.00 & \\
    \hline 85 & Naphthalene & 91-20-3 & 11.363 & 128 & 2,589,000 & 0.00 & 44.15 & 1.00 & \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.473 & 180 & 837,400 & 0.00 & 48.20 & 1.00 & \\
    \hline
    \end{tabular}

    \section*{Quantitation Report}

    File Name:
    Sample ID:
    Description:
    Inject Date/Time:
    GC Method:
    Quantify Method:
    Calibration File:
    GC Column:
    Dilution:
    Soil Extract Vol: Soil Aliquot Vol:
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|}
    \hline\(\#\) & \multicolumn{1}{|c|}{ Internal Standards } & \multicolumn{1}{c|}{ CAS } & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & RT Dv & Man \\
    \hline 1 & Fluorobenzene & \(363-72-4\) & 4.100 & 96 & \(1,508,000\) & 50.00 & -0.01 & \\
    \hline 2 & Chlorobenzene-d5 & \(3114-55-4\) & 7.371 & 117 & \(1,299,000\) & 50.00 & 0.00 & \\
    \hline 3 & \(1,4-\) Dichiorobenzene-D4 & \(3855-82-1\) & 9.857 & 152 & 753,200 & 50.00 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|}
    \hline\(\#\) & Surrogate Compounds & \multicolumn{1}{c|}{ CAS } & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & \% Rec & RT Dv & Man \\
    \hline 4 & Dibromofluoromethane & \(1868-53-7\) & 3.405 & 113 & 272,600 & 50.00 & 40.33 & 80.66 & 0.00 & \\
    \hline 5 & Toluene-d8 & \(2037-26-5\) & 5.665 & 98 & \(1,605,000\) & 50.00 & 50.02 & 100.0 & 0.01 & \\
    \hline 6 & Bromofluorobenzene & \(460-00-4\) & 8.867 & 95 & 723,800 & 50.00 & 51.74 & 103.5 & 0.01 & \\
    \hline 7 & \(1,2-\) Dichloroethane-d4 & \(17060-\) & 3.845 & 102 & 108,300 & 50.00 & 48.59 & 97.18 & 0.00 & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & \(\mathrm{m} / \mathrm{z}\) & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 8 & Dichlorodifluoromethane & 75-71-8 & 0.869 & 85 & 26.36 & 0.00 & 1.60 & 1.00 & X \\
    \hline 9 & Chloromethane & 74-87-3 & 0.959 & 50 & 2,382 & 0.00 & 0.42 & 1.00 & \\
    \hline 10 & Vinyl Chloride & 75-01-4 & 0.989 & 62 & 21.18 & 0.00 & 0.00 & 1.00 & X \\
    \hline 11 & Bromomethane & 74-83-9 & 1.164 & 94 & 2,727 & 0.00 & 0.00 & 1.00 & \\
    \hline 12 & Chloroethane & 75-00-3 & 1.234 & 64 & 104.4 & 0.00 & 0.02 & 1.00 & X \\
    \hline 13 & Trichlorofluoromethane & 75-69-4 & 1.309 & 101 & 13.47 & 0.00 & 0.00 & 1.00 & X \\
    \hline 14 & 1,1-Dichloroethene & 75-35-4 & 1.594 & 96 & 5.128 & 0.00 & 0.00 & 1.00 & X \\
    \hline 15 & Carbon disulfide & 75-15-10 & 1.519 & 76 & 1,044 & 0.00 & 0.49 & 1.00 & \\
    \hline 16 & lodomethane & 74-88-4 & 1.669 & 142 & 289.0 & 0.00 & 1.42 & 1.00 & X \\
    \hline 17 & Acrolein & 107-05-1 & 1.849 & 56 & 170,400 & 0.00 & 23782.94 & 1.00 & \\
    \hline 18 & Allyl Chloride & 107-05-1 & 1.879 & 76 & 2.929 & 0.00 & 0.00 & 1.00 & \(X\) \\
    \hline 19 & Methyl Tert-butyl Ether & 1634-04-4 & 2.244 & 73 & 2,153,000 & 0.00 & 0.00 & 1.00 & \\
    \hline 20 & Methylene Chloride & 75-09-2 & 1.989 & 84 & 198.5 & 0.00 & 0.00 & 1.00 & X \\
    \hline 21 & trans-1,2 Dichloroethene & 156-60-5 & 2.084 & 96 & 11.87 & 0.00 & 0.00 & 1.00 & X \\
    \hline 22 & Acetone & 67-64-1 & 2.244 & 58 & 32,910 & 0.00 & 26.07 & 5.00 & \\
    \hline 23 & Acrylonitrile & 75-34-3 & 2.614 & 53 & 40.99 & 0.00 & 0.43 & 1.00 & \(x\) \\
    \hline 24 & 1,1,-Dichloroethane & 75-34-3 & 2.599 & 63 & 18.89 & 0.00 & 0.00 & 1.00 & X \\
    \hline 25 & Chloroprene & 107-13-1 & 2.549 & 53 & 6.781 & 0.00 & 0.00 & 1.00 & X \\
    \hline 26 & cis-1,2,-Dichloroethene & 156-59-2 & 2.989 & 96 & 1.968 & 0.00 & 0.00 & 1.00 & X \\
    \hline 27 & 2,2,-Dichloropropane & 594-20-7 & 3.094 & 77 & 3.618 & 0.00 & 0.00 & 1.00 & X \\
    \hline 28 & 2-Butanone & 78-93-3 & 3.570 & 72 & 1,668 & 0.00 & 2.97 & 5.00 & \\
    \hline 29 & Propionitrile & 107-02-8 & 3.785 & 54 & 16.99 & 0.00 & 2.01 & 1.00 & X \\
    \hline 31 & Chloroform & 67-66-3 & 3.280 & 83 & 1.327 & 0.00 & 0.00 & 1.00 & X \\
    \hline 32 & Carbon tetrachloride & 56-23-5 & 3.314 & 117 & 8.064 & 0.00 & 2.55 & 1.00 & X \\
    \hline 33 & Vinyl Acetate & 108-05-4 & 2.829 & 43 & 1,357,000 & 0.00 & 0.00 & 1.00 & \\
    \hline
    \end{tabular}

    Quantitation Report
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \# & Target Compounds & CAS & RT & m/z & Area & Spk Amt & ug/L & Report Limit & Man \\
    \hline 34 & 1,1,1-Trichloroethane & 71-55-6 & 3.405 & 97 & 18.10 & 0.00 & 0.00 & 1.00 & X \\
    \hline 35 & 1,1-Dichloropropene & 563-58-6 & 3.390 & 75 & 199.7 & 0.00 & 0.02 & 1.00 & X \\
    \hline 36 & Benzene & 71-43-2 & 3.710 & 78 & 181.7 & 0.00 & 0.00 & 1.00 & X \\
    \hline 37 & Methacrylonitrile & 126-98-7 & 3.730 & 41 & 1,334 & 0.00 & 0.18 & 1.00 & \\
    \hline 38 & 1,2-Dichloroethane & 107-06-2 & 3.915 & 62 & 60.58 & 0.00 & 0.00 & 1.00 & X \\
    \hline 39 & Trichloroethene & 79-01-6 & 4.260 & 95 & 4.767 & 0.00 & 0.00 & 1.00 & X \\
    \hline 40 & 1,2-Dichloropropane & 78-87-5 & 4.760 & 63 & 12.42 & 0.00 & 0.00 & 1.00 & X \\
    \hline 41 & Bromodichloromethane & 75-27-4 & 4.810 & 83 & 17.90 & 0.00 & 1.98 & 1.00 & X \\
    \hline 42 & Methyl methacrylate & 80-62-6 & 5.075 & 69 & 13.77 & 0.00 & 1.59 & 1.00 & X \\
    \hline 43 & Dibromomethane & 79-95-3 & 4.645 & 93 & 12.42 & 0.00 & 0.00 & 1.00 & X \\
    \hline 44 & 1,4-Dioxane & 123-91-1 & 5.075 & 88 & 16.47 & 0.00 & 1.90 & 1.00 & X \\
    \hline 45 & 2-Chloroethyl Vinyl Ether & 110-75-8 & 5.715 & 63 & 55.43 & 0.00 & 1.15 & 1.00 & X \\
    \hline 46 & cis-1,3-Dichloropropene & 10061- & 5.490 & 75 & 33.21 & 0.00 & 2.24 & 1.00 & X \\
    \hline 47 & Toluene & 108-88-3 & 5.715 & 92 & 313.3 & 0.00 & 0.00 & 1.00 & X \\
    \hline 48 & trans-1,3- & 10061- & 6.201 & 75 & 39.08 & 0.00 & 1.86 & 1.00 & X \\
    \hline 49 & 1,1,2-Trichloroethane & 79-00-5 & 6.361 & 83 & 22.34 & 0.00 & 0.00 & 1.00 & X \\
    \hline 50 & Ethyl methacrylate & 97-63-2 & 6.431 & 69 & 35.53 & 0.00 & 0.81 & 1.00 & X \\
    \hline 51 & Tetrachloroethene & 79-01-6 & 6.101 & 164 & 21.12 & 0.00 & 0.00 & 1.00 & X \\
    \hline 52 & Chlorodibromomethane & 124-48-1 & 6.511 & 129 & 0.00 & 0.00 & 2.85 & 1.00 & X \\
    \hline 53 & 1,3-Dichloropropane & 142-28-9 & 6.646 & 76 & 19.94 & 0.00 & 0.00 & 1.00 & X \\
    \hline 54 & 1,2-Dibromoethane & 100-41-4 & 6.746 & 107 & 13.10 & 0.00 & 0.00 & 1.00 & X \\
    \hline 55 & Ethylbenzene & 100-41-4 & 7.371 & 91 & 1,509 & 0.00 & 0.04 & 1.00 & \\
    \hline 56 & 1,1,1,2- & 630-20-6 & 7.486 & 131 & 9.443 & 0.00 & 2.10 & 1.00 & X \\
    \hline 57 & Chlorobenzene & 108-90-7 & 7.381 & 112 & 86.97 & 0.00 & 0.00 & 1.00 & X \\
    \hline 58 & m,p-Xylene & 106-42- & 7.671 & 106 & 216.7 & 0.00 & 0.01 & 2.00 & X \\
    \hline 59 & o-Xylene & 95-47-6 & 8.171 & 106 & 22.91 & 0.00 & 0.00 & 1.00 & X \\
    \hline 60 & Bromoform & 75-25-2 & 8.216 & 173 & 13.11 & 0.00 & 1.63 & 1.00 & X \\
    \hline 61 & 4-Methyl-2-pentanone & 108-10-1 & 6.206 & 100 & 7.530 & 0.00 & 1.08 & 5.00 & X \\
    \hline 62 & 2-Hexanone & 591-78-6 & 7.131 & 43 & 1,151 & 0.00 & 1.56 & 5.00 & \\
    \hline 63 & Styrene & 100-42-5 & 8.261 & 104 & 18.56 & 0.00 & 0.00 & 1.00 & X \\
    \hline 64 & Isopropylbenzene & 98-82-8 & 8.597 & 105 & 114.5 & 0.00 & 0.00 & 1.00 & X \\
    \hline 65 & Bromobenzene & 108-86-1 & 8.932 & 156 & 16.75 & 0.00 & 0.00 & 1.00 & X \\
    \hline 66 & cis-1,4-dichloro-2- & 1476-11-5 & 8.867 & 75 & 355,100 & 0.00 & 115.94 & 1.00 & \\
    \hline 67 & trans-1,4-dichloro-2- & 110-57-6 & 9.297 & 53 & 6.646 & 0.00 & 1.71 & 1.00 & X \\
    \hline 68 & n-Propylbenzene & 103-65-1 & 9.052 & 91 & 740.3 & 0.00 & 0.00 & 1.00 & X \\
    \hline 69 & 1,1,2,2- & 79-34-5 & 9.117 & 83 & 19.03 & 0.00 & 0.00 & 1.00 & X \\
    \hline 70 & 1,2,3-Trichloropropane & 96-18-4 & 9.237 & 77 & -5.480 & 0.00 & 0.00 & 1.00 & X \\
    \hline 71 & 1,3,5-trimethylbenzene & 108-67-8 & 9.262 & 105 & 2,642 & 0.00 & 0.00 & 1.00 & \\
    \hline 72 & 2-Chlorotoluene & 95-49-8 & 9.152 & 91 & 233.9 & 0.00 & 0.00 & 1.00 & X \\
    \hline 73 & 4-Chlorotoluene & 106-43-4 & 9.312 & 91 & 257.1 & 0.00 & 0.00 & 1.00 & X \\
    \hline 74 & tert-Butylbenzene & 98-06-6 & 9.527 & 119 & 86.24 & 0.00 & 0.00 & 1.00 & X \\
    \hline 75 & 1,2,4-Trimethylbenzene & 95-63-6 & 9.587 & 105 & 7,142 & 0.00 & 0.00 & 1.00 & \\
    \hline 76 & sec-Butylbenzene & 135-98-8 & 9.587 & 105 & 7,142 & 0.00 & 0.00 & 1.00 & \\
    \hline 77 & 4-Isopropyltoluene & 99-87-6 & 9.792 & 119 & 516.9 & 0.00 & 0.00 & 1.00 & X \\
    \hline 78 & 1,3-Dichlorobenzene & 541-73-1 & 9.862 & 146 & 934.7 & 0.00 & 0.00 & 1.00 & X \\
    \hline 79 & 1,4-Dichlorobenzene & 106-46-7 & 9.862 & 146 & 929.3 & 0.00 & 0.00 & 1.00 & X \\
    \hline 80 & n-Butylbenzene & 104-51-8 & 10.122 & 91 & 1,229 & 0.00 & 0.00 & 1.00 & \\
    \hline 81 & 1,2-Dichlorobenzene & 95-50-1 & 10.167 & 146 & 62.93 & 0.00 & 0.00 & 1.00 & X \\
    \hline 82 & 1,2-Dibromo-3- & 96-12-8 & 10.722 & 75 & 31.08 & 0.00 & 2.87 & 1.00 & X \\
    \hline 83 & 1,2,4-Trichlorobenzene & 120-82-1 & 11.163 & 180 & 313.5 & 0.00 & 0.00 & 1.00 & X \\
    \hline 84 & Hexachlorobutadiene & 87-68-3 & 11.143 & 225 & 0.00 & 0.00 & 0.00 & 1.00 & X \\
    \hline 85 & Naphthalene & 91-20-3 & 11.363 & 128 & 559.6 & 0.00 & 0.01 & 1.00 & X \\
    \hline 86 & 1,2,3-Trichlorobenzene & 87-61-6 & 11.463 & 180 & 84.85 & 0.00 & 0.00 & 1.00 & X \\
    \hline
    \end{tabular}
    \begin{tabular}{c}
    \(\bar{W}\) \\
    \multirow{2}{\omega}{} \\
    0 \\
    0
    \end{tabular}
    
    
    Range
    
    Project:
    
    VOAx
    ICAL Midpoint
    ug/L
    
    Instrument:
    Clarus 600 T
    
    ICV/CCV Check Calculations
    Water
    Chlorobenzene-d5
    1,4-Dichlorobenzene-D4 Dibromofluoromethane Toluene-d8
    Bromoflurorobenzene Dichlorodifluoromethane Chloromethane
    Compound
    Fluorobenzene
    Bromomethane
    Chloroethane
    Trichlorofluoromethane 1,1-Dichloroethene
    Carbon disulfide lodomethane Acrolein
    Allyl Chloride
    Methyl Tert-butyl Ether
    Methylene Chloride
    trâes-1,2 Dichloroethene
    Acętone
    Acrivylonitrile
    1,1,-Dichloroethane
    
    
    
    
    
    
    Chloroprene
    cis-1,2,-Dichloroethene
    2,2,-Dichloropropane
    2-Butanone
    Propionitrile
    Bromochloromethane
    Chloroform
    Carbon tetrachloride
    Vinyl Acetate
    1,1,1-Trichloroethane
    1,1-Dichloropropene
    Benzene
    Methacrylonitrile
    1,2-Dichloroethane
    Trichloroethene
    1,2-Dichloropropane Bromodichloromethane Methyl methacrylate Dibromomethane 2-Chloroethyl Vinyl Ether
    cis-1,3-Dichloropropene cis-1,3-Dichloropropene
    Toluene
    trans-1,3-Dichloropropene trans-1,3-Dichloropropene
    1,1,2-Trichloroethane 1,1,2-Trichloroethane
    Ethyl methacrylate Tetrachloroethene
    Chlorodibromomethane Chlorodibromomethane
    1,3-Dichloropropane 1,3-Dichloropropane
    1,2-Dibromoethane
    Etîlbenzene
    1,fot 1,2 -Tetrachloroethane
    Chlorobenzene m, p -Xylene
    
    
    
    
    
    
    o-Xylene
    Bromoform
    
    
    
    
    
    
    
     N N N N

    \section*{
    }
     ※.
    

    2609 North River Road, Port Allen, Louisiana 70767
    1 (800) 401-4277 FAX (225) 381-2996

    \title{
    Standard Information
    }

    SDG\# ARS1-17-00215
    COC AQUEOUS SAMPLES

    \section*{Certificate of Analysis}
    

    VOC Mixture
    \begin{tabular}{lllll} 
    Product Number: & DWM-588 & & Page: & 1 of 3 \\
    Lot Number: & CP-0691 & Lot Issue Date: & 18-Feb-2016 & Expiration Date: \\
    31-Mar-2019
    \end{tabular}

    This ISO Guide 34 Reference Material (RM) was manufactured and verified in accordance with ULTRA's ISO 9001 registered quality system, and the analyte concentrations were verified by our ISO 17025 accredited laboratory. The true value and uncertainty value at the \(95 \%\) confidence level for each analyte, determined gravimetrically, is listed below.
    Analyse
    bromochloromethane
    bromodichloromethane
    bromoform
    carbon tetrachloride
    chloroform
    dibromochloromethane
    dibromomethane
    methylene chloride
    trichlorofluoromethane
    1,2-dibromoethane
    1,1-dichloroethane
    1,2-dichloroethane
    1,1-dichloroethene
    cis-1,2-dichloroethene
    trans-1,2-dichloroethene
    1,1,1,2-tetrachloroethane
    1,1,2,2-tetrachloroethane
    tetrachloroethene
    1,1,1-trichloroethane
    1,1,2-trichloroethane
    trichloroethene
    1,2-dibromo-3-chloropropane
    1,2-dichloropropane
    1,3-dichloropropane
    2,2-dichloropropane
    1,1-dichloropropene
    cis-1,3-dichloropropene
    \begin{tabular}{ll} 
    CAS\# & Analyte Lot \\
    000074-97-5 & NT01833 \\
    \(000075-27-4\) & RM06861 \\
    \(000075-25-2\) & RM07516 \\
    \(000056-23-5\) & RM07576 \\
    \(000067-66-3\) & RM09609 \\
    \(000124-48-1\) & RM04265 \\
    \(000074-95-3\) & NT00378 \\
    \(000075-09-2\) & RM09575 \\
    \(000075-69-4\) & RM00017 \\
    \(000106-93-4\) & RM00018 \\
    \(000075-34-3\) & RM09331 \\
    \(000107-06-2\) & RM04655 \\
    \(000075-35-4\) & RM09189 \\
    \(000156-59-2\) & RM09172 \\
    \(000156-60-5\) & RM07565 \\
    \(000630-20-6\) & RM00024 \\
    \(000079-34-5\) & RM02540 \\
    \(000127-18-4\) & RM06491 \\
    \(000071-55-6\) & RM00027 \\
    \(000079-00-5\) & RM01175 \\
    \(000079-01-6\) & RM06644 \\
    \(000096-12-8\) & RM03703 \\
    \(000078-87-5\) & RM06643 \\
    \(000142-28-9\) & RM02080 \\
    \(000594-20-7\) & NT01867 \\
    \(000563-58-6\) & RM10945 \\
    \(010061-01-5\) & RM06629
    \end{tabular}
    \[
    \begin{gathered}
    \text { True Value } \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2007 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL} \\
    2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}
    \end{gathered}
    \]

    ULTRA uses balances calibrated with weights traceable to NIST in compliance with ANSI/NCSL Z-540-1 and ISO 9001, and calibrated Class A glassware in the manufacturing of these standards.

    \section*{Initial Calibenctiou Std.}
    

    Certificate of Analysis

    \section*{VOC Mixture}

    \section*{Product Number: DWM-588}

    Lot Number: CP-0691
    \begin{tabular}{clll} 
    VOC Mixture & & \\
    & Page: & 2 of 3 \\
    Lot Issue Date: & 18-Feb-2016 & Expiration Date: & 31-Mar-2019
    \end{tabular}

    This ISO Guide 34 Reference Material (RM) was manufactured and verified in accordance with ULTRA's ISO 9001 registered quality system, and the analyte concentrations were verified by our ISO 17025 accredited laboratory. The true value and uncertainty value at the \(95 \%\) confidence level for each analyte, determined gravimetrically, is listed below.
    \begin{tabular}{|c|c|c|c|}
    \hline trans-1,3-dichloropropene & 010061-02-6 & RM01443 & \(2006 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline hexachiorobutadiene & 000087-68-3 & RM00438 & \(2007 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,2,3-trichloropropane & 000096-18-4 & NT00408 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline naphthalene & 000091-20-3 & RM02406 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline benzene & 000071-43-2 & RM03830 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline n-butylbenzene & 000104-51-8 & NT01633 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline sec-butylbenzene & 000135-98-8 & NT01548 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline tert-butylbenzene & 000098-06-6 & NT01547 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline ethylbenzene & 000100-41-4 & RM00783 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline isopropylbenzene & 000098-82-8 & RM00835 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 4-isopropyltoluene & 000099-87-6 & NT01494 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline n-propylbenzene & 000103-65-1 & NT02060 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline styrene & 000100-42-5 & RM04974 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline toluene & 000108-88-3 & RM10201 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,2,4-trimethylbenzene & 000095-63-6 & RM06731 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,3,5-trimethylbenzene & 000108-67-8 & NT01632 & \(2006 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 0 -xylene & 000095-47-6 & NT00774 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline m-xylene & 000108-38-3 & RM00053 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline p -xylene & 000106-42-3 & RM02647 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,4-dichlorobenzene & 000106-46-7 & RM07548 & \(2006 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline bromobenzene & 000108-86-1 & NT00251 & \(2005 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline chlorobenzene & 000108-90-7 & NT01538 & \(2000 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 2-chlorotoluene & 000095-49-8 & RM03906 & \(2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 4-chlorotoluene & 000106-43-4 & RM01866 & \(2009 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,2-dichlorobenzene & 000095-50-1 & RM00060 & \(2003 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,3-dichlorobenzene & 000541-73-1 & NT00356 & \(2004 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,2,3-trichlorobenzene & 000087-61-6 & NT00358 & \(2003 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline 1,2,4-trichlorobenzene & 000120-82-1 & RM00063 & \(2008 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    \hline
    \end{tabular}

    ULTRA uses balances calibrated with weights traceable to NIST in compliance with ANSI/NCSL Z-540-1 and ISO 9001, and calibrated Class A glassware in the manufacturing of these standards.
    

    Certificate of Analysis

    \section*{VOC Mixture}
    \begin{tabular}{llll} 
    Product Number: & DWM-588 & Page: & 3 of 3 \\
    Lot Number: & CP-0691 & Lot Issue Date: & 18-Feb-2016
    \end{tabular}

    This ISO Guide 34 Reference Material (RM) was manufactured and verified in accordance with ULTRA's ISO 9001 registered quality system, and the analyte concentrations were verified by our ISO 17025 accredited laboratory. The true value and uncertainty value at the \(95 \%\) confidence level for each analyte, determined gravimetrically, is listed below.
    \begin{tabular}{llll} 
    bromomethane & \(000074-83-9\) & RM00064 & \(2000 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    chloroethane & \(000075-00-3\) & RM00065 & \(2006 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    chloromethane & \(000074-87-3\) & RM05290 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    dichlorodifluoromethane & \(000075-71-8\) & RM09113 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\) \\
    vinyl chloride & \(000075-01-4\) & RM05458 & \(2010 \pm 10 \mu \mathrm{~g} / \mathrm{mL}\)
    \end{tabular}

    Matrix: methanol (methyl alcohol)

    Storage: Store Frozen \(\left(-25^{\circ}\right.\) to \(\left.-10^{\circ} \mathrm{C}\right)\).

    ULTRA uses balances calibrated with weights traceable to NIST in compliance with ANSI/NCSL 2-540-1 and ISO 9001, and calibrated Class A glassware in the manufacturing of these standards.

    Quality Assuranco Manager
    

    FOR LABORATORY USE ONLY-READ SDS PRIOR TO USE.
    This Reference Material is intended for Laboratory Use Only as a standard for the qualitative and/or quantitative determination of the analyte(s) listed.
    \begin{tabular}{|c|c|c|}
    \hline Catalog No. : & 30633 & Lot No.: A0115742 \\
    \hline \multirow[t]{2}{*}{Description :} & 8260B Calibration Mix \#1 & \\
    \hline & 8260B MegaMix Calibratio & L, P\&T Methanol, 1mLampul \\
    \hline Container Size : & 2 mL & Pkg Amt: \(>1 \mathrm{~mL}\) \\
    \hline Expiration Date : & December 31, 2018 & Storage: \(0^{\circ} \mathrm{C}\) or colder \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|}
    \hline Elution Order & Compound . & Grav. Conc. (weightvolume) & \multicolumn{4}{|c|}{Expanded Uncertainty (95\% C.L.; K=2)} \\
    \hline 1 & \begin{tabular}{ll} 
    Diethyl ether (ethyl ether) \\
    CAS \# & \(60-29-7\) \\
    Purity & \(99 \%\)
    \end{tabular} & 2,016.7 \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \begin{tabular}{l}
    14.3913 121.9622 \\
    122.2504
    \end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 2 & \begin{tabular}{l}
    1,1,2-Trichlorotrifluoroethane (CFC-113) \\
    CAS \# 76-13-1 \\
    (Lot 00001135) \\
    Purity 99\%
    \end{tabular} & 2,004.3 \(\mu \mathrm{g} / \mathrm{mL}\) & \(+/ /\)
    \(+/\)
    \(+/\) & \begin{tabular}{l}
    14.3028 \\
    121.2123 \\
    121.4988
    \end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 3 & \(\begin{array}{lll}\text { 1,1-dichloroethene } \\ \text { CAS \# } & 75-35-4 \\ \text { Purity } & 99 \% & \text { (Lot SHBD6170V) }\end{array}\) & 2,002.3 \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/ \\
    & +/
    \end{aligned}
    \] & \begin{tabular}{l}
    14.2204 121.0822 \\
    121.3683
    \end{tabular} & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 4 & \begin{tabular}{ll} 
    Acetonitrile & \\
    CAS \# & \(75-05-8\) \\
    Purity & \(99 \%\)
    \end{tabular}\(\quad\) (Lot SHBB3177V) & 2,005.2 \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/ \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.3093 \\
    & 121.2668 \\
    & 121.5533
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 5 & \begin{tabular}{ll} 
    Iodomethane (methyl iodide) \\
    CAS \# & \(74-88-4\) \\
    Purity & \(99 \%\)
    \end{tabular}\(\quad\) (Lot SHBF2149V) & \(2,010.5 \quad \mu \mathrm{~g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/ \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.3471 \\
    & 121.5873 \\
    & 121.8746
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 6 & \begin{tabular}{lll} 
    Allyl chloride ( 3 -chloropropene) ) \\
    CAS \# & \(107-05-1\) & \\
    Purity & \(99 \%\) & \\
    \hline
    \end{tabular} & \(2,000.0 \quad \mu \mathrm{~g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/ \\
    & +/
    \end{aligned}
    \] &  & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 7 & \begin{tabular}{lll} 
    Carbon disulfide & \\
    CAS \# & \(75-15-0\) & (Lot C30Y997) \\
    Purity & \(98 \%\) &
    \end{tabular} & \(2,014.0 \quad \mu \mathrm{~g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/ \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.3724 \\
    & 121.8018 \\
    & 122.0896
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed Stressed
    \end{tabular} \\
    \hline & \[
    \text { SECONV SOMRCE } Q A / C
    \] & \[
    \left.+)_{0}\right)
    \] & & & & \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline 24 & \begin{tabular}{l}
    carbon \\
    CAS \# \\
    Purity
    \end{tabular} & rachloride
    \[
    \begin{aligned}
    & 56-23-5 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBC1410V) & 2,004.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \sim \\
    & +/ \sim \\
    & +/ /
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2341 \\
    & 121.1983 \\
    & 121.4847
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 5 & \begin{tabular}{l}
    \[
    1,2-\mathrm{Dicl}
    \] \\
    CAS \# \\
    Purity
    \end{tabular} & oroethane
    \[
    \begin{aligned}
    & 107-06-2 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBC6595V) & 2,001.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/ \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2138 \\
    & 121.0253 \\
    & 121.3113
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed Stressed
    \end{tabular} \\
    \hline 26 & \begin{tabular}{l}
    Benzen \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & 71-43-2 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBF0424V) & 2,000.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2063 \\
    & 120.9580 \\
    & 121.2438
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 27 & \begin{tabular}{l}
    2-Chlor \\
    CAS \# \\
    Purity
    \end{tabular} & thanol
    \[
    \begin{aligned}
    & 107-07-3 \\
    & 99 \%
    \end{aligned}
    \] & (Lot STBC2079V) & 2,000.5 & \(\mu \mathrm{g} / \mathrm{ml}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2757 \\
    & 120.9825 \\
    & 121.2684
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 28 & \begin{tabular}{l}
    Trichlor \\
    CAS \# \\
    Purity
    \end{tabular} & thene
    \[
    \begin{aligned}
    & 79-01-6 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBF0943V) & 2,011.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/ / \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2883 \\
    & 121.6603 \\
    & 121.9478
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 29 & \begin{tabular}{l}
    1,2-Dic \\
    CAS \# \\
    Purity
    \end{tabular} & oropropane
    \[
    \begin{aligned}
    & 78-87-5 \\
    & 99 \%
    \end{aligned}
    \] & (Lot 01113D0V) & 2,003.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2288 \\
    & 121.1535 \\
    & 121.4399
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed Stressed
    \end{tabular} \\
    \hline 30 & \begin{tabular}{l}
    Methyl \\
    CAS \# \\
    Purity
    \end{tabular} & ethacrylate
    \[
    \begin{aligned}
    & 80-62-6 \\
    & 99 \%
    \end{aligned}
    \] & (Lot MKBN8882V) & 2,008.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/ /
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.3321 \\
    & 121.4603 \\
    & 121.7473
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 31 & bromodi CAS \# Purity & hioromethane
    \[
    \begin{aligned}
    & 75-27-4 \\
    & 99 \%
    \end{aligned}
    \] & (Lot 150916JLM) & 2,000.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/ /
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2078 \\
    & 120.9745 \\
    & 121.2604
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 32 & \begin{tabular}{l}
    1,4-Diox \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & 123-91-1 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBF2002V) & 2,001.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/= \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2857 \\
    & 121.0672 \\
    & 121.3533
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 33 & Dibromo CAS \# Purity & \begin{tabular}{l}
    methane \\
    74-95-3 \\
    99\%
    \end{tabular} & (Lot 10169264) & 2,001.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/=
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2124 \\
    & 121.0094 \\
    & 121.2953
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 34 & 2-Nitrop CAS \# Purity & pane
    \[
    \begin{aligned}
    & 79-46-9 \\
    & 97 \%
    \end{aligned}
    \] & (Lot BCBJ4343V) & 2,004.6 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.3050 \\
    & 121.2306 \\
    & 121.5171
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 35 & \begin{tabular}{l}
    cis-1,3-D \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & \text { chloropropene } \\
    & 10061-01-5 \\
    & 99 \%
    \end{aligned}
    \] & (Lot 22119) & 2,005.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2400 \\
    & 121.2491 \\
    & 121.5356
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 36 & Toluene CAS \# Purity & \[
    \begin{aligned}
    & 108-88-3 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBF7904V) & 2,001.2 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2133 \\
    & 121.0169 \\
    & 121.3029
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed Stressed
    \end{tabular} \\
    \hline 37 & \begin{tabular}{l}
    Ethyl me \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & \text { hacrylate } \\
    & 97-63-2 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBD9190V) & 2,004.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.3028 \\
    & 121.2123 \\
    & 121.4988
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed Stressed
    \end{tabular} \\
    \hline 38 & \begin{tabular}{l}
    trans-1,3 \\
    CAS \# \\
    Purity
    \end{tabular} & \begin{tabular}{l}
    ichloropropen
    10061-02-6 \\
    99\%
    \end{tabular} & (Lot C579534) & 2,002.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2243 \\
    & 121.1148 \\
    & 121.4011
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed Stressed
    \end{tabular} \\
    \hline 39 &  & \[
    \begin{aligned}
    & \text { hloroethane } \\
    & 79-00-5 \\
    & 99 \%
    \end{aligned}
    \] & (Lot FGB01) & 2,005.0 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2396 \\
    & 121.2454 \\
    & 121.5320
    \end{aligned}
    \] & \begin{tabular}{l}
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\) \\
    \(\mu \mathrm{g} / \mathrm{mL}\)
    \end{tabular} & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline
    \end{tabular}
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline 56 & \begin{tabular}{l}
    trans-1 \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & \text {-dichloro-2-butene } \\
    & 110-57-6 \\
    & 94 \%
    \end{aligned}
    \] & \begin{tabular}{l}
    (Lot MKBK0511V) \\
    \(4 \%\) cis; \(96 \%\) trans
    \end{tabular} & 1,986.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ / \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.1752 \\
    & 120.1303 \\
    & 120.4142
    \end{aligned}
    \] & \[
    \begin{aligned}
    & \mu \mathrm{g} / \mathrm{mL} \\
    & \mu \mathrm{~g} / \mathrm{mL} \\
    & \mu \mathrm{~g} / \mathrm{mL}
    \end{aligned}
    \] & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 7 & n-Prop CAS \# Purity & 103-65 99\% & (Lot MKBQ8049V) & 2,000.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/- \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 1.4 .2069 \\
    & 120.9625 \\
    & 121.2484
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 58 & Bromo CAS \# Purity & \[
    \begin{aligned}
    & \text { nzene } \\
    & 108-86-1 \\
    & 99 \%
    \end{aligned}
    \] & (Lot MKBD4032V) & 2,001.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/ .
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2138 \\
    & 121.0214 \\
    & 121.3075
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 59 & \[
    \begin{aligned}
    & 1,3,5-\mathrm{T} \\
    & \text { CAS } \\
    & \text { Purity }
    \end{aligned}
    \] & nethylbenzene
    \[
    108-67-8
    \]
    \[
    99 \%
    \] & (Lot BCBJ3305V) & 2,000.6 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2092 \\
    & 120.9821 \\
    & 121.2681
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 60 & \begin{tabular}{l}
    2-Chlo \\
    CAS \# \\
    Purity
    \end{tabular} & oluene
    \[
    95-49-8
    \]
    \[
    99 \%
    \] & (Lot MKBH8892V) & 2,000.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2108 \\
    & 120.9957 \\
    & 121.2817
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 61 & 4-Chlo CAS \# Purity & \begin{tabular}{l}
    oluene \\
    106-43-4 \\
    \(99 \%\)
    \end{tabular} & (Lot MKBB7205V) & 2,000.5 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2085 \\
    & 120.9761 \\
    & 121.2620
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 62 & \begin{tabular}{l}
    tert-Bu \\
    CAS \# \\
    Purity
    \end{tabular} & benzene 98-06-6 99\% & (Lot S52237V) & 2,001.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2124 \\
    & 121.0094 \\
    & 121.2953
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 63 & \[
    \begin{aligned}
    & \text { 1,2,4-T } \\
    & \text { CAS \# } \\
    & \text { Purity }
    \end{aligned}
    \] & nethylbenzene
    \[
    \begin{aligned}
    & 95-63-6 \\
    & 98 \%
    \end{aligned}
    \] & (Lot MKBJ6229V) & 2,000.4 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2078 \\
    & 120.9700 \\
    & 121.2559
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 54 & Pentac CAS \# Purity & \[
    \begin{aligned}
    & \text { roethane } \\
    & 76-01-7 \\
    & 99 \%
    \end{aligned}
    \] & (Lot 7GHYB) & 2,001.6 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2832 \\
    & 121.0460 \\
    & 121.3321
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 65 & \(\mathrm{sec}-\mathrm{Bu}\) CAS \# Purity & benzene 135-98-8 99\% & (Lot MKBK3151V) & 2,000.1 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/ \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2056 \\
    & 120.9519 \\
    & 121.2378
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 66 & \begin{tabular}{l}
    p-Isopr \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & \text { yltoluene ( } p \text {-Cymene) } \\
    & 99-87-6 \\
    & 99 \%
    \end{aligned}
    \] & (Lot MKBK4439V) & 2,000.7 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2095 \\
    & 120.9852 \\
    & 121.2711
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 67 & \[
    \begin{aligned}
    & \text { 1,3-Dicl } \\
    & \text { CAS \# } \\
    & \text { Purity }
    \end{aligned}
    \] & robenzene
    \[
    \begin{aligned}
    & 541-73-1 \\
    & 99 \%
    \end{aligned}
    \] & (Lot BCBC1891V) & 2,002.7 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/ \\
    & +/ \\
    & +/
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2233 \\
    & 121.1064 \\
    & 121.3926
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & Gravimetric Unstressed Stressed \\
    \hline 68 & \begin{tabular}{l}
    1,4-Dic \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & \text { orobenzene } \\
    & 106-46-7 \\
    & 99 \%
    \end{aligned}
    \] & (Lot MKBS1350V) & 2,002.6 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2224 \\
    & 121.0991 \\
    & 121.3853
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 69 & n-Buty CAS \# Purity & \[
    \begin{aligned}
    & \text { nzene } \\
    & 104-51-8 \\
    & 99 \%
    \end{aligned}
    \] & (Lot 09418JJV) & 2,000.3 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/ .
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2070 \\
    & 120.9640 \\
    & 121.2499
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 70 & \begin{tabular}{l}
    1,2-Dic \\
    CAS \# \\
    Purity
    \end{tabular} & \[
    \begin{aligned}
    & \text { orobenzene } \\
    & 95-50-1 \\
    & 99 \%
    \end{aligned}
    \] & (Lot SHBD7331V) & 2,002.9 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2248 \\
    & 121.1197 \\
    & 121.4059
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline 71 & \[
    \begin{aligned}
    & \text { 1,2-Dibr } \\
    & \text { CAS \# } \\
    & \text { Purity }
    \end{aligned}
    \] & no-3-chloropropane 96-12-8 99\% & (Lot 150618JLM) & 2,000.8 & \(\mu \mathrm{g} / \mathrm{mL}\) & \[
    \begin{aligned}
    & +/- \\
    & +/- \\
    & +/-
    \end{aligned}
    \] & \[
    \begin{aligned}
    & 14.2106 \\
    & 120.9942 \\
    & 121.2802
    \end{aligned}
    \] & \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) \(\mu \mathrm{g} / \mathrm{mL}\) & \begin{tabular}{l}
    Gravimetric \\
    Unstressed \\
    Stressed
    \end{tabular} \\
    \hline
    \end{tabular}
    - Iumn:
    \(\times 0.25 \mathrm{~mm} \times 1.4 \mu \mathrm{~m}\)
    \(k[x-502.2\) (cat.\#10916)

    \section*{Carrier Gas:}
    helium-constant pressure 30 psi
    Temp. Program:
    \(40^{\circ} \mathrm{C}\) (hold 6 min.) to \(240^{\circ} \mathrm{C}\)
    @ \(6^{\circ} \mathrm{C} / \mathrm{min}\). (hold 10 min .)
    ing. Temp:
    \(200^{\circ} \mathrm{C}\)
    Det. Temp:
    \(250^{\circ} \mathrm{C}\)
    Dat. Type:
    MS
    

    This chromatogram represents a general set of testing conditions chosen for product acceptance. For optimal results in your lab, conditions should be adjusted for your specific instrument, method, and application.

    Date Mixed: 02-Dec-2015 Balance: 1125113331

    Pinier 2 Pauline Jennifer L. Polling - QC Analyst
    
    

    \section*{QUUALITY CONTRTOL PROGRAMH}

    \section*{ANHRNCANRADHATHONSDJKICES RADNOACTHE RHFDRDNCE SOLUTHONS ANNULL ACTIVITY VERIDICATHON}
    
    
    American Radiation Services
    Baton Rouge Laboratory
    
    American Radiation Services
    Baton Rouge Laboratory
    Printed 5/11/2016 8:29 AM
    
    
    American Radiation Services
    Baton Rouge Laboratory
    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline & & LB Eff & Iculation Report & & & & & & & ment & LB4100-A & Detector & 82 \\
    \hline & & & & & & & & & & Slope & & Current Wt. & \\
    \hline & & & \(1-0\) & & & & & & & rcept & & Eff & 0.4193 \\
    \hline & ERNATONAL & & & & & & & & & \(y\) 2nd & & \(\triangle 2\) & \\
    \hline & & & & & & & & & & ly 3rd & & \(\triangle 3\) & \\
    \hline Point & Source ID & Certified DPM & Reference
    Date \(\quad \mathrm{mg}\) & Alpha Counts & Alpha BKG & Beta Counts & Beta
    BKG & Count Dur & \begin{tabular}{l}
    BKG \\
    Dur
    \end{tabular} & Measured CPM & Count Date & Decay Cort DPM & Instrument - Eff \\
    \hline 1 & 3589 & 21102.00 & 9/1/1999 \(\quad 0.10\) & 34 & 102 & 50695 & 804 & 4.00 & 900 & 6336.43 & 5/24/2013 & 15112.16 & 0.4193 \\
    \hline 2 & 3590 & 23574.00 & \(9 / 1 / 1999,19.90\) & 34 & 102 & 60840 & 804 & 4.00 & 900 & 7604.55 & 5/24/2013 & 16882.48 & 0.4504 \\
    \hline 3 & 3591 & 22242.00 & 9/1/1999 \(\quad 39.00\) & 37 & 102 & 57052 & 804 & 4.00 & 900 & 7131.05 & 5/24/2013 & 15928.57 & 0.4477 \\
    \hline 4 & 3592 & 21480.00 & 9/1/1999 \(\quad 61.40\) & 28 & 102 & 50868 & 804 & 4.00 & 900 & 6358.05 & 5/24/2013 & 15382.87 & 0.4133 \\
    \hline 5 & J593 & 23886.00 & 9/1/1999 \(\quad 78.20\) & 30 & 102 & 54390 & 804 & 4.00 & 900 & 6798.30 & 5/24/2013 & 17105.92 & 0.3974 \\
    \hline 6 & 3594 & 2313000 & 9/1/1999 103.60 & 34 & 102 & 52636 & 804 & 4.00 & 900 & 6579,05 & 5/24/2013 & 16564.51 & 0.3972 \\
    \hline 7 & 3595 & 22446.00 & 9/1/1999 \(\quad 269.00\) & 27 & 102 & 45484 & 804 & 4.00 & 900 & 5685.05 & 5/24/2013 & 16074.67 & 0.3537 \\
    \hline 8 & & & & & & & & & & & & & \\
    \hline 9 & & & & & & & & & & & & & \\
    \hline 10 & & & & & & & & & & & & & \\
    \hline 11 & & & & & & & & & & & & & \\
    \hline 12 & & & & & & & & & & & & & \\
    \hline 0.50
    0.45
    \(0.40{ }^{2}\)
    0.35
    0.30
    0.25
    0.20
    0.15
    0.10
    0.05
    0.00
    0.0 & \[
    00,0.4193
    \] &  & \[
    \begin{aligned}
    & 2953 \mathrm{E}-04 x+44134 \mathrm{E}-0 \\
    & 7.7695 \mathrm{E} 01
    \end{aligned}
    \] &  &  &  &  &  &  &  & 0.45,
    \(0.40,19\)
    0.35
    0.30
    0.25
    0.20
    0.25
    0.20
    0,05
    0,00
    0,1 &  & \[
    0.000
    \] \\
    \hline
    \end{tabular}
    \begin{tabular}{ll} 
    Sr-90 Verification \\
    & \multicolumn{1}{l}{} \\
    Tech: & J Byrd \\
    Pipet \# & \multicolumn{1}{l}{12332539} \\
    Scale ID & \\
    Standard \# & S-0313 \\
    & \\
    Sample ID & Std weight g. \\
    \hline S-0313-V1 & 1.0053 \\
    S-0313-V2 & 1.0091 \\
    S-0313-V3 & 1.0084 \\
    S-0313-V4 & 1.0109 \\
    S-0313-V5 & 1.0091 \\
    & \\
    Performed By: J Byrd
    \end{tabular}
    
    

    Tech: J Byrd
    Pipet \#
    Scale ID 12332539

    Standard \# S-0313
    Sample ID Std weight g.
    S-0313-V1 1.0053
    S-0313-V2 \(\quad 1.0041\)
    S-0313-V3 \(\quad 1.0084\)
    S-0313-V4 \(\quad 1.010{ }^{9} 9\)
    S-0313-V5 1.00cil
    Performed By: J Byrd
    

    Fax 661•257•8303

    \title{
    CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE
    }
    \begin{tabular}{ll} 
    Customer: & AMERICAN RADIATION SERVICE \\
    P.O. No.: & \(11-0530\) \\
    Catalog No.: & EG-ML
    \end{tabular}
    \begin{tabular}{lllll} 
    Source No.: & \multicolumn{1}{l}{\(1559-72-6\)} & & \\
    Reference Date: & \(1-\mathrm{Feb}-12\) & 12:00 & PST \\
    Contained Radioactivity: & \(2.549 \quad \mu \mathrm{Ci}\) & 94.31
    \end{tabular}
    kB
    Physical Description:
    A. Capsule type:
    B. Nature of active deposit:
    C. Active diameter/volume:
    D. Backing:
    E. Cover:

    Customer supplied tuna can
    Multinuclide distributed in \(1.5 \mathrm{~g} / \mathrm{cc}\) epoxy matrix Approximately 250 mL ( 375.2 grams) Steel Steel
    
    \begin{tabular}{cllcccc}
    \begin{tabular}{c} 
    Gamma-Ray \\
    Energy \((\mathrm{keV})\)
    \end{tabular} & Nuclide & \multicolumn{1}{c}{ Half-life } & \begin{tabular}{c} 
    Branching \\
    Ratio \((\%)\)
    \end{tabular} & \begin{tabular}{c} 
    Activity \\
    \((\mu \mathrm{Ci})\)
    \end{tabular} & \begin{tabular}{c} 
    Gammas \\
    per second
    \end{tabular} & \begin{tabular}{c} 
    Total \\
    Uncert.
    \end{tabular} \\
    47 & \(\mathrm{~Pb}-210\) & \(22.3 \pm 0.2\) years & 4.18 & 0.5834 & 902.3 & \(7.0 \%\) \\
    60 & \(\mathrm{Am}-241\) & \(432.17 \pm 0.66\) years & 36.0 & 0.05866 & 781.4 & \(3.0 \%\) \\
    88 & \(\mathrm{Cd}-109\) & \(462.6 \pm 0.7\) days & 3.63 & 0.5345 & 717.9 & \(3.1 \%\) \\
    122 & \(\mathrm{Co}-57\) & \(271.79 \pm 0.09\) days & 85.6 & 0.02013 & 637.6 & \(3.1 \%\) \\
    159 & \(\mathrm{Te}-123 \mathrm{~m}\) & \(119.7 \pm 0.1\) days & 84.0 & 0.02758 & 857.2 & \(3.0 \%\) \\
    320 & \(\mathrm{Cr}-51\) & \(27.706 \pm 0.007\) days & 9.86 & 0.6881 & 2510 & \(3.0 \%\) \\
    392 & Sn-113 & \(115.09 \pm 0.04\) days & 64.9 & 0.1048 & 2517 & \(3.0 \%\) \\
    514 & Sr-85 & \(64.849 \pm 0.004\) days & 98.4 & 0.1282 & 4668 & \(3.0 \%\) \\
    662 & \(\mathrm{Cs}-137\) & \(30.17 \pm 0.16\) years & 85.1 & 0.08881 & 2796 & \(3.0 \%\) \\
    898 & \(\mathrm{Y}-88\) & \(106.630 \pm 0.025\) days & 94.0 & 0.2068 & 7193 & \(3.0 \%\) \\
    1173 & Co-60 & \(5.272 \pm 0.001\) years & 99.86 & 0.1077 & 3979 & \(3.0 \%\) \\
    1333 & Co-60 & \(5.272 \pm 0.001\) years & 99.98 & 0.1077 & 3984 & \(3.0 \%\) \\
    1836 & \(\mathrm{Y}-88\) & \(106.630 \pm 0.025\) days & 99.4 & 0.2068 & 7606 & \(3.0 \%\)
    \end{tabular}

    Method of Calibration:
    This source was prepared from weighed aliquots of solutions whose concentrations in \(\mu \mathrm{Ci} / \mathrm{g}\) were determined by gamma spectrometry.

    Notes:
    - See reverse side for leak test(s) performed on this source.
    - EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
    - Nuclear data was taken from IAEA-TECDOC-619, 1991.
    - Overall uncertainty is calculated at the \(99 \%\) confidence level.
    - This source has a working life of 1 year.
    

    Quality Control
    \(\qquad\)
    Date
    EZIP Ref. No.:
    1559-72

    \title{
    
     ISO 9978:1992 OR DERIVED FROM THE LEAK TEST METHODS LISTED IN ISO 9978:1992. THE REGULATORY LIMMT TO F f LEAK TEST RESULTS IS <5 nCi ( 185 Bq) FOR BOTH ALPHA AND BETA-GAMMA ACTVITY. LEAK TEST RESULTS NTH BELOW CONTAINED <5 nCi (185 Bq) OF REMOVABLE ACTMITY UNLESS OTHERWISE STATED ON THIS CERTIFF:
    }

    \section*{}

    \section*{Standard Wipe Test}

    The source was wiped over its entire surface with a moistened filter paper disk. After drying, the disk was checked for activity using a scintillation detector.

    \section*{Special Wipe Test}

    The source was wiped over its entire surface with moistened polystyrene. The polystyrene was then dissolved in a liquid scintillation cocktail and counted in a liquid scintillation counter.

    \section*{Distilled Water Soak Test}

    The source was immersed in distilled water and maintained at \((50 \pm 5)^{\circ} \mathrm{C}\) for a minimum of four hours or room temperature \((20 \pm 5)^{\circ} \mathrm{C}\) for 24 hours. After removal of the source, the liquid was a) checked for activity using a liquid scintillation counter, or b) evaporated in a planchet and the residue checked for activity using a windowless proportional counter or end-window G.M. tube.

    \section*{Liquid Scintillation Soak Test}

    The source was immersed for a minimum of 3 hours at room temperature \((20 \pm 5)^{\circ} \mathrm{C}\) in a liquid scintillation cocktail, which does not attack the source's outer surface material. The source was stored away from light to avoid photoluminescence. The sealed source was then removed and the activity of the liquid scintillation cocktail was measured.

    \section*{Gas Source Test}

    The source was placed in a vacuum desiccator and maintained at a pressure of \(<10 \mathrm{~mm} \mathrm{Hg}\) for not less than 12 hours. The activity was checked by introducing air into the desiccator and monitoring the air with an end-window G.M. tube.

    \section*{Ampoule Leak Test}

    The ampoule was kept in an inverted position on a filter paper disk or polystyrene wipe for a minimum of 16 hours. The wipe was then checked for activity using a scintillation detector or liquid scintillation counter.

    \section*{Bubble Leak Test}

    The container was pressurized to its fill pressure; then soapy water was applied over its valve and neck or, the valve and neck of the vessel were immersed in water. If no growing bubbles were observed, the container was considered leak free.

    \section*{Wipe Test for Industrial Ni-63 Sources}

    The sources were wipe tested by an approved sampling plan, which called for either \(100 \%\) of the batch to be individually wipe tested, or, a subset thereof. The wipe test(s) used to test for removable contamination and the results of those tests are recorded on the front of this form.

    \section*{Pressure Test for Triotech Kr-85 Sources}

    Prior to filling the vessel with Kr-85 gas, the vessel was evacuated to \(<5 \mathrm{~mm} \mathrm{Hg}\), the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss of the manifold system itself signified the vessel did not leak.

    \section*{Leak Test Not Applicable}

    The active area of the source is uncovered or is protected by a very thin coating. Although the deposit is adherent, it is not designed or certified to pass a standard leak test. The inactive portions of the source have been checked using the standard wipe test or special wipe test depending on the nuclide.

    Other Leak Test

    Tel \(661 \cdot 309 \cdot 1010\)
    Fax 661-257.8303

    \section*{CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE}
    \begin{tabular}{ll} 
    Customer: & AMERICAN RADIATION SERVICE \\
    P.O. No.: & 14-0236 \\
    Catalog No.: & EG-ML
    \end{tabular}

    \author{
    Source No.: \\ Reference Date:
    } Contained Radioactivity: \(\begin{array}{lllll} & 0.9342 & \mu \mathbf{C i} & 34.57 & \mathbf{k B q}\end{array}\)

    Physical Description:
    Customer supplied tuna can
    Multinuclide distributed in \(1.5 \mathrm{~g} / c c\) epoxy matrix
    B. Nature of active deposit:
    C. Active diameter/volume:
    D. Backing:
    E. Cover:

    Approximately 250 mL ( 377.6 grams)
    Steel
    Steel
    \begin{tabular}{cllllll}
    \begin{tabular}{c} 
    Gamma-Ray \\
    Energy (ReV)
    \end{tabular} & Nuclide & \multicolumn{1}{c}{ Half-life } & \begin{tabular}{c} 
    Branching \\
    Ratio (\%)
    \end{tabular} & \begin{tabular}{c} 
    Activity \\
    \((\mu \mathrm{Ci})\)
    \end{tabular} & \begin{tabular}{c} 
    Gammas \\
    per second
    \end{tabular} & \begin{tabular}{c} 
    Total \\
    Uncert.
    \end{tabular} \\
    47 & Pb-210 & \(22.3 \pm 0.2\) years & 4.18 & 0.2133 & 329.9 & \(4.1 \%\) \\
    60 & Am-241 & \(432.17 \pm 0.66\) years & 36.0 & 0.02113 & 281.5 & \(3.1 \%\) \\
    88 & Cd-109 & \(462.6 \pm 0.7\) days & 3.63 & 0.2039 & 273.9 & \(3.1 \%\) \\
    122 & Co-57 & \(271.79 \pm 0.09\) days & 85.6 & 0.007394 & 234.2 & \(3.1 \%\) \\
    159 & Te-123m & \(119.7 \pm 0.1\) days & 84.0 & 0.01066 & 331.3 & \(3.1 \%\) \\
    320 & Cr-51 & \(27.706 \pm 0.007\) days & 9.86 & 0.2517 & 918.3 & \(3.0 \%\) \\
    392 & Sn-113 & \(115.09 \pm 0.04\) days & 64.9 & 0.03574 & 858.2 & \(3.0 \%\) \\
    514 & Sr-85 & \(64.849 \pm 0.004\) days & 98.4 & 0.04568 & 1663 & \(3.0 \%\) \\
    662 & Cs-137 & \(30.17 \pm 0.16\) years & 85.1 & 0.03171 & 998.5 & \(3.1 \%\) \\
    898 & Y-88 & \(106.630 \pm 0.025\) days & 94.0 & 0.07337 & 2552 & \(3.0 \%\) \\
    1173 & Co-60 & \(5.272 \pm 0.001\) years & 99.86 & 0.03965 & 1465 & \(3.0 \%\) \\
    1333 & Co-60 & \(5.272 \pm 0.001\) years & 99.98 & 0.03965 & 1467 & \(3.0 \%\) \\
    1836 & Y-88 & \(106.630 \pm 0.025\) days & 99.4 & 0.07337 & 2698 & \(3.0 \%\)
    \end{tabular}

    Method of Calibration:
    This source was prepared from weighed aliquots of solutions whose concentrations in \(\mu \mathrm{Ci} / \mathrm{g}\) were determined by gamma spectrometry.

    Notes:
    - See reverse side for leak test(s) performed on this source.
    - EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
    - Nuclear data was taken from IAEA-TECDOC-619, 1991.
    - Overall uncertainty is calculated at the \(99 \%\) confidence level.
    - This source has a working life of 1 year.
    

    EZIP Ref. No.: 1748-90

    \section*{Standard Wipe Test}

    The source was wiped over its entire surface with a moistened filter paper disk. After drying, the disk was checked for activity using a scintillation detector.

    \section*{Special Wipe Test}

    The source was wiped over its entire surface with moistened polystyrene. The polystyrene was then dissolved in a liquid scintillation cocktail and counted in a liquid scintillation counter.

    \section*{Distilled Water Soak Test}

    The source was immersed in distilled water and maintained at \((50 \pm 5)^{\circ} \mathrm{C}\) for a minimum of four hours or room temperature \((20 \pm 5)^{\circ} \mathrm{C}\) for 24 hours. After removal of the source, the liquid was a) checked for activity using a liquid scintillation counter, or b) evaporated in a planchet and the residue checked for activity using a windowless proportional counter or end-window G.M. tube.

    \section*{Liquid Scintillation Soak Test}

    The source was immersed for a minimum of 3 hours at room temperature \((20 \pm 5)^{\circ} \mathrm{C}\) in a liquid scintillation cocktail, which does not attack the source's outer surface material. The source was stored away from light to avoid photoluminescence. The sealed source was then removed and the activity of the liquid scintillation cocktail was measured.

    \section*{Gas Source Test}

    The source was placed in a vacuum desiccator and maintained at a pressure of \(<10 \mathrm{~mm} \mathrm{Hg}\) for not less than 12 hours. The activity was checked by introducing air into the desiccator and monitoring the air with an end-window G.M. tube.

    \section*{Ampoule Leak Test}

    The ampoule was kept in an inverted position on a filter paper disk or polystyrene wipe for a minimum of 16 hours. The wipe was then checked for activity using a scintillation detector or liquid scintillation counter.

    \section*{Bubble Leak Test}

    The container was pressurized to its fill pressure; then soapy water was applied over its valve and neck or, the valve and neck of the vessel were immersed in water. If no growing bubbles were observed, the container was considered leak free.

    \section*{Wipe Test for Industrial Ni-63 Sources}

    The sources were wipe tested by an approved sampling plan, which called for either \(100 \%\) of the batch to be individually wipe tested, or, a subset thereof. The wipe test(s) used to test for removable contamination and the results of those tests are recorded on the front of this form.

    \section*{Pressure Test for Triotech Kr-85 Sources}

    Prior to filling the vessel with \(\mathrm{Kr}-85\) gas, the vessel was evacuated to \(<5 \mathrm{~mm} \mathrm{Hg}\), the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss of the manifold system itself signified the vessel did not leak.

    \section*{Leak Test Not Applicable}

    The active area of the source is uncovered or is protected by a very thin coating. Although the deposit is adherent, it is not designed or certified to pass a standard leak test. The inactive portions of the source have been checked using the standard wipe test or special wipe test depending on the nuclide.

    Other Leak Test

    E\&Z 1748-90-1 250ml Tuna Can 1.5g/cc
    \begin{tabular}{|c|c|c|c|c|c|c|}
    \hline Nuclide & Energy & GPS & BRatio & Bq & DPM & pCi \\
    \hline PB-210 & 47 & 329.9 & 0.0418 & 7892.344 & 473540.7 & 213306.4 \\
    \hline AM-241 & 60 & 281.5 & 0.36 & 781.9444 & 46916.67 & 21133.61 \\
    \hline CD-109 & 88 & 273.9 & 0.0363 & 7545.455 & 452727.3 & 203931 \\
    \hline CO-57 & 122 & 234.2 & 0.856 & 273.5981 & 16415.89 & 7394.537 \\
    \hline TE-123m & 159 & 331.3 & 0.84 & 394.4048 & 23664.29 & 10659.58 \\
    \hline CR-51 & 320 & 918.3 & 0.0986 & 9313.387 & 558803.2 & 251712.9 \\
    \hline SN-113 & 392 & 858.2 & 0.649 & 1322.342 & 79340.52 & 35738.94 \\
    \hline SR-85 & 514 & 1663 & 0.984 & 1690.041 & 101402.4 & 45676.73 \\
    \hline CS-137 & 662 & 998.5 & 0.851 & 1173.325 & 70399.53 & 31711.47 \\
    \hline Y-88 & 898 & 2552 & 0.94 & 2714.894 & 162893.6 & 73375.43 \\
    \hline CO-60 & 1173 & 1465 & 0.9986 & 1467.054 & 88023.23 & 39650.07 \\
    \hline CO-60 & 1333 & 1467 & 0.9998 & 1467.293 & 88037.61 & 39656.54 \\
    \hline Y-88 & 1836 & 2698 & 0.994 & 2714.286 & 162857.1 & 73359 \\
    \hline
    \end{tabular}

    \title{
    CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE
    }

    \author{
    Customer: AMERICAN RADIATION SERVICE \\ P.O. No.: \(\quad\) 12-0210 / R5197 \\ Catalog No.: EG-ML
    }

    Source No.:
    Reference Date:
    Contained Radioactivity:

    1595-98-4
    1-Jul-12 12:00 PST
    \(\begin{array}{llll}1.024 & \mu \mathrm{Ci} & 37.89 & \mathbf{k B q}\end{array}\)

    Physical Description:
    A. Capsule type:
    B. Nature of active deposit:
    C. Active diameter/volume:
    D. Backing:
    E. Cover:

    Customer supplied tuna can
    Multinuclide distributed in \(1.5 \mathrm{~g} / \mathrm{cc}\) epoxy matrix
    Approximately 250 mL ( 376.2 grams)
    Plastic
    Plastic
    \begin{tabular}{lllllll}
    \begin{tabular}{c} 
    Gamma-Ray \\
    Energy (ReV)
    \end{tabular} & Nuclide & \multicolumn{1}{c}{ Half-life } & \begin{tabular}{c} 
    Branching \\
    Ratio (\%)
    \end{tabular} & \begin{tabular}{c} 
    Activity \\
    \((\mu \mathrm{Ci})\)
    \end{tabular} & \begin{tabular}{c} 
    Gammas \\
    per second
    \end{tabular} & \begin{tabular}{c} 
    Total \\
    Uncert.
    \end{tabular} \\
    47 & \(\mathrm{~Pb}-210\) & \(22.3 \pm 0.2\) years & 4.18 & 0.2320 & 358.8 & \(7.0 \%\) \\
    60 & Am-241 & \(432.17 \pm 0.66\) years & 36.0 & 0.02273 & 302.8 & \(3.0 \%\) \\
    88 & Cd-109 & \(462.6 \pm 0.7\) days & 3.63 & 0.2223 & 298.6 & \(3.2 \%\) \\
    122 & Co-57 & \(271.79 \pm 0.09\) days & 85.6 & 0.008038 & 254.6 & \(3.1 \%\) \\
    159 & Te-123m & \(119.7 \pm 0.1\) days & 84.0 & 0.01098 & 341.3 & \(3.1 \%\) \\
    320 & Cr-51 & \(27.706 \pm 0.007\) days & 9.86 & 0.2766 & 1009 & \(3.0 \%\) \\
    392 & Sn-113 & \(115.09 \pm 0.04\) days & 64.9 & 0.04358 & 1046 & \(3.0 \%\) \\
    514 & Sr-85 & \(64.849 \pm 0.004\) days & 98.4 & 0.05122 & 1865 & \(3.0 \%\) \\
    662 & Cs-137 & \(30.17 \pm 0.16\) years & 85.1 & 0.03546 & 1117 & \(3.0 \%\) \\
    898 & Y-88 & \(106.630 \pm 0.025\) days & 94.0 & 0.07866 & 2736 & \(3.0 \%\) \\
    1173 & Co-60 & \(5.272 \pm 0.001\) years & 99.86 & 0.04279 & 1581 & \(3.0 \%\) \\
    1333 & Co-60 & \(5.272 \pm 0.001\) years & 99.98 & 0.04279 & 1583 & \(3.0 \%\) \\
    1836 & Y-88 & \(106.630 \pm 0.025\) days & 99.4 & 0.07866 & 2893 & \(3.0 \%\)
    \end{tabular}

    Method of Calibration:
    This source was prepared from weighed aliquots of solutions whose concentrations in \(\mu \mathrm{Ci} / \mathrm{g}\) were determined by gamma spectrometry.

    Notes:
    - See reverse side for leak test(s) performed on this source.
    - EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
    - Nuclear data was taken from IAEA-TECDOC-619, 1991.
    - Overall uncertainty is calculated at the \(99 \%\) confidence level.
    - This source has a working life of 1 year.
    

    EZIP Ref. No.: \(1595-98\)

    1595-98-4 - Tuna Can 1.5g/ce -7-1-12
    \begin{tabular}{lcccccc} 
    Nuclide & Energy & GPS & BRatio & Bq & DPM & pCl \\
    & & & & & & \\
    PB-210 & 47 & 358.8 & 0.0418 & 8583.73 & 515023.92 & 231992.53 \\
    AM-241 & 60 & 302.8 & 0.36 & 841.11 & 50466.67 & 22732.71 \\
    CD-109 & 88 & 298.6 & 0.0363 & 8225.90 & 493553.72 & 222321.27 \\
    CO-57 & 122 & 254.6 & 0.856 & 297.43 & 17845.79 & 8038.64 \\
    TE-123M & 159 & 341.3 & 0.84 & 406.31 & 24378.57 & 10981.33 \\
    CR-51 & 320 & 1009 & 0.0986 & 10233.27 & 613995.94 & 276574.47 \\
    SN-113 & 392 & 1046 & 0.649 & 1611.71 & 96702.62 & 43559.69 \\
    SR-85 & 514 & 1865 & 0.984 & 1895.33 & 113719.51 & 51224.95 \\
    CS-137 & 662 & 1117 & 0.851 & 1312.57 & 78754.41 & 35474.92 \\
    Y-88 & 898 & 2736 & 0.94 & 2910.64 & 174638.30 & 78665.82 \\
    CO-60 & 1173 & 1581 & 0.9986 & 1583.22 & 94992.99 & 42789.59 \\
    CO-60 & 1333 & 1583 & 0.9998 & 1583.32 & 94999.00 & 42792.30 \\
    Y-88 & 1836 & 2893 & 0.994 & 2910.46 & 174627.77 & 78661.08
    \end{tabular}

    \section*{CERTIFICATE OF CALIBRATION \\ Standard Radionuclide Source}

    73518-526
    Th-230 47 mm Diameter \(x 0.9 \mathrm{~mm}\) Thick Stainless Steel Disk in Stainless steel planchet

    This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. Th-230 activity was determined with a ZnS scintillation detector. The calibration was checked by alpha spectroscopy after source preparation.

    Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.
    ```
    ISOTOPE:
    ACTIVITY (dps):
                                1.888 E2
    HALF-LIFE:
    CALIBRATION DATE:
    7.538 E4 Years
    September 11, 2006 12:00 EST
    RELAATIVE EXPANDED
    UNCERTAINTY ( ~~~~~

